On the Justification of the Method of Historical Interpretation

  • Izabella G. Bashmakova
  • Ioannis M. Vandoulakis
Part of the Boston Studies in the Philosophy of Science book series (BSPS, volume 151)


Today, when all over the world the interest in history of science and the research in this field have grown, the methodological questions of the historical studies have become especially sharp and actual. Around the problem of the advantages and admissibility of interpretations, of the “translatability” of older texts into modern language, whole parties, who hold diametrically opposite views have appeared; let us agree to call them antiquarists and modernists. The modernists boldly translate the classical texts into the language of modern mathematics, appealing to far finer and more complicated parts of it than the simple language of notations usually used by the authors of the past. The antiquarists, on the contrary, declare that such interpretations are illegitimate, distort the meaning of the text, bring in it concepts and methods alien to it.1 Who is right?


Rational Point Algebraic Curf Diophantine Equation Mathematical Truth Historical Interpretation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bashmakova I. G., 1981, Arithmetic of algebraic curves from Diophantus to Poincaré. Historia Mathematica 8, 393–416.CrossRefGoogle Scholar
  2. 2.
    Bashmakova I. G., and Slavutin E. I., 1984, History of Diophantine Analysis from Diophantus to Fermat. Moscow: Nauka. [In Russian].Google Scholar
  3. 3.
    Bashmakova I. G., 1984, Indeterminate equations and their role in the development of algebra. Voprosy Istorii Estestvoznanija i Tekhniki 2 43–56. [In Russian].Google Scholar
  4. 4.
    Bashmakova I. G., 1986, The main stages in the development of algebra. Istorija i metodologija estestvennykh nauk 32 50–65. [In Russian].Google Scholar
  5. 5.
    Bashmakova I. G., 1987, Diophantine equations and the evolution of algebra. Intern. Congr. of Math., Berkely, California, pp. 1612–1629. [In Russian]; English Transl. by A. Shenitzer and H. Grant: Amer. Math. Soc. Transi. (2) Vol. 147, 1990, pp. 85–100.Google Scholar
  6. 6.
    Becker, O. and Hoffman J. E., 1957, Geschichte der Mathematik. Bonn.Google Scholar
  7. 7.
    Brommer, P., 1940, Eidos et idea. Etude sémantique et chronologique des oeuvres de Platon. Assen.Google Scholar
  8. 8.
    Burnet J. Ed., 1899–1906, Platonis Opera. 5 Vols Oxford.Google Scholar
  9. 9.
    Drucker T. Ed., 1991, Perspectives on the History of Mathematical Logic. Boston: Birkhäuser.Google Scholar
  10. 10.
    Hickman L., 1980, Modern Theories of Higher Level Predicates. Second Intentions in the Neuzeit. München: Philos. Verlag.Google Scholar
  11. 11.
    Kneale W. and M., 1984, The Development of Logic. Oxford: Clarendon Press.Google Scholar
  12. 12.
    Losev A. F., 1930, Essays of Ancient Symbolism and Mythology. Moscow. [In Russian].Google Scholar
  13. 13.
    Losev A. F., 1963–88, History of Ancient Aesthetics. 7 Vols, Moscow: Iskusstvo [In Russian].Google Scholar
  14. 14.
    Rashed R. Ed., 1984, Diophante, Les Arithmétiques, t. 3, 4. Paris: Les Belles Lettres.Google Scholar
  15. 15.
    Vandoulakis J. M., 1991, On the Formation of the Mathematical Science in Greek Antiquity. Ph. D. Thesis (Moscow University) [In Russian].Google Scholar
  16. 16.
    Vandoulakis J. M., 1982, Plato’s Anticipation of the Simple Theory of Types. Istorikomatematicheskie issledovanija 35 (in print) [In Russian].Google Scholar
  17. 17.
    Vernadsky V. I., 1981, Selected Works on the History of Science. Moscow: Nauka. [In Russian].Google Scholar
  18. 18.
    Veselovskij I. N. (Tr.) and Bashmakova I. G., (Intr. and Comm.), 1974, Diophantus’ Arithmetica,Moscow: Nauka. [In Russian].Google Scholar
  19. 19.
    Vlastos G., 1954, The Third Man Argument in the “Parmenides”, Philosophical Review 63, 319–49.CrossRefGoogle Scholar
  20. 20.
    Weil A., 1983, Number Theory: An Approach Through History. From Hammurapi to Legendre. Boston: Birkhäuser.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1994

Authors and Affiliations

  • Izabella G. Bashmakova
    • 1
  • Ioannis M. Vandoulakis
    • 1
  1. 1.University of MoscowRussia

Personalised recommendations