Skip to main content

Charge Transfer Phenomena in Transition Metal Sulphur Chemistry

  • Chapter
Transition Metal Sulphides

Part of the book series: NATO ASI Series ((ASHT,volume 60))

Abstract

Sulphide ions are well suited to connect metal centres of very different oxidation states and characteristics — an ability that is relevant for both biochemical and industrial catalysis [1]. In addition, the S2− ions are electron rich which causes potential electron transfer reactivity or at least charge transfer behaviour (electron transfer in the excited state).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stiefel, E.I. and Matsumoto, K. (eds.) (1997) Transition Metal Sulfur Chemistry, Biological and Industrial Significance, American Chemical Society, Washington.

    Google Scholar 

  2. Müller, A., Diemann E., Jostes, R. and Bögge, H. (1981) Transition Metal Thiometalates: Properties and Significance in Complex and Bioinorganic Chemistry, Angew. Chem. Int. Ed. Engl. 20, 934–954; Angew. Chem. 93, 957–977. See also Pope, M.T. and Müller, A. (1991) Polyoxometalate Chemistry: An Old Field with New Dimensions in Several Disciplines, Angew. Chem. Int. Ed. Engl. 30, 34–48; Angew. Chem. 103, 56–70.

    Google Scholar 

  3. Müller, A. and Diemann, E. (1987) Sulfides, in G. Wilkinson, R.D. Gillard, and J.A. McCleverty (eds.), Comprehensive Coordination Chemistry, Vol. 2, Pergamon, Oxford, Chap. 16. 1.

    Google Scholar 

  4. Müller, A., Krickemeyer, E. and Bögge, H. (1986) [C17Cu5(ReS4)]3-, a Hexanuclear Complex Anion with Double Cubane-like Structure, Angew. Chem. Int. Ed. Engl. 25, 990; Angew. Chem 98, 987. See also Müller, A., Krickemeyer, E., Bögge, H. and Penk, M. (1989) Heterometal-sulfur-halo-complexes with a boat structure: [Cu4(ReS4)X6]3“ (X = Br, I), Chimia 43, 319–320.

    Google Scholar 

  5. Ciurli, S., Carney, M.J., Holm, R.H. and Papaefthymiou, G.C. (1989) Stability range of heterometal cubane-type clusters MFe3S4: Assembly of double—cubane clusters with the ReFe3S4 core, Inorg. Chem. 28, 2696–2698.

    Article  CAS  Google Scholar 

  6. Lee, S.C., Li, J., Mitchell, J.C. and Holm, R.H. (1992) Group 5 tetrathiometalates: Simplified syntheses and structures, Inorg. Chem. 31, 4333–4338.

    Article  CAS  Google Scholar 

  7. Pan, W.-H., Leonowicz, M.E. and Stiefel, E.I. (1983) Facile syntheses of new molybdenum and tungsten sulfido complexes. Structure of Mo3S92-, Inorg. Chem. 22, 672–678.

    Article  CAS  Google Scholar 

  8. Draganjac, M. and Rauchfuss, T.B. (1985) Transition Metal Polysulfides: Coordination Compounds with Purely Inorganic Chelate Ligands, Angew. Chem. Int. Ed. Engl. 24, 742757; Angew. Chem. 97, 745–760.

    Article  CAS  Google Scholar 

  9. Holm, R.H. (1992) Trinuclear cuboidal and heterometallic cubane-type iron-sulfur clusters: new structural and reactivity themes in chemistry and biology, Adv. Inorg. Chem. 38, 1–71.

    Article  CAS  Google Scholar 

  10. Müller, A., Diemann, E., Wienböker, U. and Bögge, H. (1989) Formation of the metal-sulfide aggregate [W3S11)]2“ through a novel balanced intramolecular condensation redox process with principal relevance to the formation of amorphous metal sulfides like WS 3, Inorg. Chem. 28, 4046–4049.

    Article  Google Scholar 

  11. Müller, A., Krickemeyer, E., Hildebrand, A., Bögge, H., Schneider, K. and Lemke, M. (1991) [NPr4]2[(ReS4)Cu5I6] and [NEt4]2[(ReS4)Cu3I4)]: Novel Low Dimensional Solids, J. Chem. Soc., Chem. Commun.,1685–1687.

    Google Scholar 

  12. Ciurli, S. and Holm, R.H. (1991) Heterometal cubane-type clusters: A ReFe3S4 single—cubane cluster by cleavage of an iron-bridged double cubane and the site-voided cubane [Fe3S4] as a cluster ligand, Inorg. Chem. 30, 743–750.

    Article  CAS  Google Scholar 

  13. Schäfer, R., Fiedler, J. Moscherosch, M. and Kaim, W. (1993) First characterization of a tetrathiomolybdate(V) derivative by EPR, UV-Vis and IR spectroelectrochemistry, J. Chem. Soc., Chem. Commun.,896–897.

    Google Scholar 

  14. Schäfer, R., Kaim, W. and Fiedler, J. (1993) Dinuclear and Trinuclear Complexes with Sulfide-Bridged Rhenium in Very Different Oxidation States (Re1Revn ReIRev’Re’, Re’Revi’Re’). The d°/d’ Transition in Tetrathiometalates, Inorg. Chem. 32, 3199–3200.

    Article  Google Scholar 

  15. Schäfer, R., Kaim, W., Moscherosch, M. and Krejcik, M. (1992) Tetrathiorhenate(VI) ReS42-. Spectroelectrochemical characterization (UVNis/NIR) of a small new d’ system and of its tetrakis(2,2’-bipyridine)diruthenium(II) complex (EPR), J. Chem. Soc., Chem. Commun., 834–835.

    Google Scholar 

  16. McGeehin, P., Henderson, B. and Benson, P.C. (1975) Magnetic resonance studies of rhenate(V1) in calcium tungstate, Proc. Roy. Soc. London A 346, 497–513. Dengel, A.C., Gibson, J.F. and Griffith, W.P. (1991) Electron-Spin-Resonance Spectra of the Perruthenate(VII) Ion, (RuO4r, J. Chem. Soc., Dalton Trans., 2799–2800.

    Google Scholar 

  17. Kaim, W. and Kohlmann, S. (1987) Four bridging bis chelate ligands with very low lying Tt * orbitals. MO perturbation calculations, electrochemistry, and spectroscopy of mononuclear and binuclear group 6 metal tetracarbonyl complexes, Inorg. Chem. 26, 68–77. Ernst, S.D. and Kaim, W. (1989) Energy level tailoring in ruthenium(II) polyazine complexes based on calculated and experimental ligand properties, Inorg. Chem. 28, 1520–1528. Kaim, W. and Kohlmann, S. (1990) The nature of reduced and excited states of it-electron-deficient complexes between Re(CO)3Hal and diimine ligands, Inorg. Chem. 29, 2909–2914.

    Article  Google Scholar 

  18. Tanaka, K., Morimoto, M. and Tanaka, T. (1981) Synthesis of some molybdenum-ruthenium clusters and their catalytic behavior toward acetylene reduction, Inorg. Chim. Acta 56, L61 - L63.

    Article  CAS  Google Scholar 

  19. Schäfer, R. (1993) Der d°-d’-Übergang in Tetrathiometallaten und deren Komplexen, Ph. D. Thesis, University of Stuttgart.

    Google Scholar 

  20. Kony, M., Bond, A.M. and Wedd, A.G. (1990) Electrochemistry of cyanocopper thiomolybdates and thiotungstates: Redox-based interconversion of species, Inorg. Chem. 29, 4521–4525. Gheller, S.F., Hambley, T.W., Rodgers, J.R., Brownlee, R.T.C., O’Connor, M.J., Snow, M.R. and Wedd, A.G. (1984) Synthesis and characterization of complexes of thiomolybdates and thiotungstates with copper(I) and silver(I) cyanides, including 95Mo and 183W NMR properties and the crystal and molecular structures of (n-Pr4•)2[(CN)CuS2MoS2], (n-Pr4N)2[(CN)AgS2WS2], and (Ph4As)2[(CN)CuS2MoS2Cu(CN)] • H 2 O, Inorg. Chem. 23, 2519–2528.

    Google Scholar 

  21. Rosenheim, L.D. and McDonald, J.W. (1987) Synthesis and characterization of the [(CO)4MoS2MS2]2“ and [(CO)4MoS2MS2Mo(CO)4]2- ions (M = Mo, W): Species containing group VI (6+) metals in widely separated formal oxidation states, Inorg. Chem. 26, 34143416.

    Google Scholar 

  22. Kaim, W., Hornung, F.M., Schäfer, R., Schwederski, B. and Fiedler, J., Zwei-und dreikernige Komplexe des WS4 2- mit Tricarbonylrhenium(I)- und -mangan(I)-Fragmenten: Struktur, Spektroskopie und Elektrochemie, Z. Anorg. Allg. Chem.,in print.

    Google Scholar 

  23. Greaney, M.A., Coyle, C.L., Harmer, M.A., Jordan, A. and Stiefel, E.I. (1989) Synthesis and characterization of mononuclear and dinuclear Bis(2,2`-bipyridine)ruthenium(II) complexes containing sulfur-donor ligands, Inorg. Chem. 28, 912–920.

    Article  CAS  Google Scholar 

  24. Hornung, F.M. and Kaim, W. New sulfide-bridged heterocubanes [Mvl(S)Re1 3(CO)9(µ-S)4]“, M = Mo, W, with metals in very different oxidation states, to be submitted.

    Google Scholar 

  25. Hornung, F.M. (1997) Ein-und mehrkernige Übergangsmetallkomplexe mit Nheterocyclischen oder S-Brücken-Liganden, Ph. D. Thesis, University of Stuttgart.

    Google Scholar 

  26. Beck, W., Sacher W. and Nagel, U. (1986) Tris(pentacarbonylrhenium)-sulfonium-, -selenonium and -telluronium Ions: Synthesis and Structure of [{(OC)5Re}3E]+BFI (E = S, Se, Te), Angew. Chem. Int. Ed. Engl. 25, 270; Angew. Chem. 98, 280–282.

    Article  CAS  Google Scholar 

  27. Curtis, M.D., Druker, S.H., Goosen, L. and Kampf, J.W. (1997) Structures of the anionic Mo/Co/S cluster salts [BnNMe3][Cp`2Mo2Co2S4(CO)2], [Na(IS-crown-5)1.5i [Cp*2Mo2Co2S4(CO)2], and [BnNMe3] [Cp `2Mo2Co2S3(CO)3(SAr)] (Bn = Benzyl, Cps = C5Me4Et, Ar = p-Tolyl), Organometallics 16, 231–235. Mansour, M.A., Curtis, M.D. and Kampf, J.W. (1997) Synthesis and structural characterization of tetranuclear, bimetallic sulfido nitrosyl and carbonyl clusters of the type Cp2M2M`2S3,4L„ (M = Mo, W; M’ = Fe, Co; L = NO, CO), Organometallics 16, 275–284.

    Article  Google Scholar 

  28. Tang, Z., Namura, Y., Ishii, Y., Mizobe, Y. and Hidai, M. (1997) The hydrosulfido-bridged diiridium and dirhodium complexes [CpsMCI(t2-SH)2MCpsC1] (M = Ir, Rh; Cps = r15-C5Me5) as versatile precursors for tri-and tetranuclear sulfido clusters, Organometallics 16, 151–154.

    Article  CAS  Google Scholar 

  29. Wakabayashi, T., Ishii, Y., Ishikawa, K. and Hidai, M. (1996) A Novel Catalyst with a Cuboidal PdMo3S4 Core for the Cyclization of Alkynoic Acids to Enol Lactones, Angew. Chem. Int. Ed. Engl. 35, 2123–2124; Angew. Chem. 108, 2268–2269.

    Article  Google Scholar 

  30. Müller, A., Krickemeyer, E. and Bögge, H. (1987) Entry to the chemistry of simple rhenium sulfur complexes and clusters. Preparation and crystal structure of R[ReS4], R`[ReS9], (NH4)4[Re4S22]•2H2O, R`2[C12Fe(MoS4)FeCl2]X[Cl2Fe(ReS4)FeC12]1“x, R`2[(ReS4)Cu3I4] and RR`2[(ReS4)Cu5Br7] (R = NEt4; R = PPh4; x = 0.3,0.5), Z. Anorg. Allg. Chem. 554, 61–78.

    Article  Google Scholar 

  31. Jeannin, Y., Secheresse, F., Bernes, S. and Robert, F. (1992) Molecular architecture of copper(I) thiometallate complexes. Example of a cubane with an extra face, (NPr4)3[MS4Cu4C15] (M = molybdenum, tungsten), Inorg. Chim. Acta 198, 493–505.

    Article  Google Scholar 

  32. Zhu, N., Jianhui, W., Du, S., Xintao, W. and Lu, J. (1992) The synthesis and crystal structure of a first cubane-like complex of the Mo-Ag-S series: {MoAg3S3C1}(PPh3)3S, Inorg. Chim. Acta 191, 65–68.

    Article  CAS  Google Scholar 

  33. Jianhui, W., Nianyong, Z., Shaowu, D., Xintao, W. and Jiaxi, L. (1992) The synthesis and crystal structure of a novel cubane-like complex of the Mo-Ag-S series: {MoAg3S3C1} (PPh3)30, Polyhedron 11, 1201–1204.

    Article  Google Scholar 

  34. Scattergood, C.D., Garner, C.D. and Clegg, W. (1987) Isolation of the single cubane-like Re-S-Cu-Cl cluster chlorotetrasulfidotris(chlorocopper)rhenate(2-), Inorg. Chim. Acta 132, 161–162.

    Article  CAS  Google Scholar 

  35. Müller, A., Hildebrand, A., Krickemeyer, D., Sölter, D., Bögge, H. and Armatage, A. (1992) (PPh4)[(ReO2S2)CuI] and (NEt4)2[(ReOS3)Cu3C14]: fixation of the up to now not isolated ions [ReO2S2]“ and [ReOS3]’ utilizing the stability of the CuS2(Re) and Cu3S3(Re) fragments, Z. Anorg. Allg. Chem. 614, 115–120.

    Google Scholar 

  36. Curtis, M.D., Penner-Hahn, J.E., Schwank, J., Baralt, O., McCabe, D., Thompson, L. and Waldo, G. (1988) Syngas and hydrodesulfurization catalysts derived from sulfido bimetallic clusters, Polyhedron 7, 2411–2420.

    Google Scholar 

  37. Lakshmanan, V., Nagaraja, K.S. and Udupa, M.R. (1993) Iron-molybdenum-sulfur and iron-tungsten-sulfur complexes of diimines, Polyhedron 12, 1487–1490.

    Article  CAS  Google Scholar 

  38. Müller, A., Hellmann, W., Schneider, J., Schimanski, U., Denner, U., Trautwein, A. and Bender, U. (1982) Some new aspects of the coordination chemistry of thiometalato ligands, Inorg. Chim. Acta 65, L41 - L42.

    Article  Google Scholar 

  39. Gheller, S.F., Hambley, T.W., Rodgers, J.R., Brownlee, R.T.C., O’Connor, M.J., Snow, M.R. and Wedd, A.G. (1984) Synthesis and characterization of complexes of thiomolybdates and thiotungstates with copper(I) and silver(I) cyanides, including 95Mo and 183W NMR properties and the crystal and molecular structures of (n-Pr4N)2[(CN)CuS2MoS2], (n-Pr4N)2[(CN)AgS2WS2], and (Ph4As)2[(CN)CuS2MoS2Cu(CN)]•H2O, Inorg. Chem. 23, 2519–2528.

    Article  CAS  Google Scholar 

  40. Huang, S.-P. and Kanatzidis, M.G. (1995) Application of the hydro(solvo)thermal technique to the synthesis of metal carbonyl chalcogenide clusters. Part 3. Synthesis, structural characterization, and spectroscopic studies of the clusters [{M(CO)4}„(MS4)]2- (M = Mo, W; n = 1, 2), Inorg. Chim. Acta 230, 9–17.

    Article  CAS  Google Scholar 

  41. Zhuang, B., Yu, P., Huang, L., He, L. and Lu, J. (1990) Reactivity of the metal(0) dithiocarbamato carbonyl complex [M(CO)4(S2CNEt2)]- (M = Mo, W): synthesis, structure and cyclic voltammetry of the tungsten(0) dithiocarbamato carbonyl complex and a new mixed-valence dinuclear tungsten-sulfur compound [Et4N]2[(OC)4WS2WS2], Inorg. Chim. Acta 177, 239–246.

    Article  CAS  Google Scholar 

  42. Müller, A., Stolz, P., Bögge, H., Sarkar, S., Schmitz, K., Fangmeier, A., Bilker, H. and Twistel, W. (1988) Heterometal nitrosyl complexes with remarkable electronic structure: preparation and crystal structure of R2[Fe(WS4)2(NO)] and R[Co(WS4)(NO)2] (R = PPh4), Z. Anorg. Allg. Chem. 559, 57–72.

    Article  Google Scholar 

  43. Howard, K.E., Lockemeyer, J.R., Massa, M.A., Rauchfuss, T.B., Wilson, S.R. and Yang, X. (1990) Thiometalate complexes containing arene, thiophene, and cyclobutadiene coligands. Are thiometalate clusters good models for desulfurization catalysts?, Inorg. Chem. 29, 43854390.

    Google Scholar 

  44. Howard, K.E., Rauchfuss, T.B. and Wilson, S.R. (1988) Synthesis, structure, and reactivity of organoruthenium derivatives of tetrathio-and tetraselenometalates, Inorg. Chem. 27, 17101716.

    Google Scholar 

  45. Howard, K.E. and Rauchfuss, T.B. (1986) Organometallic derivatives of the tetrathiometallates: Syntheses, structures, and reactions of MS4[Rh(COD)]2 and MS4[(C5H5)Ru(PPh3)]2 (M = Mo, W), J. Am. Chem. Soc. 108, 297–299.

    Article  CAS  Google Scholar 

  46. Howard, K.E., Rauchfuss, T.B. and Wilson, S.R. (1988) Tetrathiometalate complexes of rhodium, iridium, palladium, and platinum. Structures of [(C5Me5)RhCI]2WS4 and [(C3H5)Pd]2WS4, Inorg. Chem. 27, 3561–3567.

    Article  CAS  Google Scholar 

  47. Connelly, N.G. and Geiger, W.E. (1996) Chemical redox agents for organometallic chemistry, Chem. Rev. 96, 877–910.

    Article  CAS  Google Scholar 

  48. Darensbourg, D.J., Klausmeyer, K.K. and Reibenspies, J.H. (1995) Chromium tricarbonyl catecholate derivatives. Structures and reactivity studies of “16-electron” complexes, Inorg. Chem. 34, 4676–4681.

    Article  CAS  Google Scholar 

  49. Espinet, P., Bailey, P.M. and Maitlis, P.M. (1979) Pentamethylcyclopentadienylrhodium and -iridium complexes. Part 22. Blue five-coordinate rhodium(III) complexes derived from catechol and related compounds, J. Chem. Soc., Dalton Trans. 1542–1547.

    Google Scholar 

  50. Greulich, S., Kaim, W., Stange, A.F., Stoll, H., Fiedler, J. and Zalis, S. (1996) Cp*Ir(dab), dab = 1,4-Bis(2,6-dimethylphenyl)-1,4-diazabutadiene: A coordinatively unsaturated 6ir metallaheteroaromatic compound?, Inorg. Chem. 35, 3998–4002.

    Article  CAS  Google Scholar 

  51. Krejcik, M., Danek, M. and Hartl, F. (1991) Simple construction of an infrared optically transparent thin-layer electrochemical cell. Applications to the redox reactions of ferrocene, decacarbonyldimanganese and (3,5-di-tert-butylcatecholate)tricarbonylmanganate(1-), J. Electroanal. Chem. Interfacial Electrochem. 317, 179–187.

    Article  CAS  Google Scholar 

  52. Kaim, W., Ernst, S. and Kasack, V. (1990) ESR of homo-and heteroleptic mono-and dinuclear tris(a-diimine)ruthenium radical complexes, J. Am. Chem. Soc. 112, 173–178.

    Article  CAS  Google Scholar 

  53. Klein, A., Vogler, C. and Kaim, W. (1996) The S in 18+5 electron complexes: importance of the metal/ligand interface for the substitutional reactivity of “Re(0)” complexes (a—diimine I)Re’I(CO)3(X), Organometallics 15, 236–244.

    Article  CAS  Google Scholar 

  54. Müller, A., Krickemeyer, E., Wittneben, V., Bögge, H. and Lemke, M. (1991) (NH4)2[Re2S,6], a Soluble Metal Sulfide with Interesting Electronic Properties and Unusual Reactivity, Angew. Chem. Int. Ed. Engl. 30, 1512–1514; Angew. Chem. 103, 1501–1503.

    Google Scholar 

  55. Ueyama, N., Okamura, T. and Nakamura, A. (1992) Structure and properties of molybdenum(IV,V) arenethiolates with a neighboring amide group. Significant contribution of NH•••S hydrogen bond to the positive shift of redox potentials of Mo(V)/Mo(IV), J. Am. Chem. Soc. 114, 8129–8137.

    Article  CAS  Google Scholar 

  56. Benson, M.T., Cundari, T.R., Lim, S.J., Nguyen, H.D. and Pierce-Beaver, K. (1994) An effective core potential study of transition-metal chalcogenides. 1. Molecular structure, J. Am. Chem. Soc. 116, 3955–3966.

    Article  CAS  Google Scholar 

  57. Zalis, S., Stoll, H. and Kaim, W. Calculations of the electronic structures of the ReS4 and ReS4 2“, to be submitted.

    Google Scholar 

  58. Müller, A., Bögge, H. and Schimanski, U. (1983) The preparation of different types of polynuclear transition metal-sulfur compounds by thiometalates, including cubanelike ones. Crystal structure of {Cu3WS3C1}(PPh3)3S, {Cu3WS3C1)(PPh3)30, {Cu3M0S3C1}(PPh3)3S, {Cu3MoS3C1}(PPh3)30, (PPh3)3Cu2WS4.0.8CH2C12 and (PPh3)3Ag2MoS4.0.8CH2C12, Inorg. Chim. Acta 69, 5–16.

    Article  Google Scholar 

  59. Müller, A., Bögge, H. and Schimanski, U. (1980) Molybdenum-copper-sulfur-containing cage system and its bioinorganic relevance. Preparation and X-ray crystal structure of (Cu3MoS3C1)(PPh3)3S with an interesting stereochemistry of non-equivalent copper atoms, J. Chem. Soc., Chem. Commun. 91–92.

    Google Scholar 

  60. Raebiger, J.W., Crawford, C.A., Zhou, J. and Holm, R.H. (1997) Reactivity of cubane-type [(OC)3MFe3S4(SR)3]3- clusters (M = Mo, W): Interconversion with cuboidal [Fe3S4]° clusters and electron transfer, Inorg. Chem. 36, 994–1003.

    Article  CAS  Google Scholar 

  61. Prassides, K. (ed.) (1991) Mixed Valency Systems: Applications in Chemistry, Physics and Biology, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  62. Pombeiro, A.J.L. and McCleverty, J.A. (eds.) (1993) Molecular Electrochemistry of Inorganic, Bioinorganic and Organometallic Compounds, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  63. Topsoe, H., Clausen, B.S. and Massoth, F.E. (1996) in J.R. Anderson and M. Boudart (eds.), Hydrotreating Technology, Catalysis, Science and Technology, Vol. 11, Springer-Verlag, New York.

    Google Scholar 

  64. Clausen, B.S., Lengeler, B. and Topsoe, H. (1986) X-ray absorption spectroscopy studies of calcined Mo-Al203 and Co-Mo-Al203 hydrodesulfurization catalysts, Polyhedron 5, 199–202.

    Article  CAS  Google Scholar 

  65. Chianelli, R.R., Daage, M., Ledoux, M.J. (1994) Fundamental studies of transition-metal sulfide catalytic materials, Adv. Catal. 10, 177–232.

    Article  Google Scholar 

  66. Prins, R., de Beer, V.H.J. and Somorjai, G. (1989) Structure and function of the catalyst and the promoter in cobalt-molybdenum hydrodesulfurization catalysts, Catal. Rev.-Sci. Eng. 31, 1–41.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kaim, W., Hornung, F.M., Schäfer, R., Fiedler, J., Krejcik, M., Zališ, S. (1998). Charge Transfer Phenomena in Transition Metal Sulphur Chemistry. In: Weber, T., Prins, R., van Santen, R.A. (eds) Transition Metal Sulphides. NATO ASI Series, vol 60. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3577-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3577-3_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5100-4

  • Online ISBN: 978-94-017-3577-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics