Skip to main content

Evaluation of Wild Halophytes of Aralo-Caspian Flora Towards Soil Restoration and Food Security Improvement

  • Chapter
Plants, Pollutants and Remediation

Abstract

Nowadays, due to an increase in the salinization induced by climate change and desertification process in the dryland ecosystems, evaluation of potential use of halophytes for soil remediation, forage and food supply, medicinal and other purposes is gaining wide attention and acceptability. Documentation of valuable knowledge about these plants is assuming urgent priority.

Desert halophytes of Aralo-Caspian flora safely survive under extreme saline edaphic and arid climate conditions by development of specific ion translocation and salt-accumulation mechanisms by developing specific salt/storage cells and salt excretion though salt-producing trichomes/hairs for removal, degradation and immobilization of wide spectrum of soil pollutants. Innovative remediation strategies are based on domestication of wild halophytes which are able to grow and produce seeds successfully under dry and saline environments, can accumulate high shoot and root biomass, have deep root systems and are distinguished by efficient nutrient uptake mechanisms, resistance to salinity and water deficiency. Different mechanisms and strategies for the sequestration and regulation of salt ion concentrations in the plant tissues are operating in the stem and leaf of succulent halophytes and in the recreto-and pseudohalophytes of Aralo-Caspian flora. The significant levels of sclerification of perianth segments simultaneously with the thickening of pericarp and spermoderma epidermis are known to protect embryo from pollutants. Peculiarities of reproduction mechanisms and CO2 fixation pathways also play an important role in vital function of halophytes crops under harsh desert conditions. In this paper new integrated approaches for utilization of wild halophyte taxa in remediation of soils contaminated by toxic salts/heavy metals, stabilization of ecosystem function and sources for functionality of biologically active substances (primary and secondary metabolites) will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abduyev MR (1961) Solonetz soils of Azerbaijan and ways of their improvement. Azerbaijan Government Publication, Baku, 67 p (in Azerbaijaniani)

    Google Scholar 

  • Abduyev MR (1963) Root system of wormwood plants under lowland conditions of Azerbaijan. Proc Acad Sci Azerbaijan SSR 5:15–20 (in Russian)

    Google Scholar 

  • Ahmad P, Prasad MNV (2012) Abiotic stress responses in plants: metabolism, productivity and sustainability, 1st edn. Springer, New York, XIX, 551 p

    Google Scholar 

  • Ahmad P, Sharma S (2008) Salt stress and phyto-biochemical responses of plants. Plant Soil Environ 54:89–99

    Google Scholar 

  • Akjigitova NI (1982) Halophytic vegetation of Middle Asia and its indicator properties. “FAN” Publisher, Tashkent, 201 p

    Google Scholar 

  • Alirzayeva E, Neumann G (2013) Multiple tolerance of Artemisia fragrans to environmental stress factors. International conference on “Environmental changes and conservation of plant diversity”, Baku, p 33

    Google Scholar 

  • Alirzayeva EG, Shirvani TS, Yazici MA, Alverdiyeva SM, Shukurov ES, Ozturk L, Ali-zade VM, Cakmak I (2006a) Heavy metal accumulation in Artemisia and foliaceous lichen species from the Azerbaijan flora. For Snow Lands Res 80:339–348

    Google Scholar 

  • Alirzayeva EG, Shirvani TS, Yazici MA, Aleskerova AN, Ali-zade VM, Cakmak I (2006b) Heavy metal accumulation in some medicinal wormwood species from Azerbaijan. Materials of International Conference, dedicated to 75 years of formation of All-Russian Res Inst of Med and Arom Plants M XII, pp 231–235

    Google Scholar 

  • Alirzayeva E, Shirvani T, Alizade V, Romheld V, Cakmak I (2011) Chapter 6: Genetic capacity of some medicinal plants to accumulate heavy metals. In: Altaf Ahmad et al (eds) Medicinal plants in changing environment. Capital Publication, New Delhi, pp 72–97

    Google Scholar 

  • Ali-zade VM, Alirzayeva EG, Shirvani TS (2010) Plant resistance to anthropogenic toxicants: approaches to phytoremediation. In: Ashraf M, Ozturk M, Ahmad MSA (eds) Plant adaptation and phytoremediation. Springer, Dordrecht Heidelberg London New York, pp 173–191

    Google Scholar 

  • Ali-zade VM, Shirvani TS, Alirzayeva EG (2011) Plant resistance to toxicity of metals and petroleum hydrocarbons. Approaches to phytoremediation. Elm, Baku, 280 p (in Russian)

    Google Scholar 

  • Altay A, Öztürk M (2012) Halophytic plant diversity of Milleyha (Samandağ-Hatay) freshwater ecosystem, land degradation due to human disturbances & conservation measures. Pak J Bot 44:37–50

    Google Scholar 

  • Anwar F, Bhanger MI, Nasir MKA, Ismail S (2002) Analytical characterization of Salicornia bigelovii seed oil cultivated in Pakistan. Agric Food Chem 50:4210–4214

    Article  CAS  Google Scholar 

  • Aparin VB, Kawabata Y, Ko S, Kunio S, Masahiro N, Masayoshi Y (2006) Evaluation of geoecological status and anthropogenic impact on the central Kyzylkum Desert (Uzbekistan). J Arid Land Stud 15(4):219–222

    Google Scholar 

  • Arshad M, Murtaza G, Ali MA, Shafig M, Dumat C, Ahmed N (2011) Wheat growth and phytoavailability of copper and zinc as affected by soil texture in salin-sodic conditions. Pak J Bot 43(5):2433–2439

    CAS  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Ashraf M, Ozturk M, Ahmad MSA (2010) Toxins and their phytoremediation. In: Ashraf M, Ozturk M, Ahmad MSA (eds) Plant adaptation and phytoremediation. Springer, Dordrecht Heidelberg London New York, pp 1–32

    Google Scholar 

  • Azizov GZ (2006) Water-salt balance of meliorated soils of Kur-Araz lowland and scientific analysis of their results. “Elm”, Baku, 260 p (in Azerbaijani)

    Google Scholar 

  • Bajji M, Kinet JM, Lutts S (1998) Salt stress effects on roots and leaves of Atriplex halimus L. and their corresponding callus cultures. Plant Sci 137:131–142

    Article  CAS  Google Scholar 

  • Bennett SJ, Barrett-Lennard EG, Colmer TD (2009) Salinity and waterlogging as constraints to saltland pasture production: a review. Agric Ecosys Environ 129:349–360

    Article  Google Scholar 

  • Botcszantsev VP (1969) Genus Salsola L.-concise history of its development and dispersal. Bot J 54:989–1001

    Google Scholar 

  • Boyd RS, Martens SN (1998) The significance of metal hyperaccumulation for biotic interactions. Chemoecology 8:1–7

    Article  CAS  Google Scholar 

  • Boyko H (1966) Basic ecological principles of plant growing by irrigation with highly saline or seawater. In: Boyko H (ed) Salinity and aridity: new approaches to old problems. DW Junk Publishers, The Hauge

    Chapter  Google Scholar 

  • Budagov B, Mammadov R, Ismatova Kh, Mikailov A (2003) Current state and reasons of desertification of coastal zone of Caspian Sea. “Man and Biosphere” (MAB, UNESCO) Azerbaijan National Committee, vol 2, pp 16–34 (in Russian)

    Google Scholar 

  • Chandna R, Azooz MM, Ahmad P (2013) Recent advances of metabolomics to reveal plant response during salt stress. In: Ahmad P et al (eds) Salt Stress in Plants: Omics, Signaling and Adaptation. Springer, New York, pp 1–14

    Google Scholar 

  • Chaudhri II, Shah BH, Naqvi N, Mallick IA (1964) Investigations on the role of Suaeda fruticosa Forsk in the reclamation of saline and alkaline soils in west Pakistan plains. Plant Soil 21:1–7

    Article  Google Scholar 

  • Chedlly A, Ozturk M, Ashraf M, Grignon C (eds) (2008) Biosaline agriculture and high salinity tolerance. Birkhauser Verlag (Springer), Basel, 367 pp

    Google Scholar 

  • Cruz V, Cuartero J (1990) Effects of salinity at several developmental stages of six genotypes of tomato (Lycopersicon spp.). In: Cuartero J, Gomez-Guillamon ML, Fernandez-Munoz R (eds) Eucarpia tomato 90, Proceedings of the XIth Eucarpia meeting on tomato genetics and breeding, Malaga, Spain, pp 81–86

    Google Scholar 

  • Curtain D, Naidu R (1998) Fertility constraints to plant production. In: Sumner ME, Naidu R (eds) Sodic soils. Distribution, management and environmental consequences. Oxford University Press, New York, pp 107–123

    Google Scholar 

  • Dagar JC, Tomar OS, Kumar Y, Bhagwan H, Yadavand RK, Tyagi NK (2006) Performance of some under-explored crops under saline irrigation in a semiarid climate in northwest India. Land Degrad Dev 17:285–299

    Article  Google Scholar 

  • Dağhan H, Ozturk M (2015) Soil pollution in Turkey and remediation methods. In: Hakeem S, Ozturk M (eds) Soil remediation and plants: prospects and challenges. Academic/Elsevier, New York, pp 287–312

    Google Scholar 

  • Dikilitas M (2003) Effect of salinity and its interactions with Verticillium albo-atrum on the disease development in tomato (Lycopersicon esculentum Mill.) and lucerne (Medicago sativa and M. media) plants. Ph.D thesis, University of Wales Swansea

    Google Scholar 

  • Dikilitas M, Karakas S (2010) Salts as potential environmental pollutants, their types, effects on plants and approaches for their phytoremediation. In: Ashraf M, Ozturk M, Ahmad MSA (eds) Plant adaptation and phytoremediation. Springer, Dordrecht, pp 357–383

    Chapter  Google Scholar 

  • Eid MA, Eisa SS (2010) The use of some halophytic plants to reduce Zn, Cu and Ni in soil. Aust J Basic Appl Sci 4:1590–1596

    CAS  Google Scholar 

  • Escarre J, Lefebvre C, Gruber W, Leblanc M, Lepart J, Riviere Y, Delay B (2000) Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in the Mediterranean area: implications for phytoremediation. New Phytol 145:429–437

    Article  CAS  Google Scholar 

  • Evans DR, Black RA, Loescher WH, Fellows RJ (1992) Osmotic relations of the drought-tolerant shrub Artemisia tridentata in response to water stress. Plant Cell Environ 15(1):49–59

    Article  CAS  Google Scholar 

  • Flowers TJ (1985) Physiology of halophytes. Plant Soil 89:41–56

    Article  CAS  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ, Flowers SA (2005) Why does salinity pose such a difficult problem for plant breeders? Agric Water Manage 78:15–24

    Article  Google Scholar 

  • Flowers TJ, Hajibagheri MA, Clipson NJW (1986) Halophytes. Q Rev Biol 61:313–337

    Article  Google Scholar 

  • Flowers TJ, Flowers SA, Hajibagheri MA, Yeo AR (1991) Ion accumulation in the cell wall of rice plants growing under saline conditions: evidence for the Oertli hypothesis. Plant Cell Environ 14:319–325

    Article  Google Scholar 

  • Flowers TJ, Galal HK, Bromham L (2010) Evolution of halophytes: multiple origins of salt tolerance in land plants. Funct Plant Biol 37:604–612

    Article  Google Scholar 

  • Freitag H (1997) Salsola L. (Chenopodiaceae). In: Rechinger KN (ed) Flora Iranica, vol 173. Akadesche Druck-u Verlagsanstalt, Graz, pp 154–255

    Google Scholar 

  • Garratt LC, Janagoudar BS, Lowe KC, Anthony P, Power JB, Davey MR (2002) Salinity tolerance and antioxidant status in cotton cultures. Free Radic Biol Med 33:502–511

    Article  CAS  PubMed  Google Scholar 

  • Geissler N, Huchzermeyer B, Koyro HW (2013) Effect of salt stress on phytosynthesis under ambient and elevated atmospheric CO2 concentration. In: Ahmad P et al (eds) Salt Stress in Plants. Signalings, Omics and Adaptations. Springer, New York, pp 377–414

    Google Scholar 

  • Gintzburger G, Toderich K, Mardonov B, Mahmudov M (2003) Rangelands of the arid and semi arid zones in Uzbekistan. CIRAD/ICARDA, Montpellier, 420 p

    Google Scholar 

  • Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18:227–255

    Article  Google Scholar 

  • Goldshtein RI (1997) Ecological situation in the Kyzylkums in connection with its industrial development. Bull SCST Repub Uzbekistan N 3–4:70–75

    Google Scholar 

  • Goldshtein RI, Tsukatani T, Toderich KN, Ashurmertov OA, Aparin VB (2000) Ecological state and conservation of arid salt- affected lands using Asiatic Salsola species. Abstracts book of International seminars of saline agriculture, Islamabad, pp 10–12

    Google Scholar 

  • Gorham J (1992) Salt tolerance of plants. Sci Prog 76:273–285

    Google Scholar 

  • Gorham J (1994) Salt tolerance in the Triticeae: K/Na discrimination in some perennial wheat grasses and their amphiploids with wheat. J Exp Bot 45:441–447

    Article  CAS  Google Scholar 

  • Grattan SR, Grieve CM (1994) Mineral nutrient acquisition and response by plants grown in saline environments. In: Pessarakli M (ed) Handbook of plant and crop stress. Marcel Dekker, New York, pp 203–226

    Google Scholar 

  • Grigore MN, Toma C (2007) Histo-anatomical strategies of Chenopodiaceae halophytes: Adaptive, ecological and evolutionary implications. WSEAS Trans Biol Biomed 4(12):204–218

    Google Scholar 

  • Gurbanov EM (2009) New taxons of vegetation in Azerbaijan. Proc Baku State Univ 3:107–116

    Google Scholar 

  • Guvensen A, Gork G, Ozturk M (2006) An overview of the halophytes in Turkey. In: Khan et al (eds) Sabkha ecosystems vol. II, West & Central Asia. Springer, Dordrecht, pp 9–30

    Google Scholar 

  • Hajiyev VD (2002) Reconstruction and protection of Kur-Araz lowland deserted ecosystem. 6-th Baku International Congress “Energy, Ecology, Economy”, Baku, pp 403–404

    Google Scholar 

  • Hajiyev OA, Rahimov VA (1971) Climatic level of administrative regions of Azerbaijan. “Elm”, Baku, p 269 (in Azerbaijani)

    Google Scholar 

  • Hakeem KR, Chandna R, Rehman R, Tahir I, Sabir M, Iqbal M (2013) Unraveling salt stress in plants through proteomics In: Ahmad P, Azooz MM, Prasad MNV (eds) Salt Stress in Plants: Signalling, Omics and Adaptations. Springer, New York, pp 47–61

    Google Scholar 

  • Hakeem KR, Sabir M, Ozturk M, Mermut A (2015) Soil remediation and plants: prospects and challenges. Academic/Elsevier, New York, 724 pp

    Google Scholar 

  • Hameed M, Ashraf M, Ahmad MSA, Naz N (2010) Structural and functional adaptations in plants for salinity tolerance. In: Ashraf M, Ozturk M, Ahmad MSA (eds) Plant Adaptation and Phytoremediation. Springer, Dordrecht Heidelberg London New York, pp 151–170

    Chapter  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M, Ahmad P, Chandna R, Prasad MNV, Ozturk M (2013) Enhancing Plant Productivity under Salt Stress- Relevance of Poly-omics. In: Ahmad P et al (eds) Salt Stress in Plants: Signalling, Omics and Adaptations. Springer, New York, pp 113–156

    Google Scholar 

  • Hasanuzzaman M, Nahar K, Hakeem KR, Ozturk M, Fujita M (2015) Arsenic Toxicity in Plants and Possible Remediation. In: Hakeem S, Ozturk M (eds) Soil remediation and plants: prospects and challenges. Academic/Elsevier, New York, pp 433–502

    Chapter  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu J-K, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  PubMed  Google Scholar 

  • Heydarova RM (2013) The study of sulfate saline soils and subsoil grounds on the basis of processing of Space Images. Proc Azerbaijan Nat Acad Sci Biol Med Sci 68(1):90–94 (in Azerbaijani)

    Google Scholar 

  • Ishikawa SI, Kachi N (2000) Differential salt tolerance of two Artemisia species growing in contrasting coastal habitats. Plant Cell Environ 5(1):49–59

    Google Scholar 

  • Jordan FL, Robin-Abbott M, Maier RM, Glenn EP (2002) A comparison of chelator-facilitated metal uptake by a halophyte and a glycophyte. Environ Toxicol Chem 21:2698–2704

    Article  CAS  PubMed  Google Scholar 

  • Kadukova J, Manousaki E, Kalogerakis N (2008) Pb and Cd accumulation and phytoexcretion by salt cedar (Tamarix smyrnensis Bunge). Int J Phytorem 10:31–46

    Article  CAS  Google Scholar 

  • Khan F, Hakeem KR, Sidiqqui TO, Ahmad A (2013) RAPD markers associated with salt tolerance in soybean genotypes under salt stress. Appl Biochem Biotech 170(2):257–272

    Article  CAS  Google Scholar 

  • Khan MA, Boer B, Ozturk M, Al Abdessalaam T, Clüsener-Godt M (eds) (2014) Sabkha ecosystems: volume IV: cash crop halophyte and biodiversity conservation. Tasks for vegetation science. Springer, Dordrecht

    Google Scholar 

  • Kholodova V, Volkov K, Kuznetsov Vl (2010) Plants under heavy metal stress in saline environments. In: Soil heavy metals. Soil biology, vol 19. Springer, Heidelberg Dordrecht London New York, pp 163–183

    Google Scholar 

  • Kim JG, Cho NH, Kim NB et al (2003) Bioremediation method of heavy metal contaminated soils. Patent no KR 2003079062 A 20031010 (in Korean)

    Google Scholar 

  • Krüger HR, Peinemann N (1996) Coastal plain halophytes and their relation to soil ionic composition. Vegetation 122:143–150

    Article  Google Scholar 

  • Le Houerou HN (1992) The role of saltbushes (Atriplex species) in arid land rehabilitation in the Mediterranean basis: a review. Agrofor Syst 18:107–148

    Article  Google Scholar 

  • Le Houerou HN (1996) Forage halophytes in the Mediterranean basin. In: Chakour-Allah R, Malcolm CV, Hamdy A (eds) Halophytes and biosaline agriculture. Marcel Dekker, New York, pp 115–136

    Google Scholar 

  • Le Houerou HN (2000) Utilization of fodder trees and shrubs in the arid and semiarid zones of West Asia and North Africa. Arid Soil Res Rehab 14:101–135

    Article  Google Scholar 

  • Lefevre I, Marchal G, Meerts P, Correal E, Lutts S (2009) Chloride salinity reduces cadmium accumulation by the Mediterranean halophyte species Atriplex halimus L. Environ Exp Bot 65:142–152

    Article  CAS  Google Scholar 

  • Lokhande VH, Suprasanna P (2012) Prospects of halophytes in understanding and managing abiotic stress tolerance. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change, XVI. Springer, New York, pp 29–56

    Google Scholar 

  • Lopez-Chuken UJ, Young SD (2005) Plant screening of halophyte species for cadmium phytoremediation. Z Naturforsch 60:236–243

    CAS  Google Scholar 

  • Lutts S, Lefevre I, Delperee C, Kivits S, Dechamps C, Robledo A, Correal E (2004) Heavy metal accumulation in the halophyte species Mediterranean saltbush. J Environ Qual 33:1271–1279

    Article  CAS  PubMed  Google Scholar 

  • Macnair MR (2003) The hyperaccumulation of metals by plants. Adv Bot Res 40:63–105

    Article  CAS  Google Scholar 

  • Mammadov GSh (2005) Assessment and management of ecological status of Azerbaijan soils. In: Alekperov UK (ed) Proceedings of the “Man and Biosphere” (MAB), Azerbaijan National Commitee for UNESCO, vol 3. Elm Publish, Baku, pp 64–77 (in Azerbaijaniani)

    Google Scholar 

  • Mammadov G, Khalilov M, Mammadova S (2010) Agroecology. Elm Publish, Baku, 551 p (in Azerbaijani)

    Google Scholar 

  • Manousaki E, Kalogerakis N (2009) Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity. Environ Sci Pollut Res 16:844–854

    Article  CAS  Google Scholar 

  • Manousaki E, Kalogerakis N (2011a) Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Ind Eng Chem Res 50:656–660

    Article  CAS  Google Scholar 

  • Manousaki E, Kalogerakis N (2011b) Halophytes- an emerging trend in phytoremediation. Int J Phytoremed 13:959–969

    Article  CAS  Google Scholar 

  • Manousaki E, Kadukova J, Papadantonakis N, Kalogerakis N (2008) Phytoextraction and phytoexcretion of Cd by Tamarix smyrnensis growing on contaminated nonsaline and saline soils. Environ Res 106:326–332

    Article  CAS  PubMed  Google Scholar 

  • Marcelis LFM, Van Hooijdonk J (1999) Effect of salinity on growth, water use and nutrient use in radish (Raphanus sativus L.). Plant Soil Hague 215:57–64

    Article  CAS  Google Scholar 

  • Masters DA, Benes SE, Norman HC (2007) Biosaline agriculture for forage and livestock production. Agric Ecosys Environ 119:234–248

    Article  CAS  Google Scholar 

  • Mehtiyeva NP (2011) Biodiversity of medicinal flora of Azerbaijan. Baku, 186 p

    Google Scholar 

  • Mehtiyeva N, Zeynalova S (2013) Medicinal and aromatic plants of Azerbaijan. In: Medicinal and Aromatic Plants of the World Encyclopedia of Life Support Systems (EOLSS), developed under the Auspices of the UNESCO, Eolss Publishers, Oxford

    Google Scholar 

  • Melikov RV, Bayramova KK (2004) Forage Kochia. Trans Bot Inst Azerbaijan Nat Acad Sci XXV:297–298

    Google Scholar 

  • Melikov RV, Huseynova AD (2004) Tipology of wormwood groves in Kur-Araz lowland. Trans Bot Inst Azerbaijan Nat Acad Sci XXV:279–282

    Google Scholar 

  • Milić D, Luković J, Zorić L, Vasin J, Ninkov J, Zeremski T, Milić S (2012) Halophytes relations to soil ionic composition. J Serb Chem Soc 77:1–14

    Article  CAS  Google Scholar 

  • Morishita T, Boratynski JK (1992) Accumulation of cadmium and other metals in organs of plants growing around metal smelters in Japan. Soil Sci Plant Nutr 38:781–785

    Article  CAS  Google Scholar 

  • Movsumova FG (2003) Biodiversity of solonchak desert vegetation of Kur-Araz lowland of Azerbaijan, In: Alekperov UK (ed) Proceedings of the “Man and Biosphere” (MAB), Azerbaijani National Committee for UNESCO, vol 2. Elm Publish, Baku, pp 163–174 (in Azerbaijaniani)

    Google Scholar 

  • Movsumova FG (2005) Flora and vegetation of saltwort deserts of Nakhichevan AR. “Shams”, Baku, 134 p (in Azerbaijaniani)

    Google Scholar 

  • Movsumova FG (2011) Distribution, ecological-phytocoenotic peculiarities and useful features of species of Chenopodiaceae family in Azerbaijan. In: Proceedings of the “Man and Biosphere” (MAB, UNESCO), Annual edition, vol 7. Azerbaijan National Committee, Bakupp 311–318

    Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Cramer GR, Ball MC (1999) Interactions between rising CO2, soil salinity and plant growth. In: Luo Y, Seemann JR (eds) Carbon dioxide and environmental stress. Academic, New York, 139–167

    Google Scholar 

  • Musayev SG, Fataliyev RA (2004) Flora of Azerbaijan: new data. Trans Inst Bot ANAS XXV:16–22 (in Russian)

    Google Scholar 

  • Nabiyeva FH (2004) Climatic factors of desertification in Kur-Araz lowland. Trans Inst Bot ANAS XXV:337–339

    Google Scholar 

  • Nagalevskii VY (2001) Halophytes of the Northern Caucasus. Kuban State University, Krasnodar (in Russian)

    Google Scholar 

  • Naghiyev PY, Heydarova RM (2010) The study of saline soils in Shirvan plain on the base of digitalized processing of space images. In: Proceedings of National Aerospace Agency, p 12 (In Azerbaijani)

    Google Scholar 

  • Nechayeva NT (1989) Ecological foundations of conservation and enrichment of rangelands of arid zones in USSR. Prob Desert Reclam 2:3–12

    Google Scholar 

  • Nedjimia B, Daoudb Y (2009) Cadmium accumulation in Atriplex halimus subsp. schweinfurthii and its influence on growth, proline, root hydraulic conductivity and nutrient uptake. Flora 204:316–332

    Article  Google Scholar 

  • Nordblom T, Shomo F, Gintzburger G (1997) Food and feed prospects for resources in Central Asia. In: Demment M (ed) Central Asia regional livestock assessment workshop. Tashkent, Uzbekistan. Management Entity, Small Ruminant CRSP, University of California. USA, 226 p

    Google Scholar 

  • Ondrasek G, Rengel Z, Veres S (2011) Soil salinisation and salt stress in crop production. In: Shanker A, Venkateswarlu B (eds) Abiotic stress in plants – mechanisms and adaptations. Springer, Dordrecht, pp 171–190

    Google Scholar 

  • Ortíz-Dorda J, Martinez-Mora C, Correal E, Simon B, Cenis JL (2005) Genetic structure of Atriplex halimus populations in the Mediterranean Basin. Ann Bot 95:827–834

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Osman AE, Bahhady F, Hassan N, Ghassali F, Al Ibrahim T (2006) Livestock production and economic implications from augmenting degraded rangeland with Atriplex halimus and Salsola vermiculata in northwest Syria. J Arid Environ 65:474–490

    Article  Google Scholar 

  • Ould Ahmed BA (2012) Soil salinity control through halophytes in arid and semiarid area in Mauritania. J Arid Land Stud 22:21–24

    Google Scholar 

  • Ozturk M, Baslar S, Dogan Y, Sakcali S (2006a) Alleviation of salinity stress in the seeds of some Brassica species. In: Khan MA, Weber DJ (eds) Biosaline agriculture and salinity tolerance. Kluwer/Springer, Dordrecht, pp 145–156

    Google Scholar 

  • Ozturk M, Guvensen A, Gork G, Gork C (2006b) An overview of the coastal zone plant diversity and management strategies in the Mediterranean region of Turkey. In: Ozturk M et al (eds) Biosaline Agriculture and Salinity Tolerance in Plants. Birkhauser Verlag, Basel, pp 89–100

    Chapter  Google Scholar 

  • Ozturk M, Yucel E, Gucel S, Sakcali S, Aksoy A (2008a) Plants as biomonitors of trace elements pollution in soil. In: Prasad MNV (ed) Trace elements: environmental contamination, nutritional benefits and health implications, Chapter 28. Wiley, New York, pp 723–744

    Google Scholar 

  • Ozturk M, Guvensen A, Gork G (2008b) Halophyte plant diversity in the Irano-Turanian phytogeographical region of Turkey In: Abdelly C et al (eds) Biosaline agriculture& salinity tolerance. Birkhauser Verlag, Basel, pp 141–155

    Google Scholar 

  • Ozturk M, Gucel S, Sakcali S, Dogan Y, Baslar S (2009) Effects of temperature and salinity on germination and seedling growth of Daucus carota cv. nantes and Capsicum annuum cv. sivri and flooding on Capsicum annuum cv. sivri Chapter 6, In: Ashraf M et al (eds) Salinity and water stress: improving crop efficiency. Tasks for vegetation science, vol 44. Springer, New York, pp 51–64

    Google Scholar 

  • Ozturk M, Mermut A, Celik A (2010a) Land degradation, urbanisation, land use & environment, NAM S. & T., Delhi-India, 445 pp

    Google Scholar 

  • Ozturk M, Sakcali S, Gucel S, Tombuloğlu H (2010b) Boron and plants. In: Ashraf M et al (eds) Plant adaptation & phytoremediation, Part 2. Springer, New York,pp 275–311

    Google Scholar 

  • Ozturk M, Gucel S, Guvensen A, Kadis C, Kounnamas C (2011a) Halophyte plant diversity, coastal habitat types and their conservation status in Cyprus. Sabkha Ecosyst Tasks Veg Sci Springer 46:99–111

    Article  Google Scholar 

  • Ozturk M, Turkyilmaz B, Gucel S, Guvensen A (2011b) Proline accumulation in some coastal zone plants of the Aegean Region of Turkey. In: Muscolo TJ, Flowers, A (eds) Proceedings of the European COST action FA0901. Eur J Plant Sci Biotechnol 5(Special Issue 2):54–56

    Google Scholar 

  • Ozturk M, Memon AR, Gucel S, Sakcali MS (2012) Brassicas in Turkey and their possible role in the phytoremediation of degraded habitats. In: Anjum NA et al (eds) The plant family Brassicaceae: contribution towards phytoremediation. Environmental pollution book series, vol 21. Springer, New York, pp 265–288

    Google Scholar 

  • Ozturk M, Altay V, Gucel S, Guvensen A (2014) Halophytes in the East Mediterranean-their medicinal and other economical values. In: Khan MA et al (eds) Sabkha ecosystems vol IV cash crop halophytes biodiversity & conservation. Tasks for vegetation science series, Springer, New York, pp: 247–272

    Google Scholar 

  • Poschenrieder C, Gunse B, Barcelo J (1989) Influence of cadmium on water relations, stomatal resistance, and abscisic-acid content in expanding bean leaves. Plant Physiol 90:1365–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Przymusinski R, Rucinska R, Gwozdz EA (2004) Increased accumulation of pathogenesis-related proteins in response of lupine roots to various abiotic stresses. Environ Exp Bot 52:53–61

    Article  CAS  Google Scholar 

  • Qadir M, Oster JD (2004) Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture. Sci Total Environ 323:1–19

    Article  CAS  PubMed  Google Scholar 

  • Qadir M, Ghafoor A, Murtaza G (2000) Amelioration strategies for saline soils: a review. Land Degrad Dev 11:501–521

    Article  Google Scholar 

  • Qadir M, Tubeileh A, Akhtar J, Larbi A, Minhas PS, Khan MA (2008) Productivity enhancement of salt-affected environments through crop diversification. Land Degrad Dev 19:429–453

    Article  Google Scholar 

  • Rabhi M, Barhoumi Z, Atia A, Lakhdar A, Hafsi C, Hajji S, Abdelly C, Smaoui A (2009) Evaluation of the capacity of three halophytes to desalinize their rhizosphere as grown on saline soils under non-leaching conditions. Afr J Ecol 47:463–468

    Article  Google Scholar 

  • Ravindran KC, Venkatesan K, Balakrishnan V, Chellappan KP, Balasubramanian T (2007) Restoration of saline land by halophytes for Indian soils. Soil Biol Biochem 39:2661–2664

    Article  CAS  Google Scholar 

  • Rhoades JD, Loveday J (1990) Irrigation of agricultural crops. In: Stewart BA, Nielsen DR (eds) Salinity of irrigated agriculture. American Society of Agronomy, Madison, pp 1089–1142

    Google Scholar 

  • Rogers ME, Craig AD, Munns RE, Colmer TD, Nichols PGH, Malcolm CV, Barrett-Lennard EG, Brown AJ, Semple WS, Evans PM, Cowley K, Hughes SJ, Snowball R, Bennett SJ, Sweeney GC, Dear BS, Ewing MA (2005) The potential for developing fodder plants for the salt-affected areas of southern and eastern Australia: an overview. Aust J Exp Agric 45:301–329

    Article  Google Scholar 

  • Rozema J, Flowers T (2008) Crops for a salinized world. Science 322:1478–1480

    Article  CAS  PubMed  Google Scholar 

  • Sabir M, Waraich EA, Hakeem KR, Ozturk M, Ahmad HR, Shahid M (2015) Phytoremediation: mechanisms and adaptations. In: Hakeem S, Ozturk M (eds) Soil remediation and plants: prospects and challenges. Academic/Elsevier, New York, pp 85–106

    Chapter  Google Scholar 

  • Sakai Y, Ma Y, Xu C, Wu H, Zhu W, Yang J (2012) Phytodesalination of a salt-affected soil with four halophytes in China. J Arid Land Stud 22:17–20

    Google Scholar 

  • Schwitzguébel JP, Kumpiene J, Comino E, Vanek T (2009) From green to clean: a promising and sustainable approach towards environmental remediation and human health for the 21st century. Agrochimica 53:209–237

    Google Scholar 

  • Seaman J (2005) Mechanisms of salt tolerance in halophytes: can crop plants resistance to salinity be improved? Ph.D. dissertation, University of Sheffield

    Google Scholar 

  • Seemann JR, Critchley C (1985) Effects of salt stress on the growth, ion content, stomatal behavior and photosynthetic capacity of a salt-sensitive species, Phaseolus vulgaris L. Planta 164:151–162

    Article  CAS  PubMed  Google Scholar 

  • Shafi M, Zhang J, Bakht J, Khan MA, Islam EU, Khan MD, Raziuddin GZ (2010) Effect of cadmium and salinity stresses on root morphology of wheat. Pak J Bot 42:2747–2754

    CAS  Google Scholar 

  • Shamsutdinov ZS, Savchenko IV, Shamsutdinov NZ (2000) Halophytes of Russia and their ecological characteristics and use. Academy of Agricultural Sciences. Russian Fodder Institute, Moscow, 399p

    Google Scholar 

  • Shamsutdinov ZS, Shamsutdinov NZ (2007) Biogeocenotechnology of remediation of disturbed arid pasturable ecosistems. Messenger Russ Acad Agric Sci 3:37–38 (in Russian)

    Google Scholar 

  • Shamsutdinov ZS, Shamsutdinov NZ (2010) Doctrine of Nechaeva NT about deserted pastures. Arid Ecosyst 16:11–29 (in Russian)

    Google Scholar 

  • Sharma KK, Gupta JK (1986) Optimum reliability of gain scores. J Exp Educ 54:105–108

    Article  Google Scholar 

  • Shevyakova NI, Netronina IA, Aronova EE, Kuznetsov VV (2003) Compartmentation of cadmium and iron in Mesembryanthemum crystallinum plants during the adaptation to cadmium stress. Russ J Plant Physiol 50:678–685

    Article  CAS  Google Scholar 

  • Shukurov E, Askerov F, Zaytsev Yu (2008) Biodiversity of desert and semi-desert plants of Azerbaijan. BP Caspian Sea Ltd, Baku, 143 p

    Google Scholar 

  • Soil Atlas of Azerbaijan Republic (2007) Mammadov GSh et al. (eds) The State Committee of Land and Cartography of Azerbaijan Republic and Institute of Soil and Agrochemistry of Azerbaijan National Academy of Sciences. Cartography Factory, Baku

    Google Scholar 

  • Squires VR, Glenn EP (2009) Salination, desertification and soil erosion. In: Squires VR (ed) The role of food, agriculture, forestry and fisheries in human nutrition, vol 3. Encyclopedia of Life Support Systems (EOLSS), pp 102-123

    Google Scholar 

  • Sun J, Chen SL, Dai SX, Wang RG, Li NY, Zhou XY, Lu CF, Zheng XJ, Hu ZM, Zhang ZK, Song J, Xu Y (2009) Ion flux profiles and plant ion homeostasis control under salt stress. Plant Signal Behav 4:261–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swingle RS, Glenn EP, Squires V (1996) Growth performance of lambs fed mixed diets containing halophyte ingredients. Anim Feed Sci Technol 63:137–148

    Article  Google Scholar 

  • Takeda R, Yoshimura N, Matsumoto S, Komemushi S (2005) Accumulation of heavy metals by Japanese weeds and their seasonal movement. Contamin Soils 9:349–359

    CAS  Google Scholar 

  • Thomas JC, Malick FK, Endreszl C, Davies EC, Murray KS (1998) Distinct responses to copper stress in the halophyte Mesembryanthemum crystallinum. Physiol Plant 102:360–368

    Article  CAS  Google Scholar 

  • Toderich KN, Tsukatani T (2007) New approaches for biosaline agriculture development, Management and conservation of Central Asian degraded drylands. Discussion paper no 638, Kyoto Institute of Economic Research, Kyoto, Japan 19 p

    Google Scholar 

  • Toderich KN, Black CC, Juylova E, Kozan O, Mukimov T (2007) C3/C4 plants in the vegetation of Central Asia, geographical distribution and environmental adaptation in relation to climate, In: Lal R, Steward BA, Suleimenov M (eds) Carbon management and sequestration in Drylands of Central Asia. Balkema Publishers, Netherlands, pp 33–63

    Google Scholar 

  • Toderich K, Tsukatani T, Ismail Sh, Massino I, Wilhelm M, Yusupov S, Kuliev T, Ruziev S (2008) Extent of salt-affected land in Central Asia: biosaline agriculture and utilization of the salt affected resources. Discussion paper № 648. Kyoto University, Kyoto, Japan, pp 1–36

    Google Scholar 

  • Toderich KN, Tsukatani T, Petukhov OF, Gruthinov VA, Khujanazarov T, Juylova EA (2004) Risk assessment of environmental contaminants of Asiatic deserts ecosystems in relation to plant distribution and structure. J Arid Land Stud 14S:33–36

    Google Scholar 

  • Toderich KN, Shuyskaya EV, Ismail S, Gismatullina L, Radjabov T, Bekhchanov BB, Aralova D (2009) Phytogenic resources of halophytes of Central Asia and their role for rehabilitation of sandy desert degraded rangelands. J Land Degrad Dev 20(4):386–396

    Article  Google Scholar 

  • Toderich KN, Shuyskaya EV, Ozturk M, Juylova A, Gismatulina L (2010a) Pollen morphology of some Asiatic species of genus Salsola (Chenopodiaceae) and its taxonomic relationships. Pak J Bot Spec Iss (S.I. Ali Festschrift) 42:155–174

    Google Scholar 

  • Toderich KN, Shuyskaya EV, Khujanazarov TM, Ismail Sh, Kawabata Y (2010b) The structural and functional characteristics of Asiatic desert halophytes for phyto-stabilization of polluted sites. In: Ashraf M, Ozturk M, Ahmad MSA (eds) Plant adaptation and phytoremediation. Springer, New York, pp 245–274

    Google Scholar 

  • Toderich KN, Shuyskaya EV, Faisal T, Ismail S, Gismatullina LG, Li EV (2012) Adaptive fruit structural mechanisms of Asiatic Salsola species and its germplasm conservation and utilization. J Arid Land Stud 22:73–76

    Google Scholar 

  • Toderich KN, Shuyskaya EV, Rajabov TF, Ismail S, Shaumarov M, Yoshiko K, Li EV (2013a) Chapter 13: Uzbekistan: rehabilitation of desert rangelands affected by salinity, to improve food security, combat desertification and maintain the natural resource base. In: Hesmati GA, Squires V (eds) Combating desertification in Asia, Africa and the middle east: proven practices. Springer, Dordrecht, pp 249–278

    Google Scholar 

  • Toderich KN, Shuyskaya EV, Taha FK, Matsuo N, Ismail S, Aralova DB, Radjabov TF (2013b) Integrating agroforestry and pastures for soil salinity management in dryland ecosystems in Aral sea basin. Chapter 39, In: Shahid SA, Abdelfattah MA, Taha FK (eds) Developments in soil salinity assessment and reclamation-innovative thinking and use of marginal soil and water resources in irrigated agriculture Springer, New York, pp 579–602

    Google Scholar 

  • Tsukatani T, Katayama Y (2001) Water quality of Zarafshan River Basins. Discussion paper no 527. Kyoto Institute of Economic Research, Kyoto University, Japan, p 28

    Google Scholar 

  • Waskiewicz A, Beszterda M, Golinski P (2013) ABA: role in plant signaling under salt stress. In: Ahmad P et al (eds) Salt stress in plants: omics, signaling and adaptation. Springer, New York, pp 175–196

    Google Scholar 

  • Wen X, Qiu N, Lu Q, Lu C (2005) Enhanced thermotolerance of photosystem II in salt-adapted plants of the halophyte Artemisia anethifolia. Planta 220(3):486–497

    Article  CAS  PubMed  Google Scholar 

  • Wu YV, Sessa DJ (2004) Protein fractiontion and properties of Salicornia meal. J Am Oil Chem Soc 81:173–176

    Article  CAS  Google Scholar 

  • Yokoi S, Quintero FJ, Cubero B, Ruiz MT, Bressan RA, Hasegawa PM, Pardo JM (2002) Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J 30:765–768

    Article  Google Scholar 

  • Zhao K-F (1991) Desalinization of saline soils by Suaeda salsa. Plant Soil 135:303–305

    Article  CAS  Google Scholar 

  • Zhao K-F, Hai F, Ungar IA (2002) Survey of halophyte species in China. Plant Sci 163:491–498

    Article  Google Scholar 

  • Zhu JK (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol 124:941–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6(2):66–71

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Wei G, Li J, Qian Q, Yu J (2004) Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt stressed cucumber (Cucumis sativus L). Plant Sci 167:527–533

    Article  CAS  Google Scholar 

  • Zorrig W, Rabhi M, Ferchichi S, Smaoui A, Abdelly C (2012) Phytodesalination: a solution for salt – affected soils in arid and semiarid regions. J Arid Land Stud 22-1:299–302

    Google Scholar 

Download references

Acknowledgement

This work was supported by the Science Development Foundation under the President of the Republic of Azerbaijan- Grant No EIF- 2012-2(6)-39/18/3 and partially by financial support of ICBA Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmira Alirzayeva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Alirzayeva, E., Ali-zade, V., Shirvani, T., Toderich, K. (2015). Evaluation of Wild Halophytes of Aralo-Caspian Flora Towards Soil Restoration and Food Security Improvement. In: Öztürk, M., Ashraf, M., Aksoy, A., Ahmad, M., Hakeem, K. (eds) Plants, Pollutants and Remediation. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-7194-8_4

Download citation

Publish with us

Policies and ethics