Skip to main content

Abstract

Population ecology describes and analyses the distribution and abundance of individuals in space and time, including age structure, sex distribution, and genotype frequencies. Different methods and expected technical and theoretical developments are described using examples from plankton ecology; their assumptions, difficulties and implications in regard to the theory of scientific knowledge are discussed. Three main fields of population ecology are methodologically well defined: 1. Field description and analysis: There are new trends in automatization of sampling up to continuously recording (e.g. by Coulter-counter), and even automatically species determination might be possible (by holography). Representative samples of hetero-geneously distributed populations can be taken by integrating along a transect (e.g. by Clarke-Bumpus-sampler). The real distribution of the single specimens can be recorded by the echo sounder (Fig. 2). There are now also methods which allow the measurement of population parameters like natality and mortality (Figs. 4 and 5) as well as physiological characters like filtration and respiration rates under field conditions. Field analysis can be performed by changing single abiotic and biotic factors and watching the effects (Fig. 6) or by statistical analysis of field data (e.g. multiple and partial correlation and regression analysis). The difficulty of interpreting correlations is discussed by the example of two different association coefficients in a well known situation of complex interspecific relationships in three rotifers (Fig. 7). 2. Laboratory investigations: The culture of organisms under defined conditions allows the variation of single factors and the study of their effects on life table data (Fig. 8) and population dynamics (Fig. 9). The use and significance of different types of culture methods (e.g. chemostate, recycling cultures, cultures with periodically renewed medium) are demonstrated (Figs. 10–12). The causal relationships between ecological factors and population dynamics can be analysed stepwise. Methods are now available for experimental examination of filtration, assimilation and respiration rates of single specimens of planktonic organisms (e.g. with the radio carbon method or with Cartesian divers). 3. Models: In some cases (e.g. in rotifers) we are able to construct the population dynamics based on physiological and demographic data measured in isolated individuals, and compare these with empirical population curves (Figs. 13–15). The simulations are based on deterministic models (e.g. Lotka-Volterra-equations with simple time lag) using numerical computer techniques. To get more realistic models in future, we will have to use stochastic models to a larger extent and we will have to take into account the spatial heterogeneity of the population (Figs. 16–18), because this widely disregarded aspect is of outstanding importance for the stability and evolution of populations. For the formal description of spatial and temporal heterogeneity two possible ways are proposed: 1. The use of mathematics for describing gradients in a five-dimensional system of co-ordinates (3 dimensions for space, 1 for time, and 1 for population density). 2. A digital information theory has to be developed, in which each specimen is regarded as a unit in space and time, interacting with all other specimens of the population. The connections between the individuals are composed of a variety of relationships (e.g. positive or negative attractions). The intensity of each relation is, among other dependences, a function of the distance between the individuals (Figs. 19 and 20). Such a model could describe individual distance patterns in territorial as well as in heterogeneously distributed populations. Age differences, bisexuality, and genetic polymorphism can be included in this model as well as ethologic characters and social behavior (like social stress), and their influences on mortality, natality, and migration. Such time-space-population models might turn out to be more realistic and precise than most contemporary models. The basic requirements for the development of such population model systems of high complexity are fulfilled by the existence of macro-computers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • ARMITAGE, K.B. & B.B. SMITH (1968): Population studies of pond Zooplankton. Hydrobiologia 32: 384–416.

    Article  Google Scholar 

  • BERGTER, F. (1972): Wachstum von Mikroorganismen — Experimente und Modelle. Jena: Fischer.

    Google Scholar 

  • BIRCH, L.C. (1948): The intrinsic rate of natural increase of an insect population. J.Anim.Ecol. 17: 15–26.

    Article  Google Scholar 

  • BOER, P.J. DEN (1970); Stabilization of animal numbers and the heterogeneity of the environment: The problem of the persistence of sparse populations. Dynamics of Populations, Wageningen: Centre for Agricultural Publishing and Documentation, 77–97.

    Google Scholar 

  • BRENNAN, R.D., C.I. DE WIT, W.A. WILLIAMS & E.V. QUATTRIN (1970): The utility of a digital simulation language for ecological modeling. Oecologia 4: 113–132.

    Article  Google Scholar 

  • BROOKS, J.L. & S.I. DODSON (1965): Predation, Body Size, and Composition of Plankton. Science 150: 28–35.

    Article  PubMed  CAS  Google Scholar 

  • CARPENTER, E.J. (1968): A simple, inexpensive algal chemostat. Limnol.Oceanogr. 13: 720–721.

    Article  Google Scholar 

  • COOK, L.M., L.P. BROWER & H.J. CROZE (1967): The accuracy of a population estimation from multiple recapture data. J.Anim.Ecol. 36: 57–60.

    Article  Google Scholar 

  • CONNELL, J.H. (1961): The influence of interspecific competition and other factors on the distribution of the barnacle Chthamalus stellatus. Ecology 42: 710–723.

    Article  Google Scholar 

  • COWELL, B.C. (1970): The influence of plankton discharges from an upstream reservoir on standing crops in a Missouri River reservoir. Limnol. Oceanogr. 15: 427–441.

    Article  Google Scholar 

  • DOUGHERTY, E.C., B. SOLBERG & D.J. FERRAL (1961): Axenic cultivation of a rotifer species. Experientia (Basel) 17: 131.

    Article  CAS  Google Scholar 

  • DODSON, S.I. (1972): Mortality in a population of Daphnia rosea. Ecology 53: 1011–1023.

    Article  Google Scholar 

  • DOOHAN, M. (1973): An energy budget for adult Brachionus plicatilis Muller (Rotatoria). Oecologia 13: 351–362.

    Article  Google Scholar 

  • DRAKE, J.M. & H.M. TSUCHIYA (1973): Differential counting in mixed cultures with Coulter counters. Appl.Microbiol. 26: 9–13.

    PubMed  CAS  Google Scholar 

  • DUNCAN, A., G.A. CREMER & T. ANDREW (1970): The measurement of respiratory rates under field and laboratory conditions during an ecological study on Zooplankton. Pol.Arch.Hydrobiol. 17: 149–160.

    Google Scholar 

  • EDMONDSON, W.T. (1960): Reproductive rates of rotifers in natural populations. Mem.Ist. Ital.Idrobiol. 12: 21–77.

    Google Scholar 

  • EDMONDSON, W.T. (1965): Reproductive rate of planktonic rotifers as related to food and temperature in nature. Ecol.Monogr. 35: 61–111.

    Article  Google Scholar 

  • EDMONDSON, W.T. (1968): A graphical model for evaluating the use of egg ratio for measuring birth and death rates. Oecologia 1: 1–37.

    Article  Google Scholar 

  • EDMONDSON, W.T. & G.G. WINBERG (1971): A manual on methods for the assessment of secondary productivity in fresh waters. IBP Handbook No. 17, Blackwell, Oxford.

    Google Scholar 

  • ELSTER, H.-J. & I. SCHWOERBEL (1970): Beiträge zur Biologie und Populationsdynamik der Daphnien im Bodensee. Arch.Hydrobiol.Suppl. 38: 18–72.

    Google Scholar 

  • ERMAN, L.A. (1956): Quantitative Untersuchungen zur Ernährung der Rädertiere (russisch). Zool.Zurnal 35: 965–971.

    Google Scholar 

  • ERMAN, L.A. (1958): A new laboratory apparatus for the culture of rotifers and study of their feeding. Nauchnie Dokladi Bischey Shkoli-Beologesheskee Nauke 4: 11–15.

    Google Scholar 

  • FAGER, E.W. (1973): Estimation of mortality coefficients from field samples of Zooplankton. Limnol.Oceanogr. 18: 297–301.

    Article  Google Scholar 

  • FULTON, J. (1972): Trials with an automated plankton counter. J.Fish.Res.Bd.Canada 29: 1075–1078.

    Article  Google Scholar 

  • GADGIL, M. (1971): Dispersal: population consequences and evolution. Ecology 52: 253–261.

    Article  Google Scholar 

  • GILBERT, J.J. (1970): Monoxenic cultivation of the rotifer Brachionus calyciflorus in a defined medium. Oecologia 4: 89–101.

    Article  Google Scholar 

  • GOLDMAN, C.R. (1960): Primary productivity and limiting factors in three lakes of the Alaska Peninsula. Ecol.Monogr. 30: 207–230.

    Article  Google Scholar 

  • GOLDMAN, C.R., M. GERLETTI, P. JAVORNICKY, U. Melchiorri-Santolini & E. de Amezaga (1968): Primary productivity, bacteria, phyto- and Zooplankton in Lake Maggiore: Correlations and relationships with ecological factors. Mem.Ist.Ital.Idrobiol. 23: 49–127.

    Google Scholar 

  • GRZIMEK, B. & M. GRZIMEK (1959): Serengeti darf nicht sterben. Berlin: Ulstein.

    Google Scholar 

  • HALBACH, U. (1969): Das Zusammenwirken von Konkurrenz und Räuber-Beute-Beziehungen bei Rädertieren. Zool.Anz. Suppl.Bd. 33: 72–79.

    Google Scholar 

  • HALBACH, U. (1970a): Einfluß der Temperatur auf die Populationsdynamik des planktischen Rädertieres Brachionus calyciflorus Pallas. Oecologia 4: 176–207.

    Article  Google Scholar 

  • HALBACH, U. (1970b): Die Ursachen der Temporalvariation von Brachionus calyciflorus Pallas (Rotatoria). Oecologia 4: 262–318.

    Article  Google Scholar 

  • HALBACH, U. (1972a): Assoziationskoeffizienten dreier planktischer Rotatorienarten im Freiland und ihre Deutung aufgrund interspezifischer Beziehungen (Konkurrenz, Räuber-Beute-Beziehung). Oecologia 9: 311–316.

    Article  Google Scholar 

  • HALBACH, U. (1972b): Einfluß der Nahrungsqualität und quantität auf die Populationsdynamik des planktischen Rädertieres Brachionus calyciflorus im Labor und im Freiland. Verh. Dtsch.Zool.Ges. 65: 83–88.

    Google Scholar 

  • HALBACH, U. (1973a): Life table data and population dynamics of the rotifer Brachionus calyciflorus Pallas as influenced by periodically oscillating temperature. In: W. Wieser (Hrsgeb.) ‘Effects of Temperature on Ecothermic Organisms’ Berlin: Springer, S. 217–228.

    Chapter  Google Scholar 

  • HALBACH, U. (1973b): Quantitative Untersuchungen zur Assoziation von planktischen Rota-torien in Teichen. Arch.Hydrobiol. 71: 233–254.

    Google Scholar 

  • HALBACH, U. (1974): Modelle in der Biologie. Naturw.Rundschau 27: 293–305.

    Google Scholar 

  • HALBACH, U. & H.J. BURKHARDT (1972): Sind einfache Zeitverzögerungen die Ursachen für periodische Populationsschwankungen. Oecologia 9: 215–222.

    Article  Google Scholar 

  • HALBACH, U. & G. HALBACH-KEUP (1974): Quantitative Beziehungen zwischen Phyto-plankton und der Populationsdynamik des Rotators Brachionus calyciflorus Pallas. Befunde aus Laboratoriumsexperimenten und Freilanduntersuchungen. Arch.Hydrobiol. 73: 273–309.

    Google Scholar 

  • HALL, D.J. (1964): An experimental approach to the dynamics of a natural population of Daphnia galeata mendotae. Ecology 45: 94–112.

    Article  Google Scholar 

  • HANEY, J.F. (1971): An in situ method for the measurement of Zooplankton grazing rates. Limnol.Oceanogr. 16: 970–977.

    Article  Google Scholar 

  • HILLBRICHT-ILKOWSKA, A. (1965): The effect of the frequency of sampling on the picture of the occurrence and dynamics of plankton rotifers. Ekologia Polska — Seria A 13: 101–112.

    Google Scholar 

  • VON HOLST, D. (1974): Sozialer Streß bei Tier und Mensch. Verh.Ges.Ökol., Saarbrücken 1973, S. 97–106.

    Google Scholar 

  • JACOBS, J. (1961): On the regulation mechanism of environmentally controlled allometry (heterauxesis) in cyclomorphic daphnia. Phys.Zoöl. 34: 202–216.

    Google Scholar 

  • JACOBS, J. (1970): Multiple Determination der Zyklomorphose durch Umweltfaktoren. Oecologia 5: 96–126.

    Article  Google Scholar 

  • KAISER, H. (1974): Populationsdynamik und Eigenschaft einzelner Individuen. Verh.Ges. Ökol. Erlangen 1974: 25–38.

    Google Scholar 

  • KING, C.E. & G.J. PAULIK (1967): Dynamic models and the simulation of ecological systems. j.Theoret.Biol. 16: 251–267.

    Article  CAS  Google Scholar 

  • KLEKOWSKI, R.Z. & E.A. Shushkina (1966): Ernährung, Atmung, Wachstum und Energie-Umformung in Macrocyclops albidus (Jurine). Verb.Internat. Verein.Limnol. 16: 399–418.

    Google Scholar 

  • LEVINS, R. (1966): The strategy of model building in population biology. Am.Scientist 54: 421–431.

    Google Scholar 

  • MARPLES, T.G. (1962): An interval plankton sampler for use in ponds. Ecology 43: 323–324.

    Article  Google Scholar 

  • MC ALICE, B. (1971): Phytoplankton sampling with the Sedgwick-Rafter cell. Limnol. Oceanogr. 16: 19–28.

    Article  Google Scholar 

  • MC NAUGHT, D.C. (1969): Developments in acoustic plankton sampling. Proc. 12th Conf. Great Lakes, Res. 1969: 61–68.

    Google Scholar 

  • MORRIS, R.F. (1959): Single-factor analysis in population dynamics. Ecology 40: 580–588.

    Article  Google Scholar 

  • MÜLLER, H. (1970): Das Wachstum von Nitzschia actinastroides (Lemm.) v. Goor im Chemostaten bei limitierender Phosphatkonzentration. Ber.Dtsch.Bot.Ges. 83: 537–544.

    Google Scholar 

  • MÜLLER, H. (1972): Wachstum und Phosphatbedarf von Nitzschia actinastroides (Lemm.) v. Goor in statistischer und homokontinuierlicher Kultur unter Phosphatlimitierung. Arch. Hydrobiol. Suppl. 38: 399–484.

    Google Scholar 

  • NAUWERCK, A. (1963): Die Beziehungen zwischen Zooplankton und Phytoplankton im See Erken. Symb.Bot. Upsalensis 17: 1–163.

    Google Scholar 

  • PARISE, A. (1966): Ciclo sessuale e dinamica di popolazioni di Euchlanis (Rotatoria) in conditioni sperimentali. Arch.Oceanogr.Limnol. 16: 387–411.

    Google Scholar 

  • PATTEN, B.C. (1968): Mathematical models of plankton production. Int.Rev.ges.Hydrobiol. 53: 357–408.

    Article  Google Scholar 

  • PEARSON, O.P. (1954): A mechanical model for the study of population dynamics. Ecology 41: 494–508.

    Article  Google Scholar 

  • POURRIOT, R. (1957): Sur la nutrition des Rotifères à partir des Algues d’eau douce. Hydrobiologia 9: 50–59.

    Article  Google Scholar 

  • POURRIOT, R. (1958): Sur l’élevage des Rotifères au laboratoire. Hydrobiologia 11: 189–197.

    Article  Google Scholar 

  • REDDINGIUS, J. & P.J. Den Boer (1970): Simulation experiments illustrating stabilization of animal numbers by spreading of risk. Oecologia 5: 240–284.

    Article  Google Scholar 

  • RENSHAW, E. (1972): Birth, death and migration processes. Biometrika 59: 49–60.

    Article  Google Scholar 

  • SCHROEDER, R. (1961): Untersuchungen über die Planktonverteilung mit Hilfe der Unterwasser-Fernsehanlage und des Echographen. Arch.Hydrobiol. Suppl. 25: 228–241.

    Google Scholar 

  • SCHROEDER, R. & H. SCHROEDER (1964): On the use of the echo sounder in lake investigations. Mem.Ist.Ital.Idrobiol. 17: 167–188.

    Google Scholar 

  • SCHWOERBEL, J. (1966): Methoden der Hydrobiologie. Stuttgart: Franckh.

    Google Scholar 

  • SHULER, M.L., R. ARIS & H.M. TSUCHIYA (1972): Hydrodynamic focusing and electronic cell-sizing techniques. Appl.Microbiol. 24: 384–388.

    PubMed  CAS  Google Scholar 

  • SOEDER, C.J. (1965): Some aspects of phytoplankton growth and activity. Memr:Ist.Ital. Idrobiol. Suppl. 18: 47–59.

    Google Scholar 

  • SWANSON, G.A. (1965): Automatic plankton sampling system. Limnol.Oceanogr. 10: 149–152.

    Article  Google Scholar 

  • THOMASSON, K. (1963): Die Kugelkurven in der Planktologie. Int.Rev.ges.Hydrobiol. 48: 627–628.

    Article  Google Scholar 

  • VARLEY, G.C. & G.R. GRADWELL (1960): Key factors in population studies. J.Anim.Ecol. 29: 399–402.

    Article  Google Scholar 

  • WALLER, H. & H.J. BURKHARDT (1974): Anwendung elektronischer Rechenanlagen für die Simulation stetiger Systeme. In: A. Schöne (Hersgeb.) ‘Simulation technischer Systeme’, Bd.1: Grundlagen der Simulationstechnik. München: Hauser, S. 103–278.

    Google Scholar 

  • WILBERT, H. (1970): Cybernetic concepts in population dynamics. Acta Biotheoretica 19: 54–81.

    Article  PubMed  CAS  Google Scholar 

  • WILLIAMSON, M. (1972): The analysis of biological populations. London: Arnold.

    Google Scholar 

  • WINBERG, G.G. (ed.) (1971): Methods for the estimation of production of aquatic animals. London: Academic Press.

    Google Scholar 

  • ZAIKA, V.E. (1972): Specific production of aquatic invertebrates. New York/Toronto: Wiley.

    Google Scholar 

  • ZILLIOUX, E.J. (1969): A continuous recirculating culture system for planktonic copepods. Marine Biology 4: 215–218.

    Article  Google Scholar 

  • ZILLIOUX, E.J. & N.F. LACKIE (1970): Advances in the continuous culture of planktonic copepods. Helgoländer wiss.Meeresunters. 20: 325–332.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Halbach, U. (1975). Methoden der Populationsökologie. In: Verhandlungen der Gesellschaft für Ökologie Erlangen 1974. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-4521-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-4521-5_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-6193-180-5

  • Online ISBN: 978-94-017-4521-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics