Skip to main content

Preparation, Structure and Surface Chemical Properties of Hydrotreating Model Catalysts: A Surface Science Approach

  • Chapter
Transition Metal Sulphides

Part of the book series: NATO ASI Series ((ASHT,volume 60))

Abstract

The preparation of an active hydrodesulphurization catalyst involves the impregnation of the oxidic support with molybdenum and cobalt compounds, followed by drying and calcination to obtain well-dispersed oxides of these elements [1,2]. The preparation finishes with the conversion of the oxides into the catalytically active phase by sulphidation. Being an essential part of the preparation, it is important to know the mechanism of the sulphidation process and to identify the elementary reaction steps that constitute the conversion from oxides to sulphides, in dependence of how the HDS catalyst is prepared. The sulphidation of molybdenum and cobalt-promoted molybdenum catalysts forms the main subject of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Topsoe, H., Clausen, B.S., and Massoth, F.E. (1996) Hydrotreating Catalysis, Springer-Verlag, Berlin.

    Google Scholar 

  2. Prins, R., de Beer, V. H. J., and Somorjai, G. A. (1989) Structure and function of the catalyst and the promoter in Co-Mo hydrodesulfurization catalysts, Catal. Rev.-Sci. Eng. 31, 1–41.

    Article  CAS  Google Scholar 

  3. Niemantsverdriet, J.W. (1993) Spectroscopy in Catalysis, VCH, Weinheim.

    Google Scholar 

  4. Spevack, P. A., and McIntyre, N. S. (1993) A Raman and XPS investigation of supported molybdenum oxide thin films. 2. Reactions with hydrogen sulfide, J. Phys. Chem. 97, 11031–11036.

    Article  CAS  Google Scholar 

  5. Diemann, E., Weber, Th., and Müller, A. (1994) Modeling the thiophene HDS reaction on a molecular level, J. Catal. 148, 288–303.

    Article  CAS  Google Scholar 

  6. De Jong, A. M., Borg, H. J., van IJzendoorn, L. J., Soudant, V. G. F. M., de Beer, V. H. J., van Veen, J. A. R., and Niemantsverdriet, J. W. (1993) Sulfidation mechanism of molybdenum catalyst supported on a SiO2/Si(100) model support studied by surface spectroscopy, J. Phys. Chem. 97, 6477–6483.

    Article  Google Scholar 

  7. Muijsers, J.C., Weber, Th., van Hardeveld, R.M., Zandbergen, H.W., and Niemantsverdriet, J.W. (1995) Sulfidation study of molybdenum oxide using MoO3/SiO2/Si(100) model catalysts and Mo31v-sulfur cluster compounds, J. Catal. 157, 698–705.

    Article  CAS  Google Scholar 

  8. De Jong, A.M., de Beer, V.H.J., van Veen, J.A.R., and Niemantsverdriet, J.W. (1996) Surface science model of a working cobalt-promoted molybdenum sulfide hydrodesulfurization catalyst: characterization and reactivity, J. Phys. Chem. 100, 17722–17724.

    Article  Google Scholar 

  9. Gunter, P.L.J., Niemantsverdriet, J.W., Ribeiro, F.H., and Somorjai, G.A. (1997) Surface science approach to modeling supported catalysts, Catal. Rev.- Sci. Eng. 39, 77–168.

    Article  CAS  Google Scholar 

  10. Suntola, T. (1989) Atomic layer epitaxy, Mater. Sci. Rep. 4, 261–312.

    Article  CAS  Google Scholar 

  11. Kuipers, E.W., Laszlo, C., and Wieldraaijer, W. (1993) Deposition of nanocrystals on flat supports by spin-coating, Catal. Lett. 17, 71–79.

    Article  CAS  Google Scholar 

  12. Van Hardeveld, R.M., Gunter, P.L.J., van IJzendoorn, L.J., Wieldraaijer, W., Kuipers E.W., and Niemantsverdriet, J.W. (1995), Deposition of inorganic salts from solution on flat substrates by spin-coating: theory, quantification and application to model catalysts, Appl. Surface Sci. 84, 339–346.

    Article  Google Scholar 

  13. Barr, T.L. (1978) An ESCA study of the termination of the passivation of elemental metals, J. Phys. Chem. 82, 1801–1810.

    Article  CAS  Google Scholar 

  14. Karolewski, M.A. and Cavell, R.G. (1989) SIMS study of Cs/MoS2(0001), Surf Sci. 219, 261–276.

    Article  CAS  Google Scholar 

  15. Van IJzendoorn, L.J., Niemantsverdriet, J.W., Severens, R.J., van Dijk, P.W.L., and de Voigt, M.J.A. (1994) Applications of cyclotron based ion scattering, Nucl. Instr. Meth. B 89, 114–121.

    Article  Google Scholar 

  16. Primet, M., Fouilloux, P., and Imelik, B. (1979) Propene-V2O5 interactions studied by infrared emission spectroscopy, Surf. Sci. 85, 457–470.

    Article  CAS  Google Scholar 

  17. Hewett Jr., W.D., Newton, J.H., and Weltner Jr, W. (1975) Adsorption spectra of molybdenum oxide molecules and molybdenum atoms in neon and argon matrices, J. Phys. Chem. 79, 2640–2649.

    Article  CAS  Google Scholar 

  18. Müller, A., and Diemann, E. (1987) in Wilkinson, G., Gillard, R.D., and McCleverty, J.A. (eds.), Comprehensive Coordination Chemistry, Pergamon, Oxford, Vol II, Chapter 16. 1.

    Google Scholar 

  19. Müller, A., and Diemann, E. (1985) [Mo31vS13]2 a model for crystalline MoS2, Chimia 39, 312–313.

    Google Scholar 

  20. Weber, Th., Muijsers, J.C. and Niemantsverdriet, J.W. (1995) Structure of amorphous MoS3, J. Phys. Chem. 99, 9194–9200.

    Article  CAS  Google Scholar 

  21. Prasad, T.P., Diemann, E., and Müller, A (1979) Thermal decomposition of (NH4)2MoO2S2, (NH4)2MoS4, (NH4)2WO2S2 and (NH4)2WS4, J. Inorg. Nucl. Chem. 35, 1895–1904.

    Article  Google Scholar 

  22. Schmidt, K.H., and Müller, A. (1972) Schwingungsspektren und Normalkoordinatenanalyse von MoOSe32-, WOSe32-, MoO2Se22“ und WO2Se22-, Spectrochim. Acta, PartA 28, 1829–1840.

    CAS  Google Scholar 

  23. Weber, Th., Muijsers, J.C., van Wolput, J.H.M.C., Verhagen, C.P.J., and Niemantsverdriet, J.W. (1996) Basic reaction steps in the sulfidation of crystalline MoO3 to MoS2, as studied by X-ray photoelectron and infrared emission spectroscopy, J Phys. Chem. 100, 14144–14150.

    Article  CAS  Google Scholar 

  24. Aymonino, P.J., Ranade, A.C., Diemann, E., and Müller, A. (1969) Study of formation and relative reaction rates of different thioanions of molybdenum and tungsten, Z. anorg. allg. Chem. 371, 300–305.

    Article  CAS  Google Scholar 

  25. Harmer, M.A., and Sykes, A.G. (1980) Kinetics of the interconversion of sulfido-and oxomolybdate (VI) species MoOxS4.x2- in aqueous solutions, Inorg. Chem. 19, 2881–2885.

    Article  CAS  Google Scholar 

  26. Müller, A., Nolte, W.-O.,and Krebs, B. (1978) [(S2)2Mo(S2)2Mo(S2)2]2-, a Novel Complex containing only S22 Ligands and a Mo-Mo-Bond, Angew. Chem. Intern. Ed. Engl. 17, 279–279; Angew. Chem. 90, 286–287.

    Google Scholar 

  27. Hulliger, F. (1976) in Levy, F. (ed.), Structural Chemistry of Layer-Type Phases, D. Reidel Publishing Co., Dordrecht.

    Google Scholar 

  28. Amoldy, P., van den Heijkant, J. A. M., de Bok, G. D., and Moulijn, J.A. (1985) Temperature-programmed sulfiding of MoO3/Al2O3 catalysts, J. Catal. 92, 35–55.

    Article  Google Scholar 

  29. Amoldy, P., de Booijs, J.L., Scheffer, B., and Moulijn, J.A. (1985) Temperature-programmed sulfiding and reduction of CoO/Al2O3 catalysts, J Catal. 96, 122–138.

    Article  Google Scholar 

  30. Alstrup, I., Chorkendorff, I., Candia, R., Clausen, B.S., and Topsee, H. (1982) A combined X-ray photoelectron and Mössbauer emission spectroscopy study of the state of Cobalt in sulfided, supported and unsupported Co-Mo catalysts, J. Catal. 77, 397–409.

    Article  CAS  Google Scholar 

  31. Van Veen, J.A.R., Gerkema, E.R., van der Kraan, A.M., and Knoester, A. (1987) A real support effect on the activity of fully sulphided CoMoS for the hydrodesulphurization of thiophene, J. Chem. Soc. Chem. Commun. 22, 1684–1686.

    Article  Google Scholar 

  32. Medici, L., and Prins, R. (1997) The influence of chelating ligands on the sulfidation of Ni and Mo in NiMo/Si02 hydrotreating catalysts, J. Catal. 163, 38–49.

    Article  Google Scholar 

  33. De Jong, A.M., de Beer, V.H.J., van Veen, J.A.R., and Niemantsverdriet, J.W. (1997) Working surface science model of CoMoS hydrodesulfurization catalysts, J. Vac. Sci. Technol. A 15, 1592–1596.

    Article  Google Scholar 

  34. Hensen, E.J.M., de Beer, V.H.J., van Veen, J.A.R., and van Santen, R.A., unpublished.

    Google Scholar 

  35. Satterfield, C.N., and Roberts, G.W. (1968) Kinetics of thiophene hydrogenolysis on a cobalt molybdate catalyst, AIChE J. 14, 159–164.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

De Jong, A.M. et al. (1998). Preparation, Structure and Surface Chemical Properties of Hydrotreating Model Catalysts: A Surface Science Approach. In: Weber, T., Prins, R., van Santen, R.A. (eds) Transition Metal Sulphides. NATO ASI Series, vol 60. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3577-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3577-3_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5100-4

  • Online ISBN: 978-94-017-3577-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics