Skip to main content

Some Tree Responses to CO2 Enrichment

  • Chapter
Book cover Trace Gas Emissions and Plants

Abstract

Atmospheric CO2 levels have increased from the pre-industrial level (mid 18th century) of approximately 280 µmol mol−l to the present value of approximately 360 µmol mol−l (IPCC, 1995). The rate of increase is about 1.8% per year. The causes of this increase in concentration are principally burning of fossil fuels and deforestation with attendant land-use changes (IPCC, 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arp, W.J. (1991). Effects of source-sink relations on photosynthetic acclimation to elevated CO2. Plant Cell Environ. 14, 869–8775.

    Article  Google Scholar 

  • Atkin, D.E., Kimball, B.A., Mauney, J.R., LaMorte, R.L., Hendry, G.R., Lewin, K., Nagy, J. and Gates, R.N. (1994). Influence of enhanced CO2 concentration and irrigation of sudangrass digestibility. Agric. For. Meteor. 70, 279–287.

    Article  Google Scholar 

  • Atkinson, C.J., Taylor, J.M., Wilkins, D. and Besford, R.T. (1997). Effects of elevated CO2 on chloroplast components, gas exchange and growth of oak and cherry. Tree Physiol. 17, 319–325.

    Article  Google Scholar 

  • Bemston, G.M. and Woodward, F.I. (1992). The root system architecture and development of Senecio vulgaris in elevated CO, anddrought. Funct. Ecol. 6, 324–333.

    Article  Google Scholar 

  • Berryman, C.A., Eamus, D. and Duff, G.A. (1993). The influence of CO2 enrichment on growth, nutrient content and biomass allocation of Maranthes corymbosa. Aust. J. Bot. 41, 195–209.

    Article  Google Scholar 

  • Berryman, C.A., Eamus, D. and Duff, G.A. (1994). Stomatal responses to a range of variables in two tropical tree species grown with CO2 enrichment../. Exp. Bot. 45, 539–546.

    Article  Google Scholar 

  • Bunce, J.A. and Ziska, L.H. (1998). Decreased hydraulic conductance on plants at elevated carbon dioxide. Plant Cell Environ. 21, 121–126.

    Article  Google Scholar 

  • Ceulemans, R., Jiang, X.N. and Shao, B.Y. (1995). Growth and physiology of one-year old Poplar under elevated CO, levels. Ann. Bot. 75, 609–617.

    Article  Google Scholar 

  • Ceulemans, R., Taylor, G., Bosac, C., Wilkins, D and Besford, R.T. (1997). Photosynthetic acclimation to elevated CO2 in poplar grown in glasshouse cabinets or in open top chambers depends on duration of exposure. J. Exp. Bot. 48, 1681–1689.

    Google Scholar 

  • Chaves, M.M. and Pereira, J.S. (1992). Water stress, CO2 and climate change. J. Exp. Bot. 43, 1131–1139.

    Article  Google Scholar 

  • Curtis, P.S. (1996). A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide. Plant Cell Environ. 19, 127–137.

    Article  Google Scholar 

  • Eamus, D. (1996). Responses of field grown trees to CO2 enrichment. Commonwealth For. Rev. 75 (1), 39–47.

    Google Scholar 

  • Eamus, D. (1996). Tree responses to CO2 enrichment: CO2 and temperature interactions, biomass allocation and stand-scale modeling. Tree Physiol. 16, 43–47.

    Article  Google Scholar 

  • Eamus, D. and Prichard, H. (1998). A cost-benefit analyses of leaves of four species of savanna trees. Tree physiol. (in press).

    Google Scholar 

  • Eamus, D., Duff, G.A. and Berryman, C.A. (1995). Photosynthetic responses to temperature, light fluxdenisty, CO2 concentration and vapour pressure deficit in Eucalyptus tetrodonta grown under CO2 enrichment. Environ. Pollut. 90, 41–50.

    Article  Google Scholar 

  • Eamus. D. and Jarvis, P.G. (1989). The direct effects of increase in the global atmospheric CO2 concentration on natural and commercial temperate trees and forests. Adv. Ecol. Res. 19, 1–55.

    Article  Google Scholar 

  • Ellsworth, D.S., Oren, R., Huang, C., Phillips, N. and Hendrey, G.R. (1995). Leaf and canopy responses to elevated CO2 in a pione forest under FACE. Oecologia 104, 1–8.

    Article  Google Scholar 

  • Evans, J.R. (1989). Photosynthesis and nitrogen relations in leaves of C, plants. Oecologia 78, 9–19.

    Article  Google Scholar 

  • Gifford, R.M. (1979). Photosynthesis and yield of CO, enriched wheat under water limited conditions. Aust. J. Plant Physiol. 6, 367–378.

    Article  Google Scholar 

  • Gifford, R.M. (1994). The Global Carbon Cycle: A Viewpoint on the Missing Sink. Viewpoint 21, 1–15.

    Google Scholar 

  • Goodfellow, J., Eamus, D. and Duff, G. (1995). Diurnal and seasonal changes in the impact of CO2enrichment on assimilation, stomatal conductance and growth in a long-term study of Mangifera indica in the wetdry tropics of Australia. Tree Physiol. 17, 291–299.

    Article  Google Scholar 

  • Griffin, K.L., Thomas, R.B. and Strain, B.R. (1993). Effects of nitrogen supply and elevated carbon dioxide on construction cost in leaves of Pinus taeda (L.) seedlings. Oecologia 95, 575–580.

    Google Scholar 

  • Grulke, N.E., Reichers, RH., Oechel, W.C., Hjelm, H. and Jaeger, C. (1990). Carbon balance in tussock tundra under ambient and elevated CO2. Oecologia 83, 485–494.

    Article  Google Scholar 

  • Guehl, J.M., Picon, C., Aussenac, G. and Gross, P. (1994). Interactive effects of elevated CO2 and soil drought on growth and transpiration efficiency and its determinants in two European forest tree species. Tree Physiol. 14, 707–724.

    Article  Google Scholar 

  • Gunderson, C.A. and Willschleger, D. (1994). Photosynthetic acclimation in trees to rising atmospheric CO,: a broader perspective. Photosyn. Res. 39, 369–388.

    Article  Google Scholar 

  • Heath, J. and Kerstiens, G. (1997). Effects of elevated CO2 on leaf gas exchange in beech and oak at two levels of nutrient supply: consequences for sensitivity to drought in beech. Plant Cell Environ. 20, 57–67.

    Article  Google Scholar 

  • Hogan, K.P., Whitehead, D., Kallarackal, J., Buwalda, J.G., Meekings, J. and Rogers, G.N.D. (1996). Photosynthetic Activity of Leaves of Pinus radiata and Nothofagus fusca after 1 Year of Growth at Elevated CO2. Aust. J. Plant Physiol. 23, 623–630.

    Article  Google Scholar 

  • Idso, S.B., Kimball, B.A., Anderson, M.G. and Mauney, J.R. (1987). Effects of atmospheric CO2 enrichment on plant growth: the interactive role of air temperature. Agric. Ecosys. Environ 20, 1–10.

    Article  Google Scholar 

  • IPCC (1996). Climate Change, 1995. Impacts, adaptations and mitigation of climatic change. In: Scientific-Technical Analyses. IPCC (1996). Climate Change (eds.), pp. 878, Cambridge University Press.

    Google Scholar 

  • Johnsen, K.H. (1992). Growth and ecophysiological responses of black spruce seedlings to elevated CO2 under varied water and nutrient additions. Can. J. For. Res. 23, 1033–1042.

    Article  Google Scholar 

  • Johnson, R.H. and Lincoln, D.E. (1990). Sagebrush and grasshopper responses to atmospheric CO2. Oecologia 84, 103–110.

    Article  Google Scholar 

  • Kacser, H. and Burns, J.A. (1973). The control of flux. SEB Symp. 27, 65–107.

    Google Scholar 

  • Kellomaki, S. and Wang, K.-Y. (1997). Photosynthetic responses of Scots pine to elevated CO2 and nitrogen supply: results of a branch-in-bag experiment. Tree Physiol. 17, 231–240.

    Article  Google Scholar 

  • Kerstiends, G., Townend, J., Heath J. and Mansfield, T.A. (1995). Effects of water and nutrient availability on physiological responses of woody species to elevated CO2. Forestry 68, 303–315.

    Article  Google Scholar 

  • Kimball, B.A., Mauney, J.R., Nakayama, F.S. and Idso, S.B. (1993). CO2 and biosphere. In: Advances in Vegetable Science 14. J.H. Rozema, S C Lambers, M.L. Van de Geijn and M.L. Cambridge (eds.), pp. 65–75. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Kirschbaum, M.U.F. (1994). The sensitivity of C, photosynthesis to increasing CO2 concentration: a theoretical analysis of its dependence on temperature and background CO2 concentration. Plant Cell Environ. 17, 747–754.

    Article  Google Scholar 

  • Korner, C.H., Pelaez-Riedl, S and van Bel, A.J.E. (1995). CO2 responsiveness of plants: a possible link to phloem loading. Plant Cell Environ. 18, 595–600.

    Article  Google Scholar 

  • Liu, S. and Teskey, R.O. (1995) Responses of foliar gas exchange to long-term elevated CO2 concentrations in mature loblolly pine trees. Tree Physiol. 15, 351–359.

    Article  Google Scholar 

  • Long, S.P. (1991) Modification of the response of photosynthetic productivity to rising temperature. Plant Cell Environ. 14, 729–739.

    Article  Google Scholar 

  • McMurtrie R.E. and Wang, Y.-P. (1993) Mathematical models of the photosynthetic response of tree stands to rising CO2 concentrations and temperatures. Plant Cell Environ. 16, 1–13.

    Article  Google Scholar 

  • Medlyn, B.E. (1996) The optimal allocation of nitrogen within the C, photosynthetic system at elevated CO2. Aust. J. Plant Physiol. 23, 593–603.

    Article  Google Scholar 

  • Meinzer, F.C., Sharifi, M.R., Nilsen, E.T. and Rundel, R.W. (1988). Effects of manipulation of water and nitrogen regime on the water relations of the desert shrub Larrea tridentata. Oecologia 77, 480–303.

    Article  Google Scholar 

  • Morse, S.R., Wayne, P., Miao, S.L. and Bazzaz, F.A. (1993). Elevated CO, and drought alter tissue water relations of birch (Betula populifolia Marsh.) seedlings. Oecologia 95, 599–602.

    Google Scholar 

  • Murthy, R., Dougherty, P.M., Zarnoch, S.J. and Allen, H.L. (1996). Effects of carbon dioxide, fertilization and irrigation on photosynthetic capacity of loblolly pine trees. Tree Physiol. 16, 537–546.

    Article  Google Scholar 

  • Overdieck, D. and Forstreuter, M. (1994). Evapotranspiration of beech stands and transpiration of beech leaves subject to atmospheric CO, enrichment. Tree Physiol. 14, 991–1003.

    Article  Google Scholar 

  • Polley, H.W., Johnson, H.B. and Mayeux, H.S. (1997). Leaf physiology, production, water use and nitrogen dynamics of the grassland invader Acacia smallii at elevated CO,. Tree Physiol. 17, 89–96.

    Article  Google Scholar 

  • Poorter, H., Roumet, C. and Campbell, B.D. (1996). Interspecific variation in the growth response of plants to CO,: a search for functional types. In: Biological Diversity in a CO, Rich World. C. Korner and F.A. Bazzaz (eds.), pp. 375–412, Physiological Ecology Series, Academic Press, SanDiego.

    Google Scholar 

  • Poorter, H., vanBerkel, Y., Baxter, R., denHertog, J., Dijkstra, P., Gifford, R.M. Griffin, K.L, Roumet, C., Roy, J. and Wong, S.C. (1997). The effect of elevated CO, on the chemical composition and construction costs of leaves of 27 C3 species. Plant Cell Environ. 20, 472–482

    Google Scholar 

  • Potvin, C. (1994). Interactive effects of temperature and atmospheric CO, on physiology and growth. In: R.B. Alscher and A.R. Welburn (eds.), pp. 39–54, Chapman and Hall, Cambridge.

    Google Scholar 

  • Potvin, C. and Strain, B.R. (1985). Photosynthetic response to growth temperature and CO, enrichment in 2 species of C, grasses. Can. J. Bot. 63, 483–487.

    Article  Google Scholar 

  • Pritchard, S.G., Peterson, C.M., Prior, S.A. and Rogers, H.H. (1997) Elevated atmospheric CO, differentially affects needle chloroplast ultrastructure and phloem anatomy in Pinus palustris: interactions with soil resource availability. Plant Cell Environ. 20, 461–471.

    Google Scholar 

  • Rieger, M. and Marra, F. (1994). Responses of young peach trees to root confinement. J. Am. Soc. Hort. Res. 119, 223–228.

    Google Scholar 

  • Rouhier, H., Billes, G., El Kohen, A., Mousseau, M. and Bottner, P. (1994). Effects of elevated CO, on carbon and nitrogen distribution within a tree–soil system. Plant Soil 162, 281–292.

    Article  Google Scholar 

  • Rozema, J.H., Lambers, S.C., van de Geijn, M.L. Cambridge (eds.) (1993). CO, and biosphere. In: Advances in Vegetable Science 14. J.H. Rozema, S.C. Lambers, M.L. Van de Geijn and M.L. Cambridge (eds.), pp. 1–484, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Sage, R.F. (1994) Acclimation of photosynthesis to increasing atmospheric CO3: The gas exchange perspective. Photosyn. Res. 39, 351–368.

    Article  Google Scholar 

  • Sage, R.F. and Santrucek, J. (1996) Acclimation of stomatal conductance to a CO,-enriched atmosphere and elevated temperature in Chenopodium album. Aust. J. Plant Physiol. 23, 467–78.

    Article  Google Scholar 

  • Sionit, H., Hellmers, H. and Strain, B.R. (1981). Growth and yield of wheat under CO enrichment and water stress. Crop Sci. 20, 687–690.

    Article  Google Scholar 

  • Stitt, M. and Schulze, E.-D. (1994). Does Rubisco control the rate of photosynthesis and plant growth? An exercise in molecular ecophysiology. Plant Cell Environ. 17, 465–487.

    Article  Google Scholar 

  • Teskey, R.O. (1997). Combined effects of elevated CO3 and air temperature on carbon assimilation of Pinus taeda trees. Plant Cell Environ. 20, 373–380.

    Article  Google Scholar 

  • Teskey, R.O. (1995). A field study of the effect of elevated CO, on carbon assimilation, stomatal conductance and leaf and branch growth of Pinus taeda trees. Plant Cell Environ. 18, 1–9.

    Article  Google Scholar 

  • Tissue, R.B., Thomas, R.B. and Strain, B.R. (1993). Long-term effects of elevated CO, and nutrients on photosynthesis and rubisco in loblolly pine seedlings. Plant Cell Environ. 16, 629–634.

    Article  Google Scholar 

  • Tissue, R.B., Thomas, R.B. and Strain, B.R. (1997). Atmospheric CO2 enrichment increases growth and photosynthesis of Pinus taeda: a 4 year experiment in the field. Plant Cell Environ. 20, 1123–1134.

    Article  Google Scholar 

  • Tolley, L.C. and Strain, B.R. (1984). Effects of CO, enrichment and water stress on growth of Liquidambar styraciflua and Pinus taeda seedlings. Can. J. Bot. 62, 2135–2139.

    Article  Google Scholar 

  • Tschaplinski, T.J., Norby, R.J. and Wullschleger, S.D. (1993). Responses of loblolly pine seedlings to elevated CO, and fluctuating water supply. Tree Physiol. 13, 283–296.

    Article  Google Scholar 

  • Tyree, M.T. and Alexander, J.D. (1993). Plant water relations and the effects of elevated CO,: a review and suggestions for future research. Vegetatio 104–105, 47–62.

    Article  Google Scholar 

  • Van Bel, A.J.E. and Gamalei (1992). Ecophysiology of phloem loading in source leaves. Plant Cell Environ. 15, 265–270.

    Article  Google Scholar 

  • Van Bel, A.J.E., Ammerlaan, A. and Dijk, A.A. (1994). A three-step screening procedure to identity the mode of phloem loading in intact leaves. Evidence for symplastic and apoplastic phloem loading associated with the type of companion cell. Planta 192, 31–39.

    Google Scholar 

  • Van Oosten, J.J, Wilkins, D. and Besford, R.T. (1994). Regulation of the expression of photosynthetic nuclear genes by CO2 is mimicked by regulation by carbohydrates: a mechanism for the acclimation of photosynthesis to high CO2. Plant Cell Environ. 17, 913–924.

    Article  Google Scholar 

  • Van Oosten, J.J., Dizengremel, P., Laitat, E. and Impens, R. (1993). Too much of a good thing? Long term exposure to elevated CO2 decreases carboxylating and photorespiratory enzymes and increases respiratory enzyme activity in spruce. In: Interacting Stresses on Plants in a Changing Climate. M.B. Jackson and C.R. Balck (eds.), pp. 185–194, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Van Oosten, J.J, Afif, D. and Dizengremel, P. (1992). Long-term effects of a CO2 enriched atmosphere on enzymes of the primary carbon metabolism of spruce tree. Plant Physiol. Biochem. 30, 541–547.

    Google Scholar 

  • Wang K.-Y. (1995). Canopy CO2 exchange of Scots pine and its seasonal variation after four-year exposure to elevated CO2 and temperature. Agric. For. Meteor. 82, 1–27.

    Article  Google Scholar 

  • Wang, K.-Y., Kellomaki, S. and Laitinen, K. (1996). Acclimation of photosynthetic parameters in Scots pine after three years exposure to elevated temperature and CO2. Agric. For. Meteor. 82, 195–217.

    Google Scholar 

  • Wilkins, D., Van Oosten, J.-J. and Besford R.T. (1994). Effects of elevated CO2 on growth and chloroplast proteins in Prunus avium. Tree Physiol. 14, 769–779.

    Article  Google Scholar 

  • Will, R.E. and Ceulemans, R. (1997). Effects of elevated CO, concentration on photosynthesis respiration and carbohydrate status of coppice Populus hybrids. Physiol. Planta. 100, 933–939.

    Article  Google Scholar 

  • Will, R.E. and Teskey R.O. (1997). Effect of elevated carbon dioxide concentration and root restrictions on net photosynthesis, water relations and foliar carbohydrate status of loblolly pine seedlings. Tree Physiol. 17, 655–661.

    Article  Google Scholar 

  • Wong, S.C., Kriedemann, P.E. and Farquhar, G.D. (1992). CO2 x nitrogen interaction on seedling growth of four species of eucalypt. Aust. J. Bot. 40, 457–472.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Eamus, D. (2000). Some Tree Responses to CO2 Enrichment. In: Singh, S.N. (eds) Trace Gas Emissions and Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3571-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3571-1_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5554-5

  • Online ISBN: 978-94-017-3571-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics