Skip to main content

Alien Genes in Wheat Improvement

  • Chapter
Wheat in a Global Environment

Part of the book series: Developments in Plant Breeding ((DIPB,volume 9))

Abstract

Wild relatives of common wheat, Triticum aestivum, are an important source for disease and pest resistance. Recently we reviewed the status of wheat-alien translocations conferring resistance to diseases and pests (45). Since then, several new transfers were reported and markers linked to resistance genes identified. Here we present an update of the available information on wheat-alien translocations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Acosta, A. C. (1962): The transfer of stem rust resistance from rye to wheat. Diss. Abstr., 23, 34–35.

    Google Scholar 

  2. Allard, R. W., Shand, R. G. (1954): Inheritance of resistance to stem rust and powdery mildew in cytologically stable spring wheats derived from Triticum timopheevii. Phytopathology, 44, 266–274.

    Google Scholar 

  3. Autrique, E., Singh, R. P., Tanksley, S. D., Sorrells, M. E. (1995): Molecular markers for four leaf rust resistance genes introgressed into wheat from wild relatives. Genome, 38, 75–83.

    Article  PubMed  CAS  Google Scholar 

  4. Ayala, L., Khairallah, M., Gonzalez-de-leon, D., Van Ginkel, M., Mujeeb-Kazi, A., Keller, B., Henry, M. (2000): Identification and use of molecular markers to detect barley yellow dwarf virus resistance derived from Th. intermedium in bread wheat. Theor. Appl. Genet. (In press).

    Google Scholar 

  5. Banks, P. M., Larkin, P. J., Bariana, H. S., Lagudah, E. S., Appels, R., Waterhouse, P. M., Brettell, R. 1. S., Chen, X., Hu, H. J., Xin, Z. Y., Qian, X. M., Zhou, X. M., Cheng, Z. M., Zhou, G. H. (1995): The use of cell culture for subchromosomal introgressions of barley yellow dwarf virus resistance from Thinopyrum intermedium to wheat. Genome, 38, 395–405.

    CAS  Google Scholar 

  6. Bariana, H. S., McIntosh, R. A. (1993): Cytogenetic studies in wheat. XV. Location of rust resistance genes in VPM1 and its genetic linkage with other disease resistance genes in chromosome 2A. Genome, 36, 476–482.

    Article  PubMed  CAS  Google Scholar 

  7. Bariana, H. S., McIntosh, R. A. (1994): Characterization and origin of rust resistance and powdery mildew resistance genes in VPM1. Euphytica, 76, 53–61.

    Article  Google Scholar 

  8. Bartos, P., Bares, I. (1971): Leaf and stem rust resistance of hexaploid wheat cultivars `Salzmünder Bartweizen“ and Weique’. Euphytica, 20, 435–440.

    Article  Google Scholar 

  9. Bartos, P., Valkoun, J., Kosner, J., Slovencikova, V. (1973): Rust resistance of some European wheat cultivars derived from rye. In: Sears, E. R., Sears, L. M. S. (eds) Proc. 4th Int. Wheat Genet. Sym., Univ. Missouri, Columbia, USA, 145–146

    Google Scholar 

  10. Biagetti, M., Vitellozzi, F., Ceoloni, C. (1998): Physical mapping of wheat-A egilops longissima breakpoints in mildew-resistant recombinant lines using FISH with highly repeated and low-copy DNA probes. Genome, 42, 1013–1019.

    Google Scholar 

  11. Bonhomme, A., Gale, M. D., Koebner, R. M. D., Nicolas, P., Jahier, J., Bernard, M. (1995): RFLP analysis of an Aegilops ventricosa chromosome that carries a gene conferring resistance to leaf rust (Puccinia recondita) when transferred to hexaploid wheat. Theor. Appl. Genet., 90, 1042–1048.

    Article  CAS  Google Scholar 

  12. Cauderon, Y. (1966): Etude cytogénétique del’évolution du matériel sissu de croisement entre Triticum aestivum et Agropyron intermedium. Ann. De l’Amél. Plantes, 16, 43–70.

    Google Scholar 

  13. Cauderon, Y., Saigne, B., Daugne, M. (1973): The resistance to wheat rusts of Agropyron intermedium and its use in wheat improvement. In: Sears, E. R., Sears, L. M. S. (eds), Proc. 4th Int. Wheat Genet. Symp., Univ. Missouri, Columbia, USA, 401–407.

    Google Scholar 

  14. Ceni, A., D’Ovidio, R., Tanzarella, O. A., Ceoloni, C. (1999): Identification of molecular markers linked to Pm13, an Aegilops longissima gene conferring resistance to powdery mildew of wheat. Theor. Appl. Genet., 98, 448–454.

    Article  Google Scholar 

  15. Ceoloni, C., Biagetti, M., Ciaffi, M., Forte, P., Pasquiri, M. (1996): Wheat chromosome engineering at the 4x level: the potential of different alien gene transfers into durum. Euphytica, 89, 87–97.

    Article  CAS  Google Scholar 

  16. Ceoloni, C., Del Signore, G., Ercoli, L., Donini, P. (1992): Locating the alien chromatin segment in common wheat-A egilops longissima mildew resistant transfers. Hereditas, 116, 239–245.

    Google Scholar 

  17. Ceoloni, C., Del Signore, G., Pasquini, M., Testa, A. (1988): Transfer of mildew resistance from Triticum longissimum into wheat by phi induced homoeologous recombination. In: Miller, T. E., Koebner, R. M. D. (eds), Proc. 7th Int. Wheat Genet. Symp., Cambridge, UK, 221–226.

    Google Scholar 

  18. Chen, Q., Conner, R. L., Laroche, A. (1996): Molecular characterization of Haynaldia villosa chromatin in wheat lines carrying resistance to wheat curl mite. Theor. Appl. Genet.,93 679-.684.

    Google Scholar 

  19. Chen, Q., Friebe, B., Conner, R. L., Laroche, A., Thomas, J. B., Gill, B. S. (1998): Molecular cytogenetic characterization of Thinopyrum intermedium-derived wheat germplasm specifying resistance to wheat streak mosaic virus. Theor. Appl. Genet. 96, 1–7.

    Article  Google Scholar 

  20. Chen, P. D., Qi, L. L., Zhou, B., Zhang, S. Z., Liu, D. J. (1995) Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor. Appl. Genet., 91, 1125–1128.

    Google Scholar 

  21. Dedryver, F., Jahier, M.-F., Thouvenin, J., Goyeau, H. (1996): Molecular markers linked to the leaf rust resistance gene Lr24 in different wheat cultivars. Genome, 39, 830–835.

    Article  PubMed  CAS  Google Scholar 

  22. Delaney, D., Friebe, B. R., Hatchett, J. H., Gill, B. S., Hulbert, H. (1995): Targeted mapping of rye chromatin in wheat by representational difference analysis. Genome, 38, 458–466.

    Article  PubMed  CAS  Google Scholar 

  23. Delibes, A., Del Moral, J., Martin-Sanchez, J. A., Mejias, A., Gallego, M., Casado, D., Sin, E., Lopez-Brana, I. (1997): Hessian fly-resistance gene transferred from chromosome 4M“ of Aegilops ventricosa to Triticum aestivum. Theor. Appl. Genet., 94, 858–864.

    Article  CAS  Google Scholar 

  24. Donini, P., Koebner, R. M. D., Ceoloni, C. (1995): Cytogenetic and molecular mapping of the wheat-A egilops longissima chromatin breakpoints in powdery mildew-resistant introgression lines. Theor. Appl. Genet., 91, 738–743.

    Article  CAS  Google Scholar 

  25. Doussinault, G., Delibes, A., Sanchez-Monge, R., Garcia-Olmedo, F. (1983): Transfer of a dominant gene for resistance to eyespot disease from a wild grass to hexaploid wheat. Nature, 303, 698–700.

    Article  Google Scholar 

  26. Driscoll, C. J., Anderson, L. M. (1967): Cytogenetic studies of Transec–a wheat-rye translocation line. Can. J. Genet Cytol, 9, 375–380.

    Google Scholar 

  27. Driscoll, C. J., Bielig, L. M. (1968): Mapping of the Transec wheat rye translocation. Can. J Genet. Cytol., 10, 421–425.

    Google Scholar 

  28. Driscoll, C. J., Jensen, N. F. (1963): A genetic method for detecting intergeneric translocation. Genetics, 48, 459–468.

    PubMed  CAS  Google Scholar 

  29. Driscoll, C. J., Jensen, N. F. (1964): Characteristics of leaf rust resistance transferred from rye to wheat. Crop Sci., 4, 372–374.

    Article  Google Scholar 

  30. Driscoll, C. J., Jensen, N. F. (1965): Release of a wheat-rye translocation stock involving leaf rust and powdery mildew resistances. Crop Sci., 5, 279–280.

    Article  Google Scholar 

  31. Dubcovsky, J., Lukaszewski, A. J., Echaide, M., Antonelli, E. F., Porter, D. R. (1998) Molecular characterization of two Triticum speltoides interstitial translocations carrying leaf rust and greenbug resistance genes. Crop Sci., 38, 1655–1660.

    Article  CAS  Google Scholar 

  32. Dundas, I. S., Shepherd, K. W. (1998): Shortening the Agropyron chromosome segment carrying gene Sr26 utilizing chromosome engineering and molecular markers. In: Slinkard, A. E. (Ed), Proc. 9th Int. Wheat Genet. Symp., Saskatoon, Canada, 35–37.

    Google Scholar 

  33. Dvorak, J. (1977): Transfer of leaf rust resistance from Aegilops speltoides to Triticum aestivum Can J Genet. Cytol, 19, 133–141.

    Google Scholar 

  34. Dvorak, J., Knott, D. R. (1977): Homoeologous chromatin exchange in radiation-induced gene transfer. Can. J. Genet. Cytol., 19, 125–131.

    Google Scholar 

  35. Dvorak, J., Knott, D. R. (1990): Location of a Triticum speltoides chromosome segment conferring resistance to leaf rust in Triticum aestivum. Genome, 33, 892–897.

    Article  Google Scholar 

  36. Dyck, P. L. (1992): Transfer of a gene for stem rust resistance from Triticum araraticum to hexaploid wheat. Genome, 35, 788–792.

    Article  Google Scholar 

  37. Friebe, B., Gill, B. S., Cox, T. S., Zeller, F. J. (1993): Registration of KS91WGRC14 stem rust and powdery mildew resistant T1BL1RS durum wheat germplasm. Crop Sci., 33, 220.

    Article  Google Scholar 

  38. Friebe, B., Gill, B. S., Tuleen, N. A., Cox, T. S. (1995): Registration of KSWGRC28 powdery mildew resistant T6BS•6RL wheat germplasm. Crop Sci., 35, 1237.

    Article  Google Scholar 

  39. Friebe, B., Hatchett, J. H., Sears, R. G., Gill, B. S. (1990): Transfer of Hessian fly resistance from `Chaupon’ rye to hexaploid wheat via a 2BS/2RL wheat-rye chromosome translocation. Theor. Appl. Genet., 79, 385–389.

    Article  Google Scholar 

  40. Friebe, B., Hatchett, J. H., Gill, B. S., Mukai, Y., Sebesta, E. E. (1991): Transfer of Hessian fly resistance from rye to wheat via radiation-induced terminal and intercalary chromosomal translocations. Theor. Appl. Genet., 83, 33–40.

    Article  Google Scholar 

  41. Friebe, B., Heun, M., Bushuk, W. (1989): Cytological characterization, powdery mildew resistance and storage protein composition of tetraploid and hexaploid 1BL/1RS wheat-rye translocation lines. Theor Appl. Genet., 78, 425–432.

    Google Scholar 

  42. Friebe, B., Heun, M., Tuleen, N., Zeller, F. J., Gill, B. S. (1994): Cytogenetically monitored transfer of powdery mildew resistance from rye into wheat. Crop Sci., 34, 621–625.

    Article  Google Scholar 

  43. Friebe, B., Jiang, J., Gill, B. S., Dyck, P. L. (1993): Radiation-induced nonhomoeologous wheat-Agropyron intermedium chromosomal translocations conferring resistance to leaf rust. Theor. Appl Genet., 86, 141–149.

    Google Scholar 

  44. Friebe, B., Jiang, J., Knott, D. R., Gill, B. S. (1994): Compensation indices of radiation-induced wheat Agropyron elongatum translocations conferring resistance to leaf rust and stem rust. Crop Sci., 34, 400–404.

    Article  Google Scholar 

  45. Friebe, B., Jiang, J., Raupp, W. J., McIntosh, R. A., Gill, B. S. (1996): Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica, 91, 59–87.

    Article  Google Scholar 

  46. Friebe, B., Jiang, J., Tuleen, N. A., Gill, B. S. (1995). Standard karyotype of Triticum umbellulatum and the characterization of derived chromosome additions and translocation lines in common wheat. Theor. Appl. Genet., 90: 150–156.

    Article  Google Scholar 

  47. Friebe, B., Kynast, R. G., Hatchett. J. H., Sears, R. G., Wilson, D. L., Gill, B. S. (1999): Transfer of wheat-rye translocation chromosomes conferring resistance to Hessian fly from bread wheat into durum wheat. Crop Sci., 39, 1692–1696.

    Google Scholar 

  48. Friebe, B., Mukai, Y., Dhaliwal, H. S., Martin, T. J., Gill, B. S. (1991) Identification of alien chromatin specifying resistance to wheat streak mosaic virus and greenbug in wheat germ plasm by C-banding and in situ hybridization. Theor. Appl. Genet., 81, 381–389.

    Google Scholar 

  49. Friebe, B., Zeller, F. J., Kunzmann, R. (1987): Transfer of the 1 BL/1 RS wheat-rye translocation from hexaploid bread wheat to tetraploid durum wheat. Theor. Appl. Genet., 74, 423–425.

    Article  Google Scholar 

  50. Friebe, B., Zeller, F. J., Mukai, Y., Forster, B. P., Bartos, P., McIntosh, R. A. (1992): Characterization of rust-resistant wheat-Agropyron intermedium derivatives by C-banding, in situ hybridization and isozyme analysis. Theor. Appl. Genet., 83, 775–782.

    Article  CAS  Google Scholar 

  51. Friebe, B., Zhang, W., Porter, D. R., Gill, B. S. (1995): Non-homoeologous wheat-rye translocations conferring resistance to greenbug. Euphytica, 84, 121–125

    Article  Google Scholar 

  52. Gill, B. S., Friebe, B., Wilson, D. L., Cox, T. S. (1995): Registration of KS93WGRC27 wheat streak mosaic virus-resistant T4DL4Ai#2S wheat germplasm. Crop Sci., 35, 1236–1237.

    Article  Google Scholar 

  53. Gyarfas, J. (1968): Transfer of disease resistance from Triticum timopheevii to Triticum aestivum. Msc. Thesis, Univ. of Sydney, Australia.

    Google Scholar 

  54. Heun, M., Friebe, B. (1990): Introgression of powdery mildew resistance from rye into wheat. Phytopathology, 80, 1129–1133.

    Article  Google Scholar 

  55. Heun, M., Friebe, B., Bushuk, W. (1990): Chromosomal location of the powdery mildew resistance gene of Amigo wheat. Phytopathology, 80, 1129–1133.

    Article  Google Scholar 

  56. Hohmann, U., Badaeva, E. D., Busch, W., Friebe, B., Gill, B. S. (1996): Molecular cytogenetic analysis of Agropyron chromatin specifying resistance to barley yellow dwarf virus in wheat. Genome, 39, 336–347.

    Article  PubMed  CAS  Google Scholar 

  57. Hollenhorst, M. M., Joppa, L. R. (1981): Chromosomal location of genes for resistance to greenbug in Largo and Amigo wheats. Crop Sci., 23, 91–93.

    Article  Google Scholar 

  58. Hsam, S. L., Cermeno, M.-C., Friebe, B., Zeller, F. J. (1995): Transfer of Amigo wheat powdery mildew resistance gene Pm17 from T1AL1RS to TIBLIRS wheat-rye translocation chromosomes. Heredity, 74, 497–501.

    Article  Google Scholar 

  59. Hsam, S. L. K., Zeller, F. J. (1997): Evidence of allelism between Pm8 and Pm17 and chromosomal location of powdery mildew and leaf rust resistance genes in the common wheat cultivar ‘Amigo’. Plant Breed., 116, 119–122.

    Article  Google Scholar 

  60. Jahier, J., Doussinault, G., Dosba, F., Bourgeois, E. (1979): Monosomic analysis of resistance to eyespot in the variety ‘Roazon’. In: Ramanujam, S. (ed), Proc. 5th Int. Wheat Symp., New Delhi, India, 437–440.

    Google Scholar 

  61. Jahier, J., Tanguy, A. M., Doussinault, G. (1989): Analysis of the level of eyespot resistance due to genes transferred to wheat from Aegilops ventricosa. Euphytica, 44, 55–59.

    Article  Google Scholar 

  62. Jahier, J., Tanguy, A. M., Rivoal, R. (1996): Utilization of deletions to localize a gene for resistance to the cereal cyst nematode, Heterodera avenae, on an Aegilops ventricosa chromosome. Plant Breed. 116, 282–284.

    Article  Google Scholar 

  63. Järve, K., Peusha, H. O., Tsymbalova, J., Tamm, S., Devos, K. M., Enno, T. M. (2000) Chromosomal location of a Triticum timopheevii-derived poedery mildew resistance gene transferred to common wheat. Genome 43: 377–381.

    PubMed  Google Scholar 

  64. Jia, J., Devos, K. M., Chao, S., Miller, T. E., Reader, S. M., Gale, M. D. (1996): RFLP-based maps of homoeologous group-6 chromosomes of wheat and their application in the tagging of Pm12, a powdery mildew resistance gene transferred from Aegilops speltoides to wheat. Theor. Appl. Genet., 92, 559–565.

    Article  CAS  Google Scholar 

  65. Jiang, J., Friebe, B., Dhaliwal, H. S., Martin, T. J., Gill, B. S. (1993): Molecular cytogenetic analysis of Agropyron elongatum chromatin in wheat germplasm specifying resistance to wheat streak mosaic virus. Theor. Appl. Genet., 86, 41–48.

    Article  CAS  Google Scholar 

  66. Jiang, J., Friebe, B., Gill, B. S. (1994): Recent advances in alien gene transfer in wheat. Euphytica, 73, 199–212.

    Article  Google Scholar 

  67. Jiang, J., Friebe, B., Gill, B. S. (1994): Chromosome painting of Amigo wheat. Theor. Appl. Genet., 89, 811–813.

    CAS  Google Scholar 

  68. Jorgensen, J, H., Jensen, C. J. (1973): Gene Pm6 for resistance to powdery mildew in wheat. Euphytica, 22, 4–23.

    Google Scholar 

  69. Kerber, E. R., Dyck, P. L. (1990): Transfer to hexaploid wheat of linked genes for adult-plant leaf rust and seedling stem rust resistance from an amphiploid of Aegilops speltoides X Triticum monococcum. Genome, 33, 530–537.

    CAS  Google Scholar 

  70. Kim, N.-S., Whelan, E. D. P., Fedak, G., Armstrong, K. (1992): Identification of a Triticum-Lophopyrum noncompensating translocation line and detection of Lophopyrum DNA using wheatgrass specific molecular marker. Genome, 35, 541–544.

    Article  Google Scholar 

  71. Knott, D. R. (1961): The inheritance of rust resistance. VI. The transfer of stem rust resistance from Agropyron elongatum to common wheat. Can. J Plant Sci., 10, 109–123.

    Article  Google Scholar 

  72. Knott, D. R. (1968): Translocations involving Triticum chromosomes and Agropyron chromosomes carrying rust resistance. Can. J. Genet. Cytol., 10, 695–696.

    Google Scholar 

  73. Knott, D. R. (1980): Mutation of a gene for yellow pigment liked to LrI9 in wheat. Can. J. Genet. Cytol., 22, 651–654.

    CAS  Google Scholar 

  74. Lapitan, N. L. V., Sears, R. G., Gill, B. S. (1984): Translocations and other karyotypic changes in wheat x rye hybrids regenerated from tissue culture. Theor. Appl. Genet., 68, 547–554.

    Article  Google Scholar 

  75. Lay, C. L., Wells, D. G., Gardner, W. A. S. (1971): Immunity from wheat streak mosaic virus in irradiated Agrotricum progenies. Crop Sci., 1: 431–432.

    Article  Google Scholar 

  76. Lee, J. H., Graybosch, R. A., Kaeppler, S. M., Sears, R. G. (1996): A PCR assay for detection of a 2RL•2BS wheat-rye translocation. Genome, 39, 605–608.

    Article  PubMed  CAS  Google Scholar 

  77. Liang, G. H., Wang, R. C., Niblett, C. L., Heyne, E. G. (1979): Registration of B-637–1 wheat germ plasm. Crop Sci., 18, 421.

    Article  Google Scholar 

  78. Liu, Z., Sun, Q., Ni, Z., Yang, T. (1999): Development of SCAR markers linked to the Pm21 gene conferring resistance to powdery mildew in common wheat. Plant Breed., 118, 215–219.

    Article  CAS  Google Scholar 

  79. Lowry, J. R., Sammons, D. J., Baenziger, P. S., Moseman, J. G. (1984): Identification and characterization of the gene conditioning powdery mildew resistance in `Amigo’ wheat. Crop Sci., 24, 129–132.

    Article  Google Scholar 

  80. Lukazewski, A. J. (1993): Reconstruction in wheat of complete chromosomes 1B and 1R from the 1 RS1 BL translocation of Kavkaz origin. Genome, 36, 821–824.

    Article  Google Scholar 

  81. Lukaszewski, A. J. (2000): Manipulation of the IRS. IBL translocation in wheat by induced homoeologous recombination. Crop Sci. 40: 216–225.

    Article  CAS  Google Scholar 

  82. Marais, G. F., Marais, A. S. (1990): The assignment of a Thinopyrum distichum (Thumb.) Löwe-derived translocation to the long arm of wheat chromosome 7D using endopeptidase polymorphism. Theor. Appl. Genet., 779, 182–186.

    Google Scholar 

  83. Marais, G. F., Marais, A. S. (1994): The derivation of compensating translocations involving homoeologous group 3 chromosomes of wheat and rye. Euphytica, 79, 75–80.

    Article  Google Scholar 

  84. Marais, G. F., Horn, M., Du Toit, F. (1994): Intergeneric transfer (rye to wheat) of a gene(s) for Russian wheat aphid resistance. Plant Breed., 113, 265–271.

    Article  Google Scholar 

  85. Marais, G. F., Roux, H. S., Pretorius, Z. A., Pienar, de V. (1988): Resistance to leaf rust of wheat derived from Thinopyrum distichum (Thumb.) Löwe. In: Miller, T. E., Koebner, R. M. D. (eds), Proc. 7th Int, Wheat Genet. Symp. Cambridge, U. K., 369–373.

    Google Scholar 

  86. Martin, T. J., Harvey, T. L., Livers, R. W. (1976) Resistance to wheat streak mosaic virus and its vector, Aceria tulipae. Phytopathology, 66, 346–349.

    Article  Google Scholar 

  87. McIntosh, R. A. (1983): Genetic and cytogenetic studies involving Lr18 resistance to Puccinia recondita. In: Sakamoto, S. (ed), Proc. 6th Int Wheat Genet. Symp. Kyoto, Japan, 777–783.

    Google Scholar 

  88. McIntosh, R. A. (1991): Alien sources of disease resistance in bread wheats. In: Sasakuma, T., Kinoshita, T. (eds), Proc. of Dr. Kihara Memmorial Int. Symp. on Cytoplasmic Engineering in Wheat. Nuclear and organellar genomes of wheat species. Yokohama, Japan, 320–332.

    Google Scholar 

  89. McIntosh, R. A., Dyck, P. L., Green, G. J. (1977): Inheritance of leaf rust and stem rust resistance in wheat cultivars Agent and Agatha. Aust. J. Agric. Res., 28, 37–45.

    Article  Google Scholar 

  90. McIntosh, R. A., Friebe, B., Jiang, J., The, D., Gill, B. S. (1995): Cytogenetical studies in wheat XVI. Chromosome location of a gene for resistance to leaf rust in a Japanese wheat-rye translocation line. Euphytica, 82, 141–147.

    Article  Google Scholar 

  91. McIntosh, R. A., Gyarfas, J. (1971): Triticum timopheevii as a source of resistance to stem rust. Z. Pflanzenzuchtg., 66, 240–258.

    Google Scholar 

  92. McIntosh, R. A., Luig, N. H. (1973): Recombination between genes for reaction to P. graminis at or near the Sr9 locus. In: Sears, E. R., Sears, L. M. S. (eds), Proc. 4th Int. Wheat Genet Symp., Univ. of Missouri, Columbia, USA, 425–432.

    Google Scholar 

  93. McIntosh, R. A., Miller, T. E., Chapman, V. (1982): Cytogenetical studies in wheat XII. Lr28 for resistance to Puccinia recondita and Sr34 for resistance to P. graminis tritici. Z. Pflanzenzzichtg., 89, 295–306.

    Google Scholar 

  94. McIntosh, R. A., Wellings, C. R., Park, R. F., (1995): Wheat rusts: an atlas of resistance genes. CSIRO, Australia & Kluwer Acad. Pub., The Netherlands, 66–67.

    Google Scholar 

  95. Mettin, D., Blüthner, D.W., Schlegel, R. (1973): Additional evidence on spontaneous 1B/1R substitutions and translocations. In: Sears, E. R., Sears, L. M. S. (eds) Proc. 4th Int. Wheat Genet. Sym., Univ. of Missouri, Columbia, USA, 179–184.

    Google Scholar 

  96. Miller, T. E., Reader, S. M., Ainsworth, C. C., Summers, R. W. (1987): The introduction of a major gene for resistance to powdery mildew of wheat, Erysiphe graminis f. sp. tritici from Aegilops speltoides into wheat, T aestivum. In: Jorna, M. L., Slootmaker, L. A. J. (eds), Cereal Breeding related to integrated cereal production. Proc. EUCARPIA Conf., Wageningen, The Netherlands, 179–183.

    Google Scholar 

  97. Mujeeb-Kazi, A., Williams, M. D. H. M., Islam-Faridi, M. N. (1996): Homozygous 1B and 1BL/1RS chromosome substitutions in Triticum aestivum and T turgidum cultivars. Cytologia, 61, 147–154.

    Article  Google Scholar 

  98. Mukade, K., Kamio, M., Hosoda, K. (1970): The transfer of leaf rust resistance from rye into wheat by intergeneric addition and translocation. In: Gamma Field Symp. No. 9, Mutagenesis in relation to ploidy level, 69–87.

    Google Scholar 

  99. Mukai, Y., Friebe, B., Hatchett, J. H., Yamamoto, M., Gill, B. S. (1993): Molecular cytogenetic analysis of radiation-induced wheat-rye terminal and intercalary chromosomal translocations and the detection of rye chromatin in wheat. Chromosoma, 102, 88–95.

    Article  Google Scholar 

  100. Naik, S., Gill, K. S., Prakasa Rao, V. S., Gupta, V. S., Tamhankar, S. A., Pujar, S., Gill, B. S., Ranjekar, P. K. (1998): Identification of a STS marker linked to the Aegilops speltoides-derived leaf rust resistance gene Lr28 in wheat. Theor. Appl. Genet., 97, 535–540.

    Article  CAS  Google Scholar 

  101. Nasuda, S., Friebe, B., Bush, W., Kynast, R. G., Gill, B. S. (1998): Structural rearrangement in chromosome 2M of Aegilops comosa has prevented the utilization of the Compair and related wheat-Ae. comosa translocations in wheat improvement. Theor. Appl. Genet., 98, 780–785.

    Article  Google Scholar 

  102. Nyquist, N. E. (1957): Monosomic analysis of stem rust resistance of a common wheat strain derived from Triticum timopheevii. Agron. J., 49, 222–223.

    Article  Google Scholar 

  103. Nyquist, N. E. (1962): Differential fertilization in the inheritance of stem rust resistance in hybrids involving a common wheat strain derived from Triticum timopheevii. Genetics, 47, 1109–1124.

    PubMed  CAS  Google Scholar 

  104. Pfannenstiel, M. A., Niblett, (1978): The nature of the resistance of Agrotricum to wheat streak mosaic virus. Phytopathology, 68, 1204–1209.

    Article  Google Scholar 

  105. Porter, D. R., Webster, J. A., Friebe, B. (1994): Inheritance of greenbug biotype G resistance in wheat. Crop Sci., 34, 625–628.

    Article  Google Scholar 

  106. Porter, D. R., Webster, J. A., Burton, R. L., Puterka, G. J., Smith, E. L. (1991): New sources of resistance to greenbug in wheat. Crop Sci., 31, 1502–1504.

    Article  Google Scholar 

  107. Prins, R., Marais, G. F., Janse, B. J. H., Pretorius, Z. A., Marais, A. S. (1996): A physical map of the Thinopyrum-derived Lr19 translocation. Genome, 39, 1013–1019.

    Article  PubMed  CAS  Google Scholar 

  108. Procunier, J. D., Townley-Smith, T. F., Fox, S., Prashar, S., Gray, M., Kim, W. K., Czarnecki, E., Dyck, P. L. (1995): PCR-based RAPD/DGGE markers linked to leaf rust resistance genes Lr29 and Lr25 in wheat (Triticum aestivum L.). J. Genet. Breed., 49, 176–179.

    Google Scholar 

  109. Qí, L. L., Cao, M., Chen, P. D. Li, W. Liu, D. J. (1996): Identification, mapping, and amplification of polymorphic DNA associated with resistance gene Pm21 of wheat. Genome, 39, 191–197.

    Article  PubMed  Google Scholar 

  110. Ren, S. X., McIntosh, R. A., Lu, Z. L. (1997): Genetic suppression of the cereal rye-derived gene Pm8 in wheat. Euphytica, 93, 353–360.

    Article  Google Scholar 

  111. Riley, R., Chapman, V., Johnson, R. (1968): Introduction of yellow rust resistance of Aegilops comosa into wheat by genetically induced homoeologous recombination. Nature, 217, 383–384.

    Article  Google Scholar 

  112. Riley, R., Chapman, V., Johnson, R. (1968): The incorporation of alien disease resistance in wheat by genetic interference with the regulation of meiotic chromosome synapsis. Genet. Res., 12, 199–219.

    Article  Google Scholar 

  113. Rogowski, P. M., Sorrels, M. E., Shepherd, K. W., Langridge P. (1993): Characterization of wheat-rye recombinants with RFLP and PCR probes. Theor. Appl. Genet., 85, 1023–1028.

    Google Scholar 

  114. Schachermayr, G. M., Messmer, M. M., Feuillet, C., Winzeler, H., Winzeler, M., Keller, B. (1995): Identification of molecular markers linked to the Agropyron elongatum-derived leaf rust resistance gene Lr24 in wheat. Theor. Appl. Genet., 90, 982–990.

    Article  CAS  Google Scholar 

  115. Schachermayer, R., Siedler, R., Gale, M. D., Winzeler, H., Winzeler, M., Keller, B. (1994): Identification and localization of molecular markers linked to the Lr9 leaf rust resistance gene of wheat. Theor. Appl. Genet., 88, 110–115.

    Google Scholar 

  116. Schlegel, R., Korzun, V. (1997): About the origin of 1RS.1BL wheat-rye chromosome translocations from Germany. Plant Breed., 116, 537–540.

    Article  Google Scholar 

  117. Seah, S., Bariana, H., Jahier, J., Sivasithamparam, K., Lagudah, E. S. (2000): The introgressed segment carrying rust resistance genes Yr17, Lr37 and Sr38 in wheat can be assayed by a cloned disease resistance gene-like sequence. Theor. Appl. Genet.,(in press).

    Google Scholar 

  118. Sears, E. R. (1956): The transfer of leaf rust resistance from Aegilops umbellulata to wheat. Brookhaven Symp. Biol., 9, 1–22.

    Google Scholar 

  119. Sears, E. R. (1972): Chromosome engineering in wheat. In: Kimber, G., Redei, G. R. (eds), Stadler Symp., Vol. 4., Univ. of Missouri, Columbia, USA, 23–38.

    Google Scholar 

  120. Sears, E. R. (1973): Agropyron-wheat transfers induced by homoeologous pairing. In: Sears, E. R., Sears, L. M. S. (eds), Proc 4th Int. Wheat Genet. Symp., Univ. of Missouri, Columbia, USA, 191–199.

    Google Scholar 

  121. Sears, E. R. (1977): Analysis of wheat-Agropyron recombinant chromosomes. In: Proc. 8h Int. Eucarpia Congress, Madrid, Spain, 63–72.

    Google Scholar 

  122. Sears, R. G., Hatchett, J. H., Cox, T. S., Gill, B. S. (1992): Registration of Hamlet, a Hessian fly resistant hard red winter wheat germplasm. Crop Sci., 32, 506.

    Article  Google Scholar 

  123. Sebesta, E. E., Wood, E. A. (1978): Transfer of greenbug resistance from rye into wheat with X-rays. Agron. Abstr., 61–62.

    Google Scholar 

  124. Sebesta, E. E., Bellingham, R. C. (1963): Wheat viruses and their genetic control. In: MacKey, J. (ed), Proc. 2nd Int. Wheat Genet. Symp., Hereditas Supp., Vol. 2, Lund, Sweden, 184–201.

    Google Scholar 

  125. Sebesta, E. E., Hatchett, J. H., Friebe, B., Gill, B. S., Cox, T. S., Sears, R. G. (1997): Registration ofKS92WGRCl7, KS92WGRC18, KS92WGRC19, and S92WGRC20 winter wheat germplasms resistant to Hessian fly. Crop Sci. 37: 635.

    Article  Google Scholar 

  126. Sebesta, E. E., Smith, E. L., Young, H. C., Porter, D. R., Webster, J. A. (1995): Registration of Teewon wheat germplasm. Crop Sci., 35, 294.

    Article  Google Scholar 

  127. Sebesta, E. E., Young, H. C., Wood, E. A. (1972): Wheat streak mosaic virus resistance. Ann. Wheat Newsl., 18, 136.

    Google Scholar 

  128. Sebesta, E. E., Wood, E. A., Porter, D. R., Webster, J. A., Smith, E. L. (1995): Registration of Amigo wheat germplasm resistant to greenbug. Crop Sci., 35, 293.

    Article  Google Scholar 

  129. Seo, Y., W., Johnson, J. W., Janet, R. L. (1997): A molecular marker associated with the H21 hessian fly resistance gene in wheat. Mol Breed., 3, 177–181.

    Article  CAS  Google Scholar 

  130. Seyfarth, R., Feuillet, C., Schachermayr, Winzeler, M., Keller, B. (1999): Development of a molecular marker for the adult plant leaf rust resistance gene Lr35 in wheat. Theor Appl. Genet. 99, 554–560.

    Article  PubMed  CAS  Google Scholar 

  131. Sharma, D., Knott, D. R. (1966): The transfer of leaf rust resistance from Agropyron to Triticum by irradiation. Can. J. Genet. Cytol., 8, 137–143.

    Google Scholar 

  132. Smith, E. L., Schlehuber, A. M., Young Jr., H. C., Edwards, L. H. (1968): Registration of Agent wheat. Crop Sci., 8, 511–512.

    Article  Google Scholar 

  133. Talbert, L. E., Bruckner, P. L., Smith, Y. L., Sears, R., Martin, T. J. (1996): Development of PCR markers for resistance to wheat streak mosaic virus. Theor. Appl. Genet., 93, 463–467.

    Article  CAS  Google Scholar 

  134. The, T. T., Gupta, R. B., Dyck, P. L., Appels, R., Hohmann, U., McIntosh, R. A. (1992): Characterization of stem rust-resistant derivatives of wheat cultivar Amigo. Euphytica, 58, 245–252.

    Google Scholar 

  135. Tyler, J. A., Webster, J. A., Merkle, O. G. (1987): Designation of genes in wheat germplasm conferring greenbug resistance. Crop Sci., 27, 526–527.

    Article  Google Scholar 

  136. Wang, R. C., Liang, G. H. (1977): Cytogenetic location of genes for resistance to wheat streak mosaic virus in an Agropyron substitution line. J. Hered., 68, 375–378.

    Google Scholar 

  137. Wang, R. C., Liang, G. H., Heyne, E. G. (1977): Effectiveness of ph gene in inducing homoeologous chromosome pairing in Agrotricum. Theor Appl. Genet., 51, 139–142.

    Google Scholar 

  138. Wang, R. R. C., Zhang, Z. Y. (1996): Characterization of the translocated chromosome using fluorescence in situ hybridization and random amplified polymorphic DNA on two Triticum aestivum-Thinopyrum intermedium translocation lines resistant to wheat streak mosaic or barley yellow dwarf viruses.Chromosome Res., 4, 583–587.

    Article  PubMed  CAS  Google Scholar 

  139. Wells, D. G., Kota, R. S., Sandhu, H. S., Gardner, W. A. S., Finney, K. F. (1982): Registration of one disomic substitution line and five translocation lines of winter wheat germplasm resistant to wheat streak mosaic virus. Crop Sci., 22, 1277–1278.

    Article  Google Scholar 

  140. Wells, D. G., Wong, R., Sze-Chung, Lay, C. L., Gardner, W. A. S., Buchenau, G. W. (1973): Registration of C.I.15092 and C.I.15093 wheat germplasm. Crop Sci., 13, 776.

    Google Scholar 

  141. Whelan, E. D. P., Atkinson, T. G., Larson, R. I. (1983): Registration of LRS-IF 193 wheat germplasm. Crop Sci., 23, 194.

    Article  Google Scholar 

  142. Whelan, E. D. P., Conner, R. L. (1989): Registration of LRS-70–50 wheat germplasm. Crop Sci., 29, 838

    Google Scholar 

  143. Whelan, E. D. P., Hart, G. E. (1988): A spontaneous translocation that confers wheat curl mite resistance from decaploid Agropyron elongatum to common wheat. Genome, 30, 289–292.

    Article  Google Scholar 

  144. Wienhues, A. (1960): Die Ertragsleistung rostresistenter 44- und 42chromosomiger Weizen-Quecken- Bastarde. Der Zuchter, 30, 194–202.

    Google Scholar 

  145. Wienhues, A. (1966): Transfer of rust resistance of Agropyron to wheat by addition, substitution and translocation. In: MacKey, J. (ed), Proc. 2nd Ina. Wheat Symp., Hereditas Suppl. Vol. 2, Lund, Sweden, 328–341.

    Google Scholar 

  146. Wienhues, A. (1967): Die Übertragung der Rostresistenz aus Agropyron intermedium in den Weizen durch Translokation. Der Achter, 37, 345–352.

    Google Scholar 

  147. Wienhues, A. (1971): Substitution von Weizenchromosomen aus verschiedenen homoeologen Gruppen durch ein Fremdchromosom aus Agropyron intermedium. Z. Pflanzenzuchtg., 65, 307–321.

    Google Scholar 

  148. Wienhues, A. (1973): Translocations between wheat chromosomes and an Agropyron chromosome conditioning rust resistance. In: Sear, E. R., Sears, L. M. S. (eds), Proc. 4th Int. Wheat Genet. Symp., Univ. of Missouri, Columbia, USA, 201–207.

    Google Scholar 

  149. Wienhues, A. (1979): Translokationslinien mit Resistenz gegen Braunrost (Puccinia recondita) aus Agropyron intermedium. Ergebnisse aus der Rückkreuzung mit Winterweizensorten. Z. Pflanzenzúchtg., 82, 149–161.

    Google Scholar 

  150. Yamamori, M. (1994): An N-band marker for gene Lr18 for resistance to leaf rust in wheat. Theor. Appl. Genet., 89, 643–646.

    Article  CAS  Google Scholar 

  151. Zeller, F. J. (1973): 1B/IR wheat-rye chromosome substitutions and translocations. In: Sears, E. R., Sears, L. M. S. (eds) Proc. 4th Int. Wheat Genet. Sym., Univ. of Missouri, Columbia, USA, 209–221.

    Google Scholar 

  152. Zeller, F. J., Fuchs, E. (1983): Cytologie und Krankheitsresistenz einer 1A/1R und mehrerer 1B/1R Weizen-Roggen-Translokationssorten. Z. Pflanzenziichtg., 90, 285–296.

    Google Scholar 

  153. Zeller, F. J., Günzel, G., Fischbeck, G., Gerstenkorn, P., Weipert, D. (1982): Veränderungen der Backeigenschaften des Weizens durch die Weizen-RoggenChromosomen Translokation 1B/1 R. Getreide, Mehl und Brot, 36, 141–143.

    Google Scholar 

  154. Zhang, H., Jia, J., Gale, M. D., Devos, K. M. (1998): Relationships between the chromosomes of Aegilops umbellulata and wheat. Theor. Appl. Genet., 96, 69–75.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Friebe, B., Raupp, W.J., Gill, B.S. (2001). Alien Genes in Wheat Improvement. In: Bedö, Z., Láng, L. (eds) Wheat in a Global Environment. Developments in Plant Breeding, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3674-9_95

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3674-9_95

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5618-4

  • Online ISBN: 978-94-017-3674-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics