Unification, Geometry and Ambivalence: Hilbert, Weyl and the Göttingen Community

  • Skuli Sigurdsson
Part of the Boston Studies in the Philosophy of Science book series (BSPS, volume 151)


In 1918 the mathematician Hermann Weyl (1885–1955) extended the general theory of relativity that Albert Einstein (1879–1955) had set forth in the years 1915–1916. At one level, Weyl’s theory made it possible to unify the two field phenomena known at this time, namely those described by electromagnetic and gravitational fields. But more was at stake. At the beginning of the paper in which Weyl worked out the mathematical foundations of the theory, he observed that:

According to this theory everything real, that is in the world, is a manifestation of the world metric; the physical concepts are no different from the geometrical ones. The only difference that exists between geometry and physics is, that geometry establishes in general what is contained in the nature of the metrical concepts, whereas it is the task for physics to determine the law and explore its consequences, according to which the real world is characterized among all the geometrically possible four-dimensional metric spaces.


Riemannian Geometry Euclidean Geometry Spiritual Leader Axiomatic Method Unify Field Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 2.
    Hermann Weyl, “Reine Infinitesimalgeometrie,” in Weyl, Gesammelte Abhandlungen,4 vols. (Berlin: Springer, 1968), Vol. II, pp. 1–28, on p. 2; emph. in orig.Google Scholar
  2. 3.
    Thomas S. Kuhn, The Structure of Scientific Revolutions (Chicago: University of Chicago Press, 1970 [1st ed. 1962]), on p. 167.Google Scholar
  3. 4.
    Felix Klein, “The Present State of Mathematics,” in Klein, Gesammelte mathematische Abhandlungen,3 vols. (Berlin: Julius Springer, 1922), Vol. II, pp. 613–615, on p. 615; emph. in orig.Google Scholar
  4. Weyl, “Obituary: David Hilbert (1862–1943),” in Weyl, Ges. Abh. (ref.2), Vol. IV, pp. 121–129, on p. 128.Google Scholar
  5. 6.
    Weyl, “David Hilbert and His Mathematical Work,” in Weyl, Ges. Abh. (ref. 2), Vol. IV, pp. 130–172, on p. 132.Google Scholar
  6. 7.
    Weyl, “Zu David Hilberts siebzigstem Geburtstag,” in Weyl, Ges. Abh. (ref. 2), Vol. III, pp. 346–347, on p. 347; emph. in orig.Google Scholar
  7. 8.
    Richard Courant, interviewed by Thomas S. Kuhn, 9 May 1962, Archive for History of Quantum Physics.Google Scholar
  8. 9.
    David Hilbert, “Mathematische Probleme,” in Hilbert, Gesammelte Abhandlungen,3 vols. (Berlin: Julius Springer, 1935), Vol. III, pp. 290–329, on p. 295.Google Scholar
  9. 10.
    Hilbert, “Wesen und Ziele einer Analysis der unendlichvielen unabhängigen Variablen,” in Hilbert, Ges. Abh. (ref. 9), Vol. III, pp. 56–72, on p. 57; emph. in orig.Google Scholar
  10. 11.
    Hilbert, “Die Grundlagen der Physik (1924),” in Hilbert, Ges. Abh. (ref. 9), Vol. III, pp. 258–289, on p. 258. This paper is a condensed version of Hilbert’s two notes on the foundations of physics of 20 November 1915 and 23 December 1916.Google Scholar
  11. 12.
    Max Born, “Hilbert und die Physik (1922),” in Born, Ausgewählte Abhandlungen,2 vols. (Göttingen: Vandenhoeck and Ruprecht, 1963), Vol. II, pp. 584–598, on pp. 595–596.Google Scholar
  12. 13.
    Hilbert, “Die Grundlagen der Physik (1924),” in Hilbert, Ges. Abh. (ref. 9), Vol. III, pp. 258–289, on p. 278.Google Scholar
  13. 14.
    Albert Einstein to Hermann Weyl, Berlin, 23 November 1916, Nachlass Hermann Weyl HS 91: 536, ETH Library Archives Zürich. Hereafter abbreviated NWeyl.Google Scholar
  14. 15.
    Weyl, Lecture at the Princeton Bicentennial Conference, December 1946, N Weyl, HS 91a: 18.Google Scholar
  15. 16.
    Weyl to Einstein, Zürich, 1 March 1918, NWeyl HS 91: 538a.Google Scholar
  16. 17.
    Weyl, “Gravitation und Elektrizität,” in Weyl, Ges. Abh. (ref. 2), Vol II, pp. 29–42, on p. 30.Google Scholar
  17. 19.
    Weyl to Einstein, Zürich, 19 May 1918, NWeyl HS 91: 545a.Google Scholar
  18. 20.
    Fritz London, “Quantenmechanische Deutung der Theorie von Weyl,” Zeitschrift für Physik 42 (1927), pp. 375–389, on p. 377.Google Scholar
  19. 21.
    Wolfgang Pauli, Theory of Relativity (New York: Dover, 1981 [English transi. 1958]), on p. 202.Google Scholar
  20. 22.
    Paul Bernays to David Hilbert, Charlottenburg, 25 November 1925, Nachlass David Hilbert 21, Niedersächsische Staats-und Universitätsbibliothek, Göttingen.Google Scholar
  21. 23.
    Weyl to Robert König, 21 February 1927, quoted in König, “Hermann Weyl,” Bayerische Akademie der Wissenschaften: Jahrbuch (1956), pp. 236–248, on p. 243.Google Scholar
  22. 24.
    Weyl, “David Hilbert and His Mathematical Work,” in Weyl, Ges. Abh. (ref. 2), Vol. IV, pp. 130–172, on p. 171.Google Scholar
  23. 26.
    Weyl, “Emmy Noether (1935)” in Weyl, Ges. Abh. (ref. 2), Vol. III, pp. 425–444; Weyl to Carl Seelig, Zürich, 19 May and 26 June 1952, Seelig papers, HS 304: 1062 and 1063, ETH Library Archives Zürich; and Weyl to A. Vibert Douglas, Zürich, 31 October 1953, NWeyl,HS 91: 173.Google Scholar
  24. 26.
    Weyl to Fanny Minkowski, Princeton [?], 24 March 1947, NWeyl,HS 91: 378. Minkowski’s lecture “Space and Time” is reprinted in H. A. Lorentz et al., The Principle of Relativity (New York: Dover, 1952 [English transi. 1923]), pp. 75–91, on p. 75.Google Scholar
  25. 27.
    Weyl, “Die Einsteinsche Relativitätstheorie,” in Weyl, Ges. Abh. (ref. 2), Vol. II, pp. 123140, on p. 131; emph. in orig.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • Skuli Sigurdsson
    • 1
  1. 1.University of GöttingenGermany

Personalised recommendations