Skip to main content

Chemistry and Reactivity of Transition Metal Sulphides in Relation to Their Catalytic Performance

  • Chapter
Book cover Transition Metal Sulphides

Part of the book series: NATO ASI Series ((ASHT,volume 60))

Abstract

The removal of heteroatoms such as sulphur, nitrogen and metals from oil feedstock by transition metal sulphides has long been one of the major catalytic processes in petroleum industry. The primary driving force for this removal is the protection of catalysts in downstream operations. The growing environmental awareness in the early ‘70s went along with a large research effort in this field resulting in a fair understanding of the structure of these catalysts and the basis of their catalytic activity. Today, the diminishing oil supplies necessitate the processing of heavier feeds containing larger amounts of sulphur, nitrogen and metals. Moreover, legislation on transportation fuels becomes more stringent as can be seen in Table 1. The standard for the sulphur content of diesel fuels will be sharpened in the near future in anticipation of a working deNOx catalyst with a low sulphur tolerance. The total investment costs for the oil industry to produce more advanced fuels according to the EC proposition for the year 2000 will be over 8 billion ECUs over a period of 15 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chianelli, R.R. (1984) Fundamental studies of transition metal sulfide hydrodesulfurization catalysts, Catal. Rev.-Sci. Eng. 26, 361–393.

    Article  CAS  Google Scholar 

  2. Prins, R., De Beer, V.H.J., and Somorjai, G.A. (1989) Structure and function of the catalyst and the promoter in Co-Mo hydrodesulfurization catalysts, Catal. Rev.-Sci. Eng. 31, 1–41.

    Article  CAS  Google Scholar 

  3. Wiegand, B.C., and Friend, C.M. (1992) Model studies of the desulfurization reactions on metal surfaces and in organometallic complexes, Chem. Rev. 92, 491–504.

    Article  CAS  Google Scholar 

  4. Topsoe, H., Clausen, B.S., and Massoth, F.E. (1996) Hydrotreating catalysis, Springer, Berlin.

    Google Scholar 

  5. Pecoraro, T.A., Chianelli, R.R. (1981) Hydrodesulfurization catalysis by transition metal sulfides, J. Catal. 67, 430–445.

    Article  CAS  Google Scholar 

  6. Vissers, J.P.R., Groot, C.K., Van Oers, E.M., De Beer, V.H.J., and Prins, R. (1984) Carbon-supported transition metal sulfides, Bull. Soc. Chim. Belg. 93, 813–822.

    Article  CAS  Google Scholar 

  7. Ledoux, M.J., Michaux, O., Agostini, G., and Panissod, P. (1986) The influence of sulfide structures on the hydrodesulfurization activity of carbon-supported catalysts, J. Catal. 102, 275–288.

    Article  CAS  Google Scholar 

  8. Chianelli, R.R., Pecoraro, T.A., Halbert, T.R., Pan, V.H., and Stiefel, E.I. (1984) Transition metal sulfide catalysts–Relation of the synergic systems to the periodic trends in hydrodesulfurization reactions, J. Catal. 86, 226–230.

    Article  CAS  Google Scholar 

  9. Lacroix, M., Boutarfa, N., Guillard, C., Vrinat, M., and Breysse, M. (1989) Hydrogenating properties of unsupported transition metal sulphides, J. Catal. 120, 473–493.

    Article  CAS  Google Scholar 

  10. Eijsbouts, S., De Beer, V.H.J., and Prins, R. (1988) Periodic trends in the hydrodenitrogenation of carbon-supported transition metal sulfide catalysts, J. Catal. 109, 217–220.

    Article  CAS  Google Scholar 

  11. Eijsbouts, S., De Beer, V.H.J., and Prins, R. (1991) Hydrodenitrogenation of quinoline over carbon-supported transition metal sulfides, J. Catal. 127, 619–630.

    Article  CAS  Google Scholar 

  12. Sudhakar, C., Eijsbouts, S., De Beer, V.H.J., and Prins, R. (1987) Hydrodenitrogenation of decahydroquinoline over carbon-supported transition metal sulfide catalysts, Bull. Soc. Chim. Belg. 96, 885–890.

    Article  CAS  Google Scholar 

  13. Eijsbouts, S., Sudhakar, C., De Beer, V.H.J., and Prins, R. (1991) Hydrodenitrogenation of decahydroquinoline, cyclohexylamine and O-propylaniline over carbon-supported transition metal sulfides, J. Catal. 127, 605–618.

    Article  CAS  Google Scholar 

  14. Sabatier, P. (1911) Hydrogénations et des hydrogénations par catalyse, Ber. Deutsch. Chem. Ges. 44, 1984–2001.

    Article  CAS  Google Scholar 

  15. Harris, S. (1982) Study of the electronic structures of 1$` row and 2nd row transition metal sulfides using SCF-SW-Xa cluster calculations, Chem. Phys. 67, 229–237.

    Article  CAS  Google Scholar 

  16. Harris, S., and Chianelli, R.R. (1983) Periodic effects in catalysis: the relation between trends in catalytic activity and calculated electronic structure of transition metal sulfides, Chem. Phys. Lett. 101, 603–605.

    Article  CAS  Google Scholar 

  17. Harris, S., and Chianelli, R.R. (1984) Catalysis by transition metal sulfides: the relation between calculated electronic trends and HDS activity, J. Catal. 86, 400–412.

    Article  CAS  Google Scholar 

  18. Harris, S., and Chianelli, R.R. (1986) Catalysis by transition metal sulfides: a theoretical and experimental study of the relation between the synergic systems and the binary transition metal sulfides, J. Catal. 98, 17–31.

    Article  CAS  Google Scholar 

  19. Smit, T.S., and Johnson, K.H. (1993) Hydrodesulphurization of thiophene by transition metal sulphides. A molecular orbital topology study, Chem. Phys. Lett. 212, 525–533.

    Article  CAS  Google Scholar 

  20. Smit, T.S., and Johnson, K.H. (1994) The importance of sulphur-sulphur bonding in the hydrodesulphurization process of thiophene, using transition metal sulphide catalysts, J Mol. Catal. 91, 207–222.

    Article  CAS  Google Scholar 

  21. Smit, T.S., and Johnson, K.H. (1994) A unified theory of periodic and promotion effects in transition metal sulphide hydrodesulphurization catalysts, Catal. Lett. 28, 361–372.

    Article  CAS  Google Scholar 

  22. Zdrazil, M., and Sedlacek, J. (1977) Quantum chemical model of adsorption of thiophenes during hydrodesulphurization, Coll. Chem. Comm. 42, 3133–3143.

    Article  CAS  Google Scholar 

  23. Vladov, Ch., Neshev, M., Petrov, L., and Shopov, D. (1983) Quantum-chemical investigation of the active site of CoMo/Al2O3 hydrodesulphurisation catalyst, in Proc. Vth Intern. Symp. On Heterogeneous Catalysis, Part II; Varna, 479–484.

    Google Scholar 

  24. Joffre, J., Geneste, P., and Lerner, D.A. (1986) A quantum-chemical study of site modelling for the adsorption and desulfurization of thiophene, J. Catal. 97, 543–548.

    Article  CAS  Google Scholar 

  25. Rong, C., and Qin, X. (1991) Quantum chemical study of MoS2 hydrodesulfurization catalysts, J. Mol. Catal. 64, 321–335.

    Article  CAS  Google Scholar 

  26. Rong, C., Qin, X., and Jinglong, H. (1992) Quantum chemical study of hydrodesulfurization catalysts Part II. DV-Xa calculation on clusters of Co9S8 and RuS2, J. Mol. Catal. 75, 253–276.

    Article  Google Scholar 

  27. Zonnevylle, M.C., Hoffmann, R., and Harris, S. (1988) Thiophene hydrodesulfurization on MoS2; theoretical aspects, Surf Sci. 199, 320–360.

    Article  CAS  Google Scholar 

  28. Nerskov, J.K., Clausen, B.S., and Topsae, H. (1992) Understanding the trends in hydrodesulfurization activity of the transition metal sulfides, Catal. Lett. 13, 1–8.

    Article  Google Scholar 

  29. Topsee, H., Clausen, B.S., Topsee, N-Y., Hyldtoft, J., and Nerskov, J.K. (1993) Experimental and theoretical studies of periodic trends and promotional behaviours in hydrotreating catalysts.“Symposium Preprints” 38, American Chemical Society, Div. Petr. Chem., 638–641.

    Google Scholar 

  30. Welters, W.J.J., Vorbeck, G., Zandbergen, H.W., De Haan, J.W., De Beer, V.H.J., and Van Santen, R.A. (1994) HDS activity and characterization of zeolite-supported nickel sulfide catalysts, J. Catal. 150, 155–169.

    Article  CAS  Google Scholar 

  31. Neurock, M., and Van Santen, R.A. (1994) Theory of carbon-sulfur bond activation by small metal sulfide particles, J. Am. Chem. Soc. 116, 4427–4439.

    Article  CAS  Google Scholar 

  32. Topsoe, H., Clausen, B.S., Candia, R., Wivel, C., and Merup, S. (1981) Mössbauer emission-spectroscopy studies of hydrodesulfurization catalysts–evidence for and nature of a Co-Mo-S phase, J. Catal. 68, 433–452.

    Article  Google Scholar 

  33. Wivel, C., Candia, R., Clausen, B.S., Morup, S., and Tops, e, H. (1981) Catalytic significance of a Co-Mo-S phase in Co-Mo-Al2O3 hydrodesulfurization catalysts–combined in situ Mössbauer emission-spectroscopy and activity studies, J. Catal. 68, 453–463.

    Article  CAS  Google Scholar 

  34. Crajé, M.W.J., De Beer, V.H.J., and Van der Kraan, A.M. (1991) So-called “Co-Mo-S” phase observed in carbon-supported cobalt sulfide catalysts by Mössbauer emission spectroscopy, Appl. Catal. 70, L7 - L10.

    Article  Google Scholar 

  35. Crajé, M.W.J., De Beer, V.H.J., Van Veen, J.A.R., and Van der Kraan, A.M. (1996) On the identification of “Co-sulfide” species in sulfided supported Co and CoMo catalysts, in M.L. Ocelli and R.R. Chianelli (eds.), Hydrotreating Technology for Pollution Control, Marcel Dekker, New York, pp. 95–113.

    Google Scholar 

  36. Startsev, A.N. (1995) The mechanism of HDS catalysis, Catal. Rev.-Sci. Eng. 37, 353–423.

    Article  CAS  Google Scholar 

  37. Vrinat, M.L. (1983) The kinetics of the hydrodesulfurization process–a review, Appl. Catal. 6, 137–158.

    Article  CAS  Google Scholar 

  38. Schulz, H., Schon, M., and Rahman, N. (1986) Hydrogenative denitrogenation of model compounds as related to the refining of liquid fuels, Stud. Surf. Sci. Catal. 27, 201–276.

    Article  CAS  Google Scholar 

  39. J.R. Jennings (ed.) (1991) Catalytic Ammonia Synthesis Fundamentals and Practice, Plenum, New York.

    Google Scholar 

  40. Van Santen, R.A., and Niemantsverdriet, J.W. (1995) Chemical Kinetics and Catalysis, Plenum, New York.

    Book  Google Scholar 

  41. Kasztelan, S. (1992) Kinetic interpretation of periodic trends in heterogeneous catalysis, Appl. Catal. A 83, L1 - L6.

    Article  CAS  Google Scholar 

  42. Hensen, E.J.M., Vissenberg, M.J., De Beer, V.H.J., Van Veen, J.A.R., and Van Santen, R.A. (1996) Kinetics and mechanism of thiophene hydrodesulfurization over carbon-supported transition metal sulfides, J. Catal. 163, 429–435.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hensen, E.J.M., De Beer, V.H.J., Van Santen, R.A. (1998). Chemistry and Reactivity of Transition Metal Sulphides in Relation to Their Catalytic Performance. In: Weber, T., Prins, R., van Santen, R.A. (eds) Transition Metal Sulphides. NATO ASI Series, vol 60. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3577-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3577-3_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5100-4

  • Online ISBN: 978-94-017-3577-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics