Skip to main content

Fluorescence-based biosensing of zinc using carbonic anhydrase

  • Chapter
  • 619 Accesses

Abstract

Measurement of free zinc levels and imaging of zinc fluxes remains technically difficult due to low levels and the presence of interfering cations such as Mg and Ca. We have developed a series of fluorescent zinc indicators based on the superb sensitivity and selectivity of a protein, human apo-carbonic anhydrase II, for Zn(II). These indicators transduce the level of free zinc as changes in intensity, wavelength ratio, lifetime, and/or anisotropy; the latter three approaches permit quantitative imaging of zinc levels in the microscope. A unique attribute of sensors incorporating biological macromolecules as transducers is their capability for modification by site-directed mutagenesis. Thus we have produced variants of carbonic anhydrase with improved affinity for zinc, altered selectivity, and enhanced binding kinetics, all of which are difficult to modify in small molecule indicators.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberts IL, Nadassy K. 1998 Analysis of zinc binding sites in protein crystal structures. Protein Sci 7, 1700–1716.

    Article  PubMed  CAS  Google Scholar 

  • Belli SL, Zirino A. 1993 Behavior and calibration of the copper(II) ion-selective electrode in high chloride media and marine waters. Anal Chem 65, 2583–2589.

    Article  CAS  Google Scholar 

  • Benters A, Flogel U, Schafer T, Leibfritz D, Hechtenberg S, Beyers-mann D. 1997 Study of the interactions of cadmium and zinc ions with cellular calcium homeostasis using 19F-NMR spectroscopy. Biochem J 322, 793–799.

    PubMed  CAS  Google Scholar 

  • Chen RF, Kernohan J. 1967 Combination of bovine carbonic anhydrase with a fluorescent sulfonamide. J Biol Chem 242, 5813–5823.

    PubMed  CAS  Google Scholar 

  • Christianson DW. 1991 Structural biology of zinc. Adv Prot Chem 42, 281–355.

    Article  CAS  Google Scholar 

  • Christianson DW, Alexander RS. 1989 Carboxylate histidine zinc interactions in protein — structure and function. J Am Chem Soc 111, 6412–6419.

    Article  CAS  Google Scholar 

  • Christianson DW, Fierke CA. 1996 Carbonic anhydrase — Evolution of the zinc binding site by nature and by design. Acc Chem Res 29, 331–339.

    Article  CAS  Google Scholar 

  • Clark HA, Hoyer M, Philbert MA, Kopelman R. 1999 Optical nanosensors for chemical analysis inside single living cells. I. Fabrication, characterization, and methods for intracellular delivery of PEBBLE sensors. Anal Chem 71, 4831–4836.

    Article  PubMed  CAS  Google Scholar 

  • Cox JD, Hunt JA, Compher KM, Fierke CA, Christianson DW. 2000 Structural influence of hydrophobic core residues on metal binding and specificity in carbonic anhydrase II. Biochemistry 39, 13687–13694.

    Article  PubMed  CAS  Google Scholar 

  • Denny MF, Atchison WD. 1994 Methylmercury-induced elevations in intrasynaptosomal zinc concentrations: an 19F-NMR study. J Neurochem 63, 383–386.

    Article  PubMed  CAS  Google Scholar 

  • DiTusa CA, McCall KA, Christensen T, Mahapatro M, Fierke CA, Toone EJ. 2001 Thermodynamics of metal ion binding. Il. Metal ion binding by carbonic anhydrase variants. Biochemistry, 40, 5345–5351.

    Article  PubMed  CAS  Google Scholar 

  • Dix JA, Verkman AS. 1990 Mapping of fluorescence anisotropy in living cells by ratio imaging: Application to cytoplasmic viscosity. Biophvs J 57, 231–240.

    Article  CAS  Google Scholar 

  • Eigen M, Hammes GG. 1963 Elementary steps in enzyme reactions as studied by relaxation spectrometry. Adv Enzymol Relat Areas Mol Biol 25, 1–38.

    PubMed  Google Scholar 

  • Elbaum D, Nair SK, Patchan MW, Thompson RB, Christianson DW. 1996 Structure-based design of a sulfonamide probe for fluorescence anisotropy detection of zinc with a carbonic anhydrase-based biosensor. J Am Chem Soc 118, 8381–8387.

    Article  CAS  Google Scholar 

  • Eriksson AE, Jones TA. 1988 Refined structure of human carbonic anhydrase II at 2.0 A resolution. Proteins 4, 274–282.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Gutierrez A, Munoz de la Pena A. 1985 Determinations of inorganic substances by luminescence methods. In: Schulman S.G. ed. Molecular Luminescence Spectroscopy, Part l: Methods and Applications; New York: Wiley-Interscience, 371–546.

    Google Scholar 

  • Frederickson CJ, Suh SW, Silva D, Frederickson CJ, Thompson RB. 2000 Importance of zinc in the central nervous system: the zinc-containing neuron. J Nutr (Suppl.) 130, 1471S - 1483S.

    CAS  Google Scholar 

  • Fushimi K, Dix JA, Verkman AS. 1990 Cell membrane fluidity in the intact kidney proximal tubule measured by orientation-independent fluorescence anisotropy imaging. Biophvs J 57, 241–254.

    Article  CAS  Google Scholar 

  • Glusker JP. 1991 Structural aspects of metal liganding. Adv Prot Chem 42, 1–76.

    Article  CAS  Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien RY. 1985 A new generation of calcium indicators with greatly improved fluorescence properties. J Biol Chem 260, 3440–3450.

    PubMed  CAS  Google Scholar 

  • Hakansson K, Carlsson M, Svensson LA, Liljas A. 1992 Structure of native and apo carbonic anhydrase II and structure of some of its anion-ligand complexes. J Mol Biol 227, 1192–1204.

    Article  PubMed  CAS  Google Scholar 

  • Hakansson K, Wehnert A, Liljas A. 1994 X-ray analysis of metal-substituted human carbonic anhydrase II derivatives. Acta Crys D50, 93–100.

    CAS  Google Scholar 

  • Haugland RP. 1996 Handbook of Fluorescent Probes and Research Chemicals. Oregon: Molecular Probes, Inc., Eugene.

    Google Scholar 

  • Henkens RW, Sturtevant JM. 1968 The kinetics of the binding of Zn(II) by apocarbonic anhydrase. J Am Chem Soc 90, 2669–2676.

    Article  CAS  Google Scholar 

  • Hirano T, Kikuchi K, Urano Y, Higuchi T, Nagano T. 2000 Highly zinc-selective fluorescent sensor molecules suitable for biological applications. J Am Chem Soc 122, 12399–12400.

    Article  CAS  Google Scholar 

  • Huang C-C, Lesburg CA, Kiefer LL, Fierke CA, Christianson DW. 1996 Reversal of the hydrogen bond to zinc ligand histidine-119 dramatically diminishes catalysis and enhances metal equilibration kinetics in carbonic anhydrase II. Biochemistry 35, 3439–3446.

    Article  PubMed  CAS  Google Scholar 

  • Hunt JA, Ahmed M, Fierke CA. 1999 Metal binding specificity in carbonic anhydrase is influenced by conserved hydrophobic amino acids. Biochemistry 38, 9054–9060.

    Article  PubMed  CAS  Google Scholar 

  • Hunt JA, Fierke CA. 1997 Selection of carbonic anhydrase variants displayed on phage: aromatic residues in zinc binding site enhance metal affinity and equilibration kinetics. J Biol Chem 272, 20364–20372.

    Article  PubMed  CAS  Google Scholar 

  • Ippolito JA, Baird TT, McGee SA, Christianson DW, Fierke CA. 1995a Structure-assisted redesign of a protein-zinc binding site with femtomolar affinity. Proc Natl Acad Sci USA 92, 50175021.

    Google Scholar 

  • Ippolito JA, Christianson DW. 1993 Structure of a His3Cys zinc binding site in human carbonic anhydrase II. Biochemistry 32, 9901–9905.

    Article  PubMed  CAS  Google Scholar 

  • Ippolito JA, Christianson DW. 1994 Structural consequences of redesigning a protein-zinc binding site. Biochemistry 33, 1524115249.

    Google Scholar 

  • Ippolito JA, Nair SK, Fierke CA, Christianson DW. 1995b Structure of His94Asp carbonic anhydrase II in a new crystalline form reveals a partially occupied zinc binding site. Prot Engin 8, 975–980.

    Article  CAS  Google Scholar 

  • Iverson TM, Alber BE, Kisker C, Ferry JG, Rees DC. 2000 A closer look at gamma-class carbonic anhydrases: high resolution crystallographic studies of the carbonic anhydrase from Methanosarcina thermophila. Biochemistry 39, 9222–9231.

    Article  CAS  Google Scholar 

  • Jensen KK, Martini L, Schwartz TW. 2001 Enhanced fluorescence resonance energy transfer between spectral variants of green fluorescent protein through zinc-site engineering. Biochemistry 40, 938–945.

    Article  PubMed  CAS  Google Scholar 

  • Kiefer LL, Fierke CA. 1994 Functional characterization of human carbonic anhydrase II variants with altered zinc binding sites. Biochemistry 33, 15233–15240.

    Article  PubMed  CAS  Google Scholar 

  • Kiefer LL, Ippolito JA, Fierke CA, Christianson DW. 1993a Redesigning the zinc binding site of human carbonic anhydrase II: Structure of a His2Asp-Zn2+ metal coordination polyhedron. J Am Chem Soc 115, 12581–12582.

    Article  CAS  Google Scholar 

  • Kiefer LL, Krebs JF, Fierke CA. 19936 Engineering a cysteine residue into the zinc binding site of carbonic anhydrase II. Biochemistry 32, 9896–9900.

    Google Scholar 

  • Kiefer LL, Paterno SA, Fierke CA. 1995 Hydrogen bond network in the metal binding site of carbonic anhydrase enhances zinc affinity and catalytic efficiency. JAm Chem Soc 117, 6831–6837.

    Article  CAS  Google Scholar 

  • Kimber MS, Pai EF. 2000 The active site architecture of Pisum sativum beta-carbonic anhydrase is a mirror image of that of alpha-carbonic anhydrases. EMBO J 19, 1407–1418.

    Article  PubMed  CAS  Google Scholar 

  • Kuhn MA, Hoyland B, Carter S, Zhang C, Haugland RE. 1995 Fluorescent ion indicators for detecting heavy metals. SPIE Conference on Adv Fluor Sens Tech ll (San Jose, California), Vol. 2388, 238–244.

    CAS  Google Scholar 

  • Lesburg CA, Christianson DW. 1995 X-ray crystallographic studies of engineered hydrogen bond networks in a protein-zinc binding site. J Am Chem Soc 117, 6838–6844.

    Article  CAS  Google Scholar 

  • Lesburg CA, Huang C-C, Christianson DW, Fierke CA. 1997 Histidine to carboxamide ligand substitutions in the zinc binding site of carbonic anhydrase II alter metal coordination geometry but retain catalytic activity. Biochemistry 36, 15780–15791.

    Article  PubMed  CAS  Google Scholar 

  • Levy R, Guignon EF,Cobane S, St. Louis E, Fernandez S. 1997 Compact, rugged, and inexpensive frequency domain fluorometer. SPIE Conference on Advances in Fluorescence Sensing Technology III,San Jose, CA vol. 2980, 81–89.

    Google Scholar 

  • Lindskog S, Henderson LE, Kannan KK, Liljas A, Nyman PO, Strandberg B. 1971 Carbonic anhydrase. In: Boyer PD, ed. The Enzymes. New York: Academic Press: 587–665.

    Google Scholar 

  • Lindskog S, Nyman PO. 1964 Metal-binding properties of human erythrocyte carbonic anhydrases. Biochim Biophys Acta 85, 462474.

    Google Scholar 

  • Lippitsch ME, Pusterhofer J, Leiner MJP, Wollbeis OS. 1988 Fiber-optic oxygen sensor with the fluorescence decay time as the information carrier. Anal Chim Acta 205, 1–6.

    Article  CAS  Google Scholar 

  • Maren TH. 1977 Use of inhibitors in physiological studies of carbonic anhydrase. Am J Physiol 232, F291 - F297.

    PubMed  CAS  Google Scholar 

  • McCall KA, Fierke CA. 2000 Colorimetric and fluorimetric assays to quantitate micromolar concentrations of transition metals. Anal Biochemistry 284, 307–315.

    Article  CAS  Google Scholar 

  • Mitsuhashi S, Mizushima T, Yamashita E, Yamamoto M, Kumasaka T, Moriyama H, Ueki T, Miyachi S, Tsukihara T. 2000 X-ray structure of beta carbonic anhydrase from the red alga, Porphyridium purpureum, reveals a novel catalytic site for CO2 hydration. J Biol Chem 275, 5521–5526.

    Article  PubMed  CAS  Google Scholar 

  • Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY. 1997 Fluorescent indicators for Cat+ based on green fluorescent proteins and calmodulin. Nature 388, 882–887.

    Article  PubMed  CAS  Google Scholar 

  • Pearce LL, Gandley RE, Han W, Wasserloos K, Stitt M, Kanai AJ, McLaughlin MK, Pitt BR, Levitan ES. 2000 Role of metallothionein in nitric oxide signaling as revealed by a green fluorescent fusion protein. Proc Natl Acad Sci USA 97, 477–482.

    Article  PubMed  CAS  Google Scholar 

  • Pearson RG. 1966 Acids and bases. Science 151, 172–177.

    Article  PubMed  CAS  Google Scholar 

  • Rae TD, Schmidt PJ, Pufahl RA, Culotta VC, O’Halloran TV. 1999 Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284, 805–808.

    Article  PubMed  CAS  Google Scholar 

  • Roe RR, Pang YP. 1999 Zinc’s exclusive tetrahedral coordination governed by its electronic structure. J Mol Model 5, 134–140.

    Article  CAS  Google Scholar 

  • Rulisek L, Vondrasek J. 1998 Coordination geometries of selected transition metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Hg2+) in metalloproteins. J lnorg Biochem 71, 115–127.

    Article  CAS  Google Scholar 

  • Simons TJB. 1993 Measurement of free zinc ion concentration with the fluorescent probe mag-fura-2 (furaptra). J Biochem Biophys Meth 27, 25–37.

    Article  PubMed  CAS  Google Scholar 

  • Szmacinski H, Lakowicz JR. 1993 Optical measurements of pH using fluorescence lifetimes and phase-modulation fluorometry. Anal Chem 65, 1668–1674.

    Article  PubMed  CAS  Google Scholar 

  • Thompson RB. 1991 Fluorescence-based fiber optic sensors. In: Lakowicz JR, ed. Topics in Fluorescence Spectroscopy. Vol. 2: Principles. New York: Plenum Press: 345–365.

    Google Scholar 

  • Thompson RB. 1993 Fiber optic ion sensors based on phase fluorescence lifetime measurements. SPIE Conference on Advances in Fluorescence Sensing Technology, Los Angeles, CA, vol. 1885, 290–299.

    Google Scholar 

  • Thompson RB, Frisoli JK, Lakowicz JR. 1992 Phase fluorometry using a continuously modulated laser diode. Anal Chem 64, 2075–2078.

    Article  CAS  Google Scholar 

  • Thompson RB, Ge Z, Patchan MW, Fierke CA. 1996a Performance enhancement of fluorescence energy transfer-based biosensors by site-directed mutagenesis of the transducer. J Biomed Optics 1, 131–137.

    Article  CAS  Google Scholar 

  • Thompson RB, Ge Z, Patchan MW, Huang C-C, Fierke CA. 1996b Fiber optic biosensor for Co(II) and Cu(II) based on fluorescence energy transfer with an enzyme transducer. Biosensors Bioelectron 11, 557–564.

    Article  CAS  Google Scholar 

  • Thompson RB, Jones ER. 1993 Enzyme-based fiber optic zinc biosensor. Anal Chem 65, 730–734.

    Article  CAS  Google Scholar 

  • Thompson RB, Whetsell WO Jr., Maliwal BP, Fierke CA, Frederickson CJ. 2000a Fluorescence microscopy of stimulated Zn(II) release from organotypic cultures of mammalian hippocampus using a carbonic anhydrase-based biosensor system. J Neurosci Meth 96, 35–45.

    Article  CAS  Google Scholar 

  • Thompson RB, Maliwal BP, Feliccia VL, Fierke CA, McCall K. I 998a Determination of picomolar concentrations of metal ions using fluorescence anisotropy: biosensing with a `reagentless’ enzyme transducer. Anal Chem 70, 4717–4723.

    Google Scholar 

  • Thompson RB, Maliwal BP, Fierke CA. 1998b Expanded dynamic range of free zinc ion determination by fluorescence anisotropy. Anal Chem 70, 1749–1754.

    Article  PubMed  CAS  Google Scholar 

  • Thompson RB, Maliwal BP, Fierke CA. 1999 Selectivity and sensitivity of fluorescence lifetime-based metal ion biosensing using a carbonic anhydrase transducer. Anal Biochem 267, 185–195.

    Article  PubMed  CAS  Google Scholar 

  • Thompson RB, Maliwal BP, Zeng HH. 2000b Zinc biosensing with multiphoton excitation using carbonic anhydrase and improved fluorophores. J Biomed Optics 5, 17–22.

    Article  CAS  Google Scholar 

  • Thompson RB, Patchan MW. 1995a Fluorescence lifetime-based biosensing of zinc: origin of the broad dynamic range. J Fluoresc 5, 123–130.

    Article  CAS  Google Scholar 

  • Thompson RB, Patchan MW. 1995b Lifetime-based fluorescence energy transfer biosensing of zinc. Anal Biochem 227, 123–128

    Article  PubMed  CAS  Google Scholar 

  • Thompson RB, Walt DR. 1994 Emerging strategies for molecular biosensors. Naval Res Rev 46, 19–29.

    Google Scholar 

  • Thompson RB, Zeng HH, Loetz M, Fierke C. 2000 Issues in enzyme-based metal ion biosensing in complex media. In-vitro Diagnostic Instrumentation (San Jose, CA), vol. 3913, 120–127

    Article  CAS  Google Scholar 

  • Weber G. 1956 Photoelectric method for the measurement of polar-ization of fluorescence of solutions. J Opt Soc Am 46, 962

    Article  CAS  Google Scholar 

  • White CE, Argauer RJ. 1970 Fluorescence Analysis: A Practical Approach. New York: Marcel Dekker, Inc.

    Google Scholar 

  • Yamashita MM, Wesson L. 1990 Where metal ions bind in proteins. Proc Natl Acad Sci USA 87, 5648–5652.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fierke, C.A., Thompson, R.B. (2001). Fluorescence-based biosensing of zinc using carbonic anhydrase. In: Maret, W. (eds) Zinc Biochemistry, Physiology, and Homeostasis. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3728-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3728-9_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5916-1

  • Online ISBN: 978-94-017-3728-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics