Skip to main content

Dense Gas Dispersion in Complex Settings: Part 2 — The Effect of Topography

  • Chapter
  • 787 Accesses

Part of the book series: NATO ASI Series ((NSSE,volume 277))

Abstract

Variations in the elevation of the underlying surface will influence the buoyancy driven motion of a dense gas cloud. Topography, in the form of general slope, isolated hills, or more complex terrain, will alter or divert the cloud or plume. The topography may enhance plume dilution and divert the plume away from regions of elevated terrain. Alternatively, the dense plume may be channelled into valleys or low-lying areas and then be protected from the diluting influence of the ambient flow. This paper addresses some of the fluid mechanics of the atmospheric dispersion of dense gases, particularly those related to the development of techniques for incorporating the important effects of topography in dense gas dispersion models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beghin, P., Hopfinger, E. J. & Britter, R. E. (1981): Gravitational convection from instantaneous sources on inclined boundaries. J. Fluid Mech., 107, 407–422

    Google Scholar 

  • Briggs, G. A. (1969): Plume rise. AEC Critical Review Series, Report TID-25075.

    Google Scholar 

  • Briggs, G. A. (1981): Canopy effects on predicted drainage flow characteristics and comparisons with observations. 5th Symp. on Turbulence, Diffusion and Air Pollution, American Meteorological Society.

    Google Scholar 

  • Britter, R. E. (1979): The spread of a negatively buoyant plume in a turbulent boundary layer. Atmospheric Environment, 13, 1241–1247.

    Article  Google Scholar 

  • Britter, R. E. (1980): The ground level extent of a negatively buoyant plume in a turbulent boundary layer. Atmospheric Environment.

    Google Scholar 

  • Britter, R. E. & Linden, P. F. (1980): The motion of the front of a gravity current travelling down and incline. J. Fluid Mech, 99, 531–543.

    Article  Google Scholar 

  • Carson, D. J. & Richards, P. J. R. (1978): Modelling surface turbulent flows in stable conditions. Boundary Layer Met., 14, 67–81.

    Article  Google Scholar 

  • Delft Hydraulics Laboratory (1974): Momentum and mass transfer in stratified flows: Report on literature study. Report No. R880.

    Google Scholar 

  • Denton, R. A. (1981): Density current inflow into a run of the river reservoir. Institut Wasserbau III an der Universitaet Karlsruhe

    Google Scholar 

  • Ellison, T. & Turner, J. S. (1959): Turbulent entrainment in stratified flows. J. Fluid Mech., 6, 432–448.

    Article  Google Scholar 

  • Ellison, T. & Turner, J. S. (1960): Mixing of dense fluid in a turbulent pipe flow. J. Fluid Mech., 8, 514–544.

    Article  Google Scholar 

  • Feitz, T. R. (1966): The measurement of characteristics of a three dimensional density current. University of N.S.W., Australia, Water Research Laboratory Report No. 85.

    Google Scholar 

  • Fisher, H. B., List, E. J., Koh, R. C., Imberger, J. & Brooks, N. (1979): Mixing in inland and coastal waters. Academic Press.

    Google Scholar 

  • Hall, D. J., Barrett, C. F. & Ralph, M. 0. (1976): Experiments on a model escape of a heavy gas. Dept. Trade & Industry Report, Warren Springs Laboratory

    Google Scholar 

  • Hall, D. J. (1977): Further experiments on a model of an escape of heavy gas. Dept. Trade Industry Report CR 1341, Warren Springs Laboratory

    Google Scholar 

  • Hansen, N. O. (1975): Entrainment in two-layered flows. Inst. Hydraulic Eng, Technical University of Denmark.

    Google Scholar 

  • Hamblin, P. F. & Carmack, E. C. (1978): River-induced currents in a wide lake. J. Geophysical Res., 83, 885–899.

    Article  Google Scholar 

  • Harsha, P. J. (1976): LNG Safety Program Topical Report. Project 15–128–1, RDA–TR1100–002.

    Google Scholar 

  • Houghton, D. D. & Kasahara, A. (1968): Non-linear shallow fluid flow over an isolated ridge. Comm. Pure and Applied Math., 21, 1–23.

    Article  Google Scholar 

  • Hosker, R. P. (1980): Flow and diffusion near obstacles. Unpublished manusript, Air Resources and Diffusion Laboratory, National Oceanic and Atmospheric Administration, Oak Ridge, TN.

    Google Scholar 

  • Kato, H. & Phillop, O. M. (1969): On the penetration of a turbulent layer into a startified fluid. J. Fluid Mech., 37, 613–655.

    Article  Google Scholar 

  • Larsen (1966): Flows over obstacles of finite amplitude. Geofysike Publikasjones, 26, 1–25. Linden, P. F. (1979): Mixing in stratified fluids. Geophys. Astrophys. Fluid Dynamics, 13, 3–23.

    Google Scholar 

  • Lofquist, K. (1969): Flow and stress near an interface between stratified liquids. Phys. Fluids, 3, 158–175.

    Article  Google Scholar 

  • Long, R. R. (1972): Finite amplitude disturbances in the flow of inviscid rotating and startified fluids over obstacles. An. Rev. Fluid. Mech., 69–92.

    Google Scholar 

  • Long, R. R. (1974): Some experimental observations of upstream disturbances in a two-fluid system. Tellus, 26, 313–317.

    Article  Google Scholar 

  • Manins, P. C. & Sawford, B. L. (1979a): A model of katabatic winds. J. Am. Met. Soc., 36, 619630.

    Google Scholar 

  • Manins, P. C. & Sawford, B. L. (1979b): Katabatic winds: a field case study. J. Roy. Met. Soc., 105, 1011–1025.

    Article  Google Scholar 

  • Middleton, G. V. (1966): Experiments on density and turbidity currents. Can. J. Earth Sci., 3, 523546

    Google Scholar 

  • Neff, D. E., Meroney, R. N. & Cermak, J. E. (1976): Wind tunnel study of the negatively buoyant plume due to an LNG spill. Colorado State University Research Report CER 76–77 DENRNM-JEC 22.

    Google Scholar 

  • Ooms, G., Mahieu, A. P. & Zelis, F. (1976): The plume path of vent gases heavier than air. Inst. Chem. Eng. Symp. Series, 47, 211–219.

    Google Scholar 

  • Pederson, F. (1980): Dense bottom currents in a rotating ocean. ASCE J. Hydraulics Division, 106 HY8, 1291–1308.

    Google Scholar 

  • Picknett (1978): Field experiments on the behaviour of dense gas clouds. Chemical Defense Establishment, Porton Down, Wilts., Report Patn IL 1154 78 1.

    Google Scholar 

  • R & D Associates (1978): Liquified Natural Gas Wind Tunnel Simulation and Instrumentation Assessments. EE-77-C103–1364.

    Google Scholar 

  • Shreman, F. S., Imberger, J. & Corcos, G. M. (1978): Turbulence and mixing in stavly stratified waters. Ann. Rev. Fluid Mech., 10, 267ff.

    Google Scholar 

  • Simpson, J. E. & Britter, R. E. (1979): The dynamcis of the head of a gravity current advancing over a horizontal surface. J. Fluid Mech., 94, 477–495.

    Article  Google Scholar 

  • Simpson, J. E. (1987): Gravity Currents: In the Environment and the Laboratory. Ellis Horwood Limited, Chichester.

    Google Scholar 

  • Snyder, W. H., Britter, R. E. & Hunt, J. C. R. (1979): A fluid modelling study of the flow structure and plume impingement on a three dimesional hill in a stably stratified flow. 5th Int. Conf. Wind Eng., Fort Collins, CO.

    Google Scholar 

  • Townsend, A. A. (1957): Turbulent flow in stable stratified atmosphere. J. Fluid Mech., 3, 361–372.

    Article  Google Scholar 

  • Turner, J. S. (1973): Buoyancy effects in fluids. Cambridge University Press.

    Google Scholar 

  • Wilkinson, P. L. (1970): Studies in density stratified flows. Univ. New South Wales, Water Research Laboratory, Report 118.

    Google Scholar 

  • Wilkinson, P. L. & Wood, I. R. (1971): A rapidly varied flow phenomenon in a two-layered flow. J. Fluid Mech., 47, 241–256.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ramsay, S.R. (1995). Dense Gas Dispersion in Complex Settings: Part 2 — The Effect of Topography. In: Cermak, J.E., Davenport, A.G., Plate, E.J., Viegas, D.X. (eds) Wind Climate in Cities. NATO ASI Series, vol 277. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3686-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3686-2_29

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4485-3

  • Online ISBN: 978-94-017-3686-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics