Skip to main content

Part of the book series: Ecology, Economy & Environment ((ECEE,volume 1))

  • 568 Accesses

Abstract

Arable land can be treated as a production resource, with a natural resource component and an anthropogenic capital component. It is a stock, giving a renewable flow. The arable land resource has a quantitative dimension (hectares) and a qualitative one, which may be described by innumerable edaphic, topographic and climatic site parameters. Instead of measuring the resource stock (hectares, site parameter data), the resource is measured by its capacity to generate a flow. Physical measurements are derived by combining existing statistics with production functions. They are expressed in kilo barley-equivalents per hectare, and calculated for each of the 420 “homogenous” agricultural districts in Sweden. A concept called standard-hectares is developed, making acreage comparisons possible amongst different grades of land. The economic measure of the resources is land rent As the residual of revenues minus costs in crop production it should reflect the different use-capacities of various plots of land. Swedish arable resources measured by land rents are fairly heterogeneous, showing distinct regional patterns. In 1983 the rent on Swedish tilled land was nearly normally distributed around a mean of US$ 100 per hectare. From 1968 to 1983 land rents declined, especially in the far south and in the north. The arable land resource situation is further illustrated by a new diagram that plots land rent against cumulative acreage. The barley-equivalents and land rents methods each provide a single, cardinal measure appropriate for comparing land of different quality. Further, a computerized model of Swedish arable resources was used to study the impacts of resource influencing factors. Possible resource situations are simulated on the basis of assumptions about the effects of factors like subsoil compaction, erosion, photochemical oxidants, on yields or costs. Air pollutants like ozone, subsoil compaction and urban expansion appear to be the most menacing factors. The possible effects are of such magnitude as to constitute a risk to the security of our food supply. Many of these factors are likely to exert their greatest negative influence on the plains in south and central Sweden, thus causing changes in the regional distribution of arable land resources, and also tending to make them less heterogeneous in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, R.M., Glyer, J.D., Johnson, S.L. and McCarl, B.A. (1989). A reassessment of the economic effects of ozone on U.S. agriculture. JAPCA 39:960–968.

    Article  Google Scholar 

  • Anonymous, 1953. Atlas over Sverige 63-64. Åkermarkens matjordstyper. Svenska sällskapet för antropologi och geografi. Stockholm.

    Google Scholar 

  • Anonymous. 1974. Statistiska meddelanden J 1974:20. Statistics Sweden, Stockholm, Sweden.

    Google Scholar 

  • Anonymous. 1976. Den Danske Jordldassifisering. Teknisk redegörelse. Landbrugsministeriet, Copenhagen.

    Google Scholar 

  • Anonymous. 1979. Statistiska meddelanden J 1979:8.6. Statistics Sweden, Stockholm, Sweden.

    Google Scholar 

  • Anonymous. 1983a. Statistiska meddelanden J 1983:7.2. Statistics Sweden, Stockholm, Sweden.

    Google Scholar 

  • Anonymous. 1983b. Statistiska meddelanden J 1983:8.1. Statistics Sweden, Stockholm, Sweden.

    Google Scholar 

  • Anonymous. 1983c. Områdeskalkyler-Jordbruk 1983. Research Information Centre. The Swedish University of Agricultural Sciences, Uppsala.

    Google Scholar 

  • Anonymous. 1984a. Statistiska meddelanden J 1984:8.1. Statistics Sweden, Stockholm, Sweden.

    Google Scholar 

  • Anonymous. 1984b. Statistiska meddelanden J 1984:9.1. Statistics Sweden, Stockholm, Sweden.

    Google Scholar 

  • Barlowe, R. 1978. Land Resource Economics. Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Dent, D. and Young, A. 1981. Soil Survey and Land Evaluation. George Allen & Unwin, London.

    Google Scholar 

  • Eriksson, J., Håkansson, I. and Danfors, B. 1975. Jordpackning-Problem inom det Högmekaniserade Jordbruket. Konsulentavdelningens stencilserie. Allmänt 1. The Swedish University of Agricultural Sciences, Uppsala.

    Google Scholar 

  • Food and Agriculture Organization of the United Nations. 1976. A Framework for Land Evaluation. Soils Bulletin 32.

    Google Scholar 

  • Håkansson, I. 1985a. Personal communication. Department of Soil Sciences, The Swedish University of Agricultural Sciences, Uppsala.

    Google Scholar 

  • Håkansson, I. 1985b. Swedish Experiments on Subsoil Compaction by Vehicles with High Axle Load. Soil Use and Managern 1985(4).

    Google Scholar 

  • Hasund, K.P. 1986. Jordbruksmarken i Naturresursekonomiskt Perspektiv. Department of Economics, Report 269. Swedish University of Agricultural Sciences, Uppsala.

    Google Scholar 

  • Hedvåg, L., Hasund, K.P. and Pleijel, H. 1990. Ekonomiska Konsekvenser av Ozonpåverkan på Jordbruksgrödor. Swedish Environmental Protection Agency, Stockholm. In press.

    Google Scholar 

  • Mattsson, L. and Bjärsjö, J. 1981. Kvävegödsling till Korn. Department of Soil Sciences, Report 135. The Swedish University of Agricultural Sciences, Uppsala.

    Google Scholar 

  • Nihlén, T. 1984. Utredning av den för Vinderosion Utsatta Marken i Skåne. Department of Physical Geography, Report 58. University of Lund, Lund.

    Google Scholar 

  • Ricardo, D. 1817. On the Principles of Political Economy and Taxation. Murray, London.

    Google Scholar 

  • Salter, L. A. 1967. A Critical Review of Research in Land Economics. The University of Wisconsin Press, Madison, Wisconsin.

    Google Scholar 

  • Skärby, L. 1982. Effekter av Luftföroreningar på Vegetation. Fotokemiska Oxidanter. Swedish Environmental Protection Agency, PM 1562, Stockholm.

    Google Scholar 

  • Skärby, L. 1985a. Effekter av Gasformiga Luftföroreningar på Vegetetion med särskild hänsyn till Fotokemiska Oxidanter. Report from the Institute for Water and Air Pollution Research (IVL), Gothenburg.

    Google Scholar 

  • Skärby, L. 1985b. Personal communication. IVL, Gothenburg.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hasund, K.P. (1991). Arable Land as a Resource. In: Folke, C., Kåberger, T. (eds) Linking the Natural Environment and the Economy: Essays from the Eco-Eco Group. Ecology, Economy & Environment, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-6406-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-6406-3_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4089-3

  • Online ISBN: 978-94-017-6406-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics