Skip to main content

Thin Cell Layers and Floral Morphogenesis, Floral Genetics and in Vitro Flowering

  • Chapter

Abstract

The transition from vegetative to floral state or reproductive development is a critical phase in the life cycle of higher plants, and the products of flowering are an integral part of the human diet, cultural integrity and global economies. Cut flowers and flowering pot plants are increasingly associated with an increase in the quality of life, having evolved from a luxury to a daily commodity. Lower and more competitive prices and a greater consumer demand (for quantity and quality) is creating new challenges in the floricultural and ornamental plant sectors to produce new cut flowers and ornamental plants that suit individual consumer needs. In order to meet this demand, tissue culture and molecular biology techniques are proving useful in the production of ornamentals with novel characteristics (flower colour, resistance to various pests and diseases, longer cut-flower/postharvest shelf life).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aeschbacher, R.A., Schiefelbein, J.W. and Benfey, P.N. (1994) The genetic and molecular basis of root development, Annu. Rev. Plant Physiol. Plant Mol. Biol 45, 25–45.

    Article  CAS  Google Scholar 

  • Ahmad, M. and Cashmore, A. R. (1993) HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor, Nature 366, 162–166.

    Article  PubMed  CAS  Google Scholar 

  • Ahmad, M. and Cashmore, A. R. (1996) The PEF mutants of Arabidopsi s thaliana define lesions early in the phytochrome signaling pathway, Plant J 10, 1103–1110.

    Article  PubMed  CAS  Google Scholar 

  • Ahn, I.O., Bui Van Le, Gendy, C. and and Tran Thanh Van, K. (1996) Direct somatic embryogenesis through thin cell layer culture in Panax ginseng, Plant Cell Tiss. Org. Cult 45, 237–243.

    Article  CAS  Google Scholar 

  • Aida, M., Ishida, T., Fukaki, H., Fujisawa, H. and Tasaka, M. (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant, Plant Cell 9, 841–857.

    Article  PubMed  CAS  Google Scholar 

  • Aida, R., Kishimoto, S., Tanaka, Y. and Shibata, M. (2000) Modification of flower colour in torenia (Torenia fournieri Lindl.) by genetic transformation, Plant Sci 153, 33–42.

    Article  CAS  Google Scholar 

  • Alayon-Luaces, P. and Bovo, O.A. (1997) Effect of growth regulators on the in vitro anthesis of Paspalurn notatum (Gramineae), Phyton (Buenos Aires) 60, 147–153.

    Google Scholar 

  • Ali, Y., Li, S. and Li, S. (1994) In vitro flowering, fruiting and differentiation of callus in different genotypes of tomato in the presence of NaCI, Sarhad J. Agric 10, 59–62.

    Google Scholar 

  • Al-Khayri, J.M., Huang, F.H. and Morelock, T.E. (1992) In vitro seed production from sex-modified male spinach plants regenerated from callus culture, Sci. Hort 52, 277–282.

    Article  Google Scholar 

  • Almeida, J., Rocheta, M. and Galego, L. (1997) Genetic control of flower shape in Antirrhinum majus, Development 124, 1387–1392.

    PubMed  CAS  Google Scholar 

  • Alonso-Blanco, C., El-Assal, S.E., Coupland, G. and Koornneef, M. (1998) Analysis of natural allelic variation at flowering time loci in the Landsberg erecta and Cape Verde Islands ecotypes of Arabidopsis thaliana, Genetics 149, 749–764.

    PubMed  CAS  Google Scholar 

  • Altamura, M.M., Capitani, F., Gazza, L., Capone, I. And Costatino, P. (1994) The plant oncogene rolB stimulates the formation of flower and root meristemoids in tobacco thin cell layers, New Phytol 126, 283–293.

    Article  CAS  Google Scholar 

  • Alvarez, J. and Smyth, D. R. (1999) CRABS CLAW and SPATULA, two Arabidopsis genes that control carpel development in parallel with AGAMOUS, Development 126, 2377–2386.

    PubMed  CAS  Google Scholar 

  • Ambrose, B.A., Lerner, D.R., Ciceri, P., Padilla, C.M., Yanofsky, M.P. and Schmidt, R.J. (2000) Molecular and genetic analyses of the SILKY gene reveal conservation in floral organ specification between eudicots and monocots, Mol. Cell 5, 569–579.

    Article  PubMed  CAS  Google Scholar 

  • Angenant, G.C., Franken, J., Busscher, M., Weiss, D. and van Tunen, A.J. (1994) Co-suppression of the petunia homeotic gene fbp2 affects the identity of the generative meristem, Plant J 5: 33–44.

    Article  Google Scholar 

  • Angenant, G.C. and Colombo, L. (1996) Molecular control of ovule development, Trends Plant Sci 1: 228–232.

    Google Scholar 

  • Araki, T. and Komeda, Y. (1993) Analysis of the role of the late-flowering locus, GI, in the flowering of Arabidopsis thaliana, Plant J 3, 231–239.

    Article  Google Scholar 

  • Asao, T., Ohtani, N., Endo, K., Ohta, K. and Hosoki, T. (1997) In vitro flowering and fruiting of strawberry through shoot apex culture, J. Jap. Soc. Hort. Sci 66, 419–421.

    Article  Google Scholar 

  • Bagnall, D.J., King, R.W. and Hangarter, R.P. (1996) Blue-light promotion of flowering is absent in hy4 mutants of Arabidopsis, Planta 200, 278–280.

    Article  PubMed  CAS  Google Scholar 

  • Bancroft, I., Jones, J.D.G. and Dean, C. (1993) Heterologous transposon tagging of the DRLI locus in Arabidopsis, Plant Cell 5, 631–638.

    PubMed  CAS  Google Scholar 

  • Bassett, M.J. (1992) An induced mutant for blue flowers in common bean that is not allelic to Vor Sal and is linked to Fin, J. Amer. Soc. Hort. Sci 117, 317–320.

    Google Scholar 

  • Bassett, M.J. (1993a) A new gene for flower colour pattern, White Banner (wb), in progeny of an interspecific hybrid between common and scarlet runner beans, J. Amer. Soc. Hort. Sci 118, 878–880.

    Google Scholar 

  • Bassett, M.J. (1993b) Interaction of two genes, Fcr and Fcr2, with the t allele in common bean that restores colour to flowers, J. Amer. Soc. Hort. Sci 118, 881–884.

    Google Scholar 

  • Bartley, G.E. and Scolnik, P. A. (1995) Plant carotenoids: pigments for photoprotection, visual attraction, and human health, Plant Cell 7, 1027–1038.

    PubMed  CAS  Google Scholar 

  • Barton, M.K. and Poethig, R.S. (1993) Formation of the shoot apical meritem in Arabidopsis thaliana: an analysis of development in the wild-type and in the SHOOT MERISTEMLESS mutant, Development 119, 823–831.

    Google Scholar 

  • Battey, N.H. and Lyndon, R.F. (1990) Reversion of flowering, Bot. Rev 56, 162–189.

    Article  Google Scholar 

  • Baum, S.F., Eshed, Y. and Bowman, J.L. (2001) The Arabidopsis nectary is an ABC-independent floral structure, Development 128, 4657–4667.

    PubMed  CAS  Google Scholar 

  • Benfey, P.N. (1999) Is the shoot a root with a view?, Curr. Opin. Plant Biol 2, 39–43.

    Article  PubMed  CAS  Google Scholar 

  • Bernier, G. (1988) The control of floral evocation and morphogenesis, Ann. Rev. Plant Physiol 45, 175–219.

    Google Scholar 

  • Bernier, G., Havelange, A., Houssa, C., Petitjean, A. and Lejeune, P. (1993) Physiological signals that induce flowering, Plant Cell 5, 1147–1155.

    PubMed  CAS  Google Scholar 

  • Binns, A.N. (1994) Cytokinin accumulation and action: biochemical, genetic and molecular approaches, Annu. Rev. Plant Physiol. Plant Mol. Biol 45, 173–196.

    Article  CAS  Google Scholar 

  • Bleecker, A.B., Estelle, M.A., Somerville, C. and Kende, H. (1988) Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana, Science 241, 1086–1089.

    Article  PubMed  CAS  Google Scholar 

  • Bolle, C., Koncz, C. and Chua, N-H. (2000) PAT I, a new member of the GRAS family, is involved in phytochrome A signal transduction, Genes Dev 14, 1269–1278.

    PubMed  CAS  Google Scholar 

  • Bollmann, J., Carpenter, R. and Coen, E.S. (1991) Allelic interactions at the nivea locus of Antirrhinum, Plant Cell 3, 1327–1336.

    PubMed  CAS  Google Scholar 

  • Borner, R., Kampmann, G, Chandler, J., Gleissner, R., Wisman, E., Apel, K. and Melzer, S. (2000) A MADS domain gene involved in the transition to flowering in Arabidopsis, Plant J 24, 591–599.

    Article  PubMed  CAS  Google Scholar 

  • Bowman, J.L., Sakai, H., Jack, T., Weigel, D. and Meyerowitz, E.M. (1992) SUPERMAN, a regulator of floral homeotic genes in Arabidopsis, Development 114, 599–615.

    PubMed  CAS  Google Scholar 

  • Bowman, J.L., Alvaraz, J., Weigel, D., Meyerowitz, E.M. and Smyth, D.R. (1993) Control of flower development in Arabidopsis thaliana by APETAL.AJ and interacting genes, Development 119, 721–743.

    CAS  Google Scholar 

  • Bowman, J. L. and Smyth, D. R. (1999) CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains, Development 126, 2387–2396.

    PubMed  CAS  Google Scholar 

  • Boyle, T.H. and Marcotrigiano, M. (1997) Influence of benzyladenine and gibberellic acid on organogenesis in `Crimson Giant’ Easter cactus, Plant Growth Reg 22, 131–136.

    Article  CAS  Google Scholar 

  • Bradley, D., Carpenter, R., Sommer, H., Hartley, N. and Coen, E. (1993) Complementary floral homeotic phenotypes result from opposite orientations of a transpososn at the plena locus of Antirrhinum, Cell 72, 85–95.

    Article  PubMed  CAS  Google Scholar 

  • Bradley, D., Carpenter, R., Copsey, L., Vincent, C., Rothstein, S. and Coen, E. (1996) Control of inflorescence architecture in Antirrhinum, Nature 379, 791–797.

    Article  PubMed  CAS  Google Scholar 

  • Bradley, D. J., Ratcliffe, O. J., Vincent, C., Carpenter, R. and Coen, E. S. (1997) Inflorescence commitment and architecture in Arabidopsis, Science 275, 80–83.

    Article  PubMed  CAS  Google Scholar 

  • Bradley, J.M., Davies, K.M., Deroles, S.C., Bloor, S.J. and Lewis, D.H. (1998) The maize LC regulatory gene up-regulates the flavonoid biosynthesis pathway of petunia, Plant J 13, 381–392.

    Article  CAS  Google Scholar 

  • Brand, U., Fletcher, J.C., Hobe, M., Meyerowitz, E.M. and Simon, R. (2000) Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity, Science 289, 617–619.

    Article  PubMed  CAS  Google Scholar 

  • Brandstatter, I. and Kieber, J.J. (1998) Two genes with similarity to bacterial response regulators are rapidly and specifically induced by cytokinin in Arabidopsis, Plant Cell 10, 1009–1019.

    PubMed  CAS  Google Scholar 

  • Bridgen, M.P. and Veilleux, R.E. (1988) A comparison of in vitro flowers to in vivo flowers of haploid and diploidNicotiana tabacum L., Plant Cell Tiss. Org. Cult 13, 3–13.

    Article  Google Scholar 

  • Bui Van Le, Jeanneau, M., Nghieng Thao, D.M., Vidal, J. and Tran Thanh Van, K. (1998b) Rapid regeneration of whole plants in large crabgrass (Digitaria sanguinalis L.) using thin cell layer culture, Plant Cell Rep 18, 166–172.

    Article  CAS  Google Scholar 

  • Bui Van Le, Nghieng Thao, D.M., Gendy, C., Vidal, J. and Tran Thanh Van, K. (1998c) Transformation of a C4 monocot, the Digitaria sanguinalis (Large crabgrass) using somatic embryogenesis induced on thin cell layers. Abst p191, 9th Int Congr Plant Tiss Cell Cult, Jerusalem, Israel, 14–19 June.

    Google Scholar 

  • Bui Van Le, Nhut, D.T. and Tran Thanh Van, K. (1999) Plant production via shoot regeneration from thin cell layer pseudo-bulblet explants of Lilium longiflorum in vitro, C. R. Acad. Sci, Parrs 322, 303–310.

    Google Scholar 

  • Burchi, G., Mercuri, A., Benedetti, L. and Giovanini, A. (1996) Transformation methods applicable to ornamental plants, Plant Tiss. Cult. Biotech 2, 94–104.

    Google Scholar 

  • Burn, J.E., Bagnall, D.J., Metzger, J.D., Dennis, E.S. and Peacock, W.J. (1993) DNA methylation, vernalization and the initiation of flowering, Proc. Natl. Acad. Sci. USA 90, 287–291.

    Article  PubMed  CAS  Google Scholar 

  • Byzova, M.V., Franken, J., Aarts, M.G.M., Almeida-Engler, J., Engler, G., Mariani, C., Campagne, M.M.V.L. and Angenant, G.C. (1999) Arabidopsis STERILE APETALA, a multifunctional gene regulating inflorescence, flower, and ovule development, Genes Dev 13, 1002–1014.

    Article  PubMed  CAS  Google Scholar 

  • Carson, J.A. and Leung, D.W.M. (1994) In vitro flowering and propagation of Wahlenbergia stricto L., New Zealand Nat. Sci 21, 55–60.

    Google Scholar 

  • Caspar, T., Huber, S.C. and Somerville, C.R. (1985) Alterations in growth, photosynthesis, and respiration in a starchless mutant of Arabidopsis thaliana (L.) deficient in chloroplast phosphoclucamutase activity,PlantPhysiol 79, 11–17.

    CAS  Google Scholar 

  • Caspar, T., Lin, T. P., Kakefuda, G, Benbow, L., Preiss, J. and Somerville, C. R. (1991) Mutants of Arabidopsis with altered regulation of starch degradation, Plant Physiol 95, 1181–1188.

    Article  PubMed  CAS  Google Scholar 

  • Castle, L.A. and Meinke, D.W. (1994) AFUSCA gene of Arabidopsis encodes a novel protein essential for plant development, Plant Cell 6, 25–41.

    PubMed  CAS  Google Scholar 

  • Chambers, S.M., Heuch, J.H.R. and Pinie, A. (1991) Micropropagation and in vitro flowering of the bamboo Dendrocalamus hamiltoni Munro, Plant Cell Tiss. Org. Cult 27, 45–48.

    Article  CAS  Google Scholar 

  • Chandler, J., Wilson, A. and Dean, C. (1996) Arabidopsis mutants showing an altered response to vernalization, Plant 10, 637–644.

    Article  CAS  Google Scholar 

  • Chang, W-C. and Hsing, Y-I. (1980) In vitro flowering of embryoids derived from mature root callus of ginseng (Panax ginseng), Nature 284, 341–342.

    Article  Google Scholar 

  • Chao, Q., Rothenberg, M., Solano, R., Terzaghi, W. and Ecker, J.R. (1997) Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins, Cell 89, 1133–1144.

    Article  PubMed  CAS  Google Scholar 

  • Charest, P.J., Holbrook, L.A., Gabard, J., Iyer, V.N. and Miki, B.I. (1988) Agrobacterium-mediated transformation of thin cell layer explants from Brassica napus L, Theor. Appl. Genet 75, 438–445.

    Article  Google Scholar 

  • Chaudhury, A.M., Letham, S., Craig, S. and Dennis, E.S. (1993) ampl-A mutant with high cytokinin levels and altered embryonic pattern, faster vegetative growth, constitutive photomorphogenesis and precocious flowering, Plant J 4, 907–916.

    Google Scholar 

  • Chen, Q., Atkinson, A., Otsuga, D., Christensen, T., Reynolds, L. and Drews, G.N. (1999) The Arabidopsis FILAMENTOUS FLOWER gene is required for flower formation, Development 126, 2715–2726.

    PubMed  CAS  Google Scholar 

  • Chen, X. and Meyerowitz, E. M. (1999) HUA1 and HUA2 are two members of the floral homeotic AGAMOUS pathway, Mol. Cell 3, 349–360.

    Article  PubMed  CAS  Google Scholar 

  • Chlyah, A. (1974) Inter-tissue correlations in organ fragments. Organogenic capacity of tissues excised from stem segments of Torenia fournieri Lind. Cultured separately in vitro, Plant Physiol 54, 341–348.

    Article  PubMed  CAS  Google Scholar 

  • Chlyah, A. and Tran Thanh Van, M. (1975) Differential reactivity in epidermal cells of Begonia rex excised and growth in vitro, Physiol. Plant 35, 16–20.

    Article  Google Scholar 

  • Chou, M-L. and Yang, C-H. (1998) FLD interacts with genes that affect different developmental phase transitions to regulate Arabidopsis shoot development, Plant.1 15, 231–242.

    Google Scholar 

  • Chou, M-L. and Yang, C-H. (1999) Late-flowering genes interact with early-flowering genes to regulate flowering time inArabidopsis thaliana, Plant Cell Physiol 40, 702–708.

    Article  PubMed  CAS  Google Scholar 

  • Chouard, P. and Aghion, D. (1961) Modalité de la formation des bourgeons floraux sur des culture de segments de tigre de tabac, C.R. Acad. Sci. Paris, 252, 3864–3866.

    Google Scholar 

  • Chuck, G., Robbins, T., Nijjar, C., Ralston, E., Courtney-Gutterson, N. and Dooner, H.K. (1993) Tagging and cloning of a petunia flower colour gene with the maize transposable element Activator, Plant Cell 5, 371–378.

    PubMed  CAS  Google Scholar 

  • Chuck, G., Meeley, R.B. and Hake, S. (1998) The control of maize spikelet meristem fate by the APEIALA2-like gene indeterminate spikeletl, Genes Dec 12, 1145–1154.

    Article  CAS  Google Scholar 

  • Chung, Y-Y., Kim, S-R., Finkel, D., Yanofsky, M.F. and An, G (1994) Early flowering and reduced apical dominance result from ectopie expression of a rice MADS box gene, Plant Mol. Biol 26, 657–665.

    Article  PubMed  CAS  Google Scholar 

  • Clark, S.E. (2001) Meristems: start your signalling, Cure Opin. Plant Biol. 4, 28–32.

    Article  CAS  Google Scholar 

  • Clark, S.E., Running, M.P. and Meyerowitz, E.M. (1993) CLAVATA], a regulator of meristem and flower development in Arabidopsis, Development 119, 197–418.

    Google Scholar 

  • Clark, J.H. and Dean, C. (1994) Mapping FRI, a locus controlling flowering time and vernalization response in Arabidopsis thaliana, Mot. Gen. Genet 242, 81–89.

    Google Scholar 

  • Clark, S.E., Running, M.P. and Meyerowitz, E.M. (1995) CLAVATA3 is a regulator of shoot and floral meristem development affecting the same processes as CLAVATAJ, Development 121, 2057–2067.

    CAS  Google Scholar 

  • Coen, E.S. and Carpenter, R. (1986) Transposable elements in Antirrhinum majus: generators of genetic diversity, Trends Genet 2, 292–296.

    Article  CAS  Google Scholar 

  • Coen, E.S., Roemro, J.M., Doyle, S., Elliott, R., Murphy, G. and Carpenter, R. (1990) floricaula: a homeotic gene required for flower development in Antirrhinum majus, Cell 63, 1311–1322.

    Google Scholar 

  • Coen, E.S. and Meyerowitz, E.M. (1991) The war of the whorls: genetic interactions controlling flower development, Nature, 353, 31–37.

    Article  PubMed  CAS  Google Scholar 

  • Coen, E.S. (1996) Floral symmetry, EMBO J 16, 6777–6788.

    Google Scholar 

  • Colombo, L., Franken, J., Koetje, E., van Went, J., Dons, H.J.M., Angenant, G.C. and van Tunen, A.J. (1995) The petunia MADS box gene FBPII determines ovule identity, Plant Cell 7, 1859–1868.

    PubMed  CAS  Google Scholar 

  • Compton, M.E. and Veilleux, R.E. (1992) Thin cell layer morphogenesis, Hort. Rev 14, 239–264.

    Google Scholar 

  • Corbesier, L., Lejeune, P. and Bernier, G (1998) The role of carbohydrates in the induction of flowering in Arabidopsis thaliana: comparison between the wild-type and a starchless mutant, Planta 206, 131–137.

    Article  PubMed  CAS  Google Scholar 

  • Courtney-Gutterson, N., Napoli, C., Lemieux, C., Morgan, A., Firoozabady, E. and Robinson, K.E.P. (1994) Modification of flower color in florist’s chrysanthemum: Production of a white-flowering variety through molecular genetics, Biotechnology 12, 268–271.

    Article  PubMed  CAS  Google Scholar 

  • Cousson, A. and Tran Thanh Van, K. (1983) Light-and sugar-mediated control of direct de novo flower differentiation from tobacco thin cell layers, Plant Physiol 72, 33–36.

    Article  PubMed  CAS  Google Scholar 

  • Cousson, A. and Tran Thanh Van, K. (1992) Influence of ionic composition of the culture medium on de novo flower formation in tobacco thin cell layers, Can. J. Bot 71, 506–511.

    Article  Google Scholar 

  • Cousson, A., Toubart, P. and Tran Thanh Van, K. (1989) Control of morphogenetic pathway in thin cell layers of tobacco by pH, Can. J. Bot 67, 650–654.

    Article  Google Scholar 

  • Covington, M.F., Panda, S., Liu, X.L., Strayer, C.A., Wagner, D.R. and Kay, S.A. (2001) ELF3 modulates resetting of the circadian clock in Arabidopsis, Plant Cell 13, 1305–1315.

    PubMed  CAS  Google Scholar 

  • Creemers-Molenaar, J., Harkkert, J.C., Van Staveren, M.J. and Gilissen, L.J.W. (1994) Histology of the morphogenic response in thin cell layer explants from vegetative tobacco plants, Ann. Bot 73, 547–555.

    Article  Google Scholar 

  • Cutler, S., Ghassemian, M., Bonetta, D., Conney, S. and McCourt, P. (1996) A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis, Science 273, 1239–1241.

    Article  PubMed  CAS  Google Scholar 

  • Das, P., Samantaray, S. and Rout, G.R. (1996) Organogenesis and in vitro flowering of Echinochloa colona. Effect of growth regulators and explant types, Biol. Plant 38, 335–342.

    Article  CAS  Google Scholar 

  • Davies, K.M., Bloor, S.J., Spiller, G.B. and Deroles, S.C. (1998) Production of yellow colour in flowers: redirection of flavonoid biosynthesis in Petunia, Plant J 13, 259–266.

    Article  CAS  Google Scholar 

  • Demeulemeester, M.A.C., Rademacher, W., Van de Mierop, A. and De Proft, M.P. (1995) Influence of gibberellin biosynthesis inhibitors on stem elongation and floral initiation on in vitro chicory root explants under dark and light conditions, Plant Growth Reg 17, 47–52.

    Article  CAS  Google Scholar 

  • Deng, X.W., Caspar, T. and Quail, P.H. (1991) COP]: a regulatory locus involved in light-controlled development and gene expression inArabidopsis, Genes Dev 5, 1172–1182.

    Article  PubMed  CAS  Google Scholar 

  • Deroles, S.C., Bradley, J.M., Schwinn, K.E., Markham, K.R., Bloor, S., Manson, D.G. and Davies, K.M. (1998)Mol. Breed 4, 59–66.

    Google Scholar 

  • de Vetten, N., Horst, J.T., van Schalk, H-P., de Boer, A., Mol, J. and Kroes, R. (1999) Acytochrome b5 is required for full activity of flavonoid 3’,5’-hydroxylase, a cytochrome P450 involved in the formation of blue flower colors, Proc. Natl. Acad. Sci. USA 96, 778–783.

    Article  PubMed  Google Scholar 

  • Dickens, C.W.S. and van Staden, J. (1990) The in vitro flowering of Kalanchöe blossfeldiana Poellniz. II. The effects of growth regulators and gallic acid, Plant Cell Physiol 31, 757–762.

    CAS  Google Scholar 

  • Dielen, V, Lecouvet, V, Dupont, S. and Kinet, J-M. (2001) In vitro control of floral transition in tomato (Lycopersicon esculentum Mill.), the model for autonomously flowering plants, using the late flowering uniflora mutant, J. Exp. Bot 52, 715–723.

    PubMed  CAS  Google Scholar 

  • Dijkwel, P.P., Huijser, C., Weisbeek, P.J., Chua, N.H. and Smeekens, S.C.M. (1997) Sucrose control of phytochrome signaling in Arabidopsis, Plant Cell 9, 583–595.

    PubMed  CAS  Google Scholar 

  • Doebley, J., Stec, A. and Hibbard, L. (1997) The evolution of apical dominance in maize, Nature 386, 485–488.

    Article  PubMed  CAS  Google Scholar 

  • Donnison, I.S. and Francis, D. (1993) Determination of floral organ type in cultured Silene shoot apices, Physiol. Plant 89, 315–322.

    Article  Google Scholar 

  • Doodeman, M., Boersma, E.A., Koomen, W. and Bianchi, F. (1984) Genetic analysis of instability in Petunia hybrida. 1. A highly unstable mutation induced by a transposable element inserted at the AN] locus for flower colour, Theor. Appl. Genet 67, 345–355.

    Article  Google Scholar 

  • Dooner, H.K., Robbins, T. and Jorgensen, R.A. (1991) Genetic and developmental control of anthocyanin biosynthesis, Annu. Rev. Genet 25, 173–199.

    Article  PubMed  CAS  Google Scholar 

  • Domelas, M.C., van Lammeren, A.A.M. and Kreis, M. (2000) Arabidopsis thaliana SHAGGY-related protein kinases (AtSKl1 and 12) function in perianth and gynoecium development, Plant J 21, 419–429.

    Article  Google Scholar 

  • Duan, J-X. and Yazawa, S. (1994) In vitro floral development in xDoriella Tiny (Do is pulcherrima x Kingiella philippinensis), Sci. Hort 59, 253–264.

    Article  Google Scholar 

  • Duan, J-X. and Yazawa, S. (1995) Floral induction and development in Phalaenopsis in vitro, Plant Cell Tiss. Org. Cult 43, 71–74.

    Article  Google Scholar 

  • Dunlap, J.C. (1999) Molecular bases for circadian clocks, Cell 96, 271–290.

    Article  PubMed  CAS  Google Scholar 

  • Eberhard, S., Doubrava, N., Marfa, V., Mohnen, D., Southwick, A., Darvill, A. and Albersheim, P. (1989) Pectic cell wall fragments regulate tobacco thin cell layer explant morphogenesis, Plant Cell 1, 747–755.

    PubMed  CAS  Google Scholar 

  • Ecker, J.R. (1995) The ethylene signal transduction pathway in plants, Science 268, 667–675.

    Article  PubMed  CAS  Google Scholar 

  • Egea-Cortines, M., Saedler, H. and Sommer, H. (1999) Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhiunum majus, EMBO J 18, 5370–5379.

    Article  PubMed  CAS  Google Scholar 

  • Egea-Cortines, M. and Davies, B. (2000) Beyond the ABCs: ternary complex formation in the control of floral organ identity, Trends Plant Sci 5, 471–476.

    Article  Google Scholar 

  • Eimert, K., Wang, S-M., Lue, W-L. and Chen, J.C. (1995) Monogenic recessive mutations causing both late floral initiation and excess starch accumulation in Arabidopsis, Plant Cell 7, 1703–1712

    Google Scholar 

  • Elomaa, P., Honkanen, J., Puska, R., Seppänen, P., Helariutta, Y, Koes, R., Gerats, A.G.M., Mol, J.N.M. and Stuitje, A.R. (1993) Agrobacterium-mediated transfer of antisense chalcone synthase cDNA to Gerbera hybrida inhibits flower pigmentation, Biotechnology 11, 508–511.

    Article  CAS  Google Scholar 

  • Endrizzi, K., Moussain, B., Haecker, A., Levin, J.Z. and Laux, T. (1996) The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE, Plant J 10, 967–979.

    Article  PubMed  CAS  Google Scholar 

  • Estruch, J.J., Granell, A., Hansen, G, Prinsen, E., Redig, P., Van Onckelen, H., Schwarz-Sommer, Z., Sommer, H. and Spena, A. (1993) Floral development and expression of floral homeotic genes are influenced by cytokinins, Plant J 4, 379–384.

    Article  PubMed  CAS  Google Scholar 

  • Evans, M.M.S. and Barton, M.K. (1997) Genetics of angiosperm shoot apical meristem development, Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 673–701.

    Article  PubMed  CAS  Google Scholar 

  • Feldmann, K.A. (2001) Cytochrome P450s as genes for crop improvement, Curl: Opin. Plant Biol 4, 162–167.

    Article  CAS  Google Scholar 

  • Ferrândiz, C., Gu, Q., Martienssen, R. and Yanofsky, M.F. (2000) Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALAI and CAULIFLOWER, Development 127, 725–734.

    PubMed  Google Scholar 

  • Finer, J.J., Vain, P., Jone, M.W. and McMullen, M.D. (1992) Development of the particle inflow gun for DNA delivery to plant cells, Plant Cell Rep 11, 323–328.

    Article  CAS  Google Scholar 

  • Finnegan, E.J., Peacock, W.J. and Dennis, E.S. (1996) Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development, Proc. Natl. Acad. Sci. USA 93, 8449–8454.

    Article  PubMed  CAS  Google Scholar 

  • Finnegan, E.J., Genger, R.G., Kovac, K., Peacock, W.J. and Dennis, E.S. (1998) Methylation controls the low-temperature induction of flowering in Arabidopsis, Proc. Natl. Acad. Sci. USA 95, 5824–5829.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, R., Buckle, I. And Hain, R. (1997) Stilbene synthase gene expression causes changes in flower colour and male sterility in tobacco, PlantJ 11, 489–498.

    CAS  Google Scholar 

  • Fletcher, J.C. (2001) The ULTRAPETALA gene controls shoot and floral meristem size in Arabidopsis, Development 128, 1323–1333.

    PubMed  CAS  Google Scholar 

  • Forkmann, G and Danglemayr, B. (1980) Genetic control of chalcone isomerase activity in flowers of Dianthus caryophyllus, Biochem. Genet 18, 519–527.

    Article  PubMed  CAS  Google Scholar 

  • Fowler, S., Lee, K., Onouchi, H., Samach, A., Richardson, K., Morris, B., Coupland, G and Putterill, J. (1999) GIGANTEA: a circadian cloack-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains, EMBO J 18, 4679–4688.

    Article  PubMed  CAS  Google Scholar 

  • Franks, R.G, Wang, C., Levin, J.Z. and Liu, Z. (2002) SEUSS, a member of a novel family of plant regulatory proteins, represses floral homeotic gene expression with LEUNIG, Development 129, 253–263.

    PubMed  CAS  Google Scholar 

  • Fuerst, R.A.U.A., Soni, R., Murray, J.A.H. and Lindsey, K. (1996) Modulation of cyclin transcript levels in cultured cells of Arabidopsis thaliana,PlantPhysiol 112, 1023–1033.

    CAS  Google Scholar 

  • Fujioka, T., Fujita, M. and Miyamoto, Y. (1999) In vitro flowering and pod setting on non-symbiotically germinated pea, J. Jap. Soc. Hort. Sci 68, 117–123.

    Article  CAS  Google Scholar 

  • Furuya, M. (1993) Phytochromes: their molecular species, gene families and functions, Annu. Rev. Plant Physiol. Plant Mol. Biol 44, 617–645.

    Article  CAS  Google Scholar 

  • Gamburg, K.Z. (1995) Clonal propagation, flowering and fruiting of tomato in vitro, Fiz. Biolcrm. Kul. Rast. 27, 360–366.

    Google Scholar 

  • Garcia-Luis, A., Santamarina, P. and Guardiola, J.L. (1989) Flower formation from Citrus unshiu buds cultured in vitro, Ann. Bot 64, 515–519.

    Google Scholar 

  • Gendall, A.R., Levy, Y.Y., Wilson, A. and Dean, C. (2001) The VERNALIZATION 2 gene mediates the epigenetic regulation of vemalization in Arabidopsis, Cell 107, 525–535.

    Article  PubMed  CAS  Google Scholar 

  • Gendy, C., Séne, M., Bui Van Le, Vidal, J. and Tran Thanh Van, K. (1996) Somatic embryogenesis and plant regeneration in Sorghum bicolor (L.) Moench, Plant Cell Rep 15, 900–904.

    Article  CAS  Google Scholar 

  • Gertsson, U.E. (1988) Development of micropropagated plants from different clones of Senecfio x hybridus in relation to BAP concentration and temperature in vitro, J. Hort. Sci 63, 489–496.

    Google Scholar 

  • Gibson, S.I. (2000) Plant sugar-response pathways. Part of a complex regulatory web, Plant Physiol 124, 1532–1539.

    Article  PubMed  CAS  Google Scholar 

  • Goldsbrough, A.P., Tong, Y. and Yoder, J.I. (1996) LC as a non-destructive visual reporter and transposition excision marker gene for tomato, Plant J 9, 927–933.

    Article  CAS  Google Scholar 

  • Gollin, J., Darvill, A.G. and Albersheim, P. (1984) Plant cell wall fragments inhibit flowering and promote vegetative growth in Lemna gibba, Biol. Cell 51, 275–280.

    Google Scholar 

  • Goodrich, J., Puangsomlee, P., Martin, M., Long, D., Meyerowitz, E.M. and Coupland, G (1997) A polycomb-group gene regulates homeotic gene expression inArabidopsis, Nature 386, 44–51.

    Article  PubMed  CAS  Google Scholar 

  • Goosey, L. and Sharrock, R. (2001) The Arabidopsis compact inflorescence genes: phase-specific growth regulation and the determination of inflorescence architecture, Plant J 26, 549–559.

    Article  PubMed  CAS  Google Scholar 

  • Goto, K. and Meyerowitz, E. M. (1994) Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA, Genes Dev 8, 1548–1560.

    Article  CAS  Google Scholar 

  • Goto, K., Kyozuka, J. and Bowman, J.L. (2001) Turning floral organs into leaves, leaves into floral organs, Curr. Opin. Genet. Dev 11, 449–456.

    Article  PubMed  CAS  Google Scholar 

  • Grbié, V. and Bleecker, A.B. (1996) An altered body plan is conferred on Arabidopsis plants carrying dominant alleles of two genes, Development 122, 2395–2403.

    Google Scholar 

  • Green, R.M. and Tobin, E.M. (1999) Loss of the circadian clock-associated protein 1 in Arabidopsis results in altered clock-regulated gene expression, Proc. Natl. Acad. Sci. USA 96, 4176–4179.

    Article  PubMed  CAS  Google Scholar 

  • Griesbach, R.J. (1998) The effect of the Ph6 gene on the color of Petunia hybrida Vilm. flowers, J. Amer. Soc. Hort, Sci 123, 647–650.

    CAS  Google Scholar 

  • Griffith, M.E., Conceiçâo, A.D. and Smyth, D.R. (1999) PETAL LOSS gene regulates initiation and orientation of second whorl organs in the Arabidopsis flower, Development 126, 5635–5644.

    PubMed  CAS  Google Scholar 

  • Gulati, A., Bharel, S., Jain, S.K., Abdin, M.Z. and Srivastava, P.S. (1996) In vitro micropropagation and flowering in Artemisia annua, J. PlantBiochem. Biotech 5, 31–35.

    Google Scholar 

  • Guo, H., Yang, H., Mockler, T.C. and Lin, C. (1998) Regulation of flowering time by Arabidopsis photoreceptors, Science 279, 1360–1363.

    Article  PubMed  CAS  Google Scholar 

  • Gupta, S. and Maheshwari, S.C. (1970) Growth and flowering of Lemna paucicostata II. Role of growth regulators, Plant Cell Physiol 11, 97–106.

    CAS  Google Scholar 

  • Gutterson, N. (1995) Anthocyanin biosynthetic genes and their application to flower color modification through sense suppression, Hort. Sci 30, 964–966.

    CAS  Google Scholar 

  • Hackett, W.P. (1985) Juvenility, maturation, and rejuvenation in woody plants, Hort. Rev 7, 109–155.

    Google Scholar 

  • Halliday, K.J., Devlin, P.F., Whitelam, G.C., Hanhart, C.J. and Koomneef, M. (1996) The ELONGATED gene of Arabidopsis acts independently of light and gibberellins in the control of elongation growth, Plant) 9, 305–312.

    Article  CAS  Google Scholar 

  • Handro, W. and Floh, E.I.S. (2000) Neo-formation of flower buds and other morphogenetic responses in tissue cultures of Melia azedarach, Plant Cell Tiss, Org. Cult 64, 73–76.

    Article  Google Scholar 

  • Hante, T.T. and Tran Thanh Van, K. (1980) Formation in vitro de fleurs à partir des couches minces epidermiques et sous-epidermiques diploids et haploids chez le Nicotiana tabacum L. et chez Nicotiana plumbaginifolia, Z. Pflanzenphysiol 101, 1–8.

    Google Scholar 

  • Hanh, T.T., Lie-Schricke, H. and Tran Thanh Van, K. (1981) Formation directe de bourgeons à partir des fragments et de couches cellulaires minces de differents organs chez le Psophocarpus tetragonolobus (l.) DC., Z. Pflanzenphysiol 102, 127–139.

    Google Scholar 

  • Harada, H. and Murai, Y. (1998) In vitro flowering on long-teen subcultured pear shoots, J. Hort. Sci. Biotech 73, 225–228.

    Google Scholar 

  • Hartmann, U., Hoehmann, S., Nettesheim, K., Wisman, E., Saedler, H. and Huijser, P. (2000) Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis, Plant J 21, 351–360.

    Article  PubMed  CAS  Google Scholar 

  • Hedden, P. and Phillips, A.L. (2000a) Manipulation of hormone biosynthetic genes in transgenic plants, Curr. Opin. Biotech 11, 130–137.

    Article  PubMed  CAS  Google Scholar 

  • Hedden, P. and Phillips, A.L. (20006) Gibberellin metabolism: new insights revealed by the genes, Trends Plant Sci 5, 523–530.

    Google Scholar 

  • Hegstad, J.M., Tarter, J.A., Vodkin, L.O. and Nickell, C.D. (2000) Positioning the wp flower color locus on the soybean genome map, Crop Sci 40, 534–537.

    Article  CAS  Google Scholar 

  • Hetz, W., Hochholdinger, F., Schwall, M. and Feix, G. (1996) Isolation and characterization of rtcs, a maize mutant deficient in the formation of nodal roots, Plant J 10, 845–857.

    Article  CAS  Google Scholar 

  • Hicks, K.A., Millar, A.J., Carre, LA., Somers, D.E., Straume, M., Ry Meeks-Wagner, D. and Steve, A.K. (1996) Conditional circadian dysfunction of the Arabidopsis early flowering 3 mutant, Science 274, 790–792.

    Article  PubMed  CAS  Google Scholar 

  • Hicks, K.A., Albertson, T.M. and Wagner, D.R. (2001) EARLYFLOWERING3 encodes a novel protein that regulates circadian clock function and flowering in Arabidopsis, Plant Cell 13, 1281–1292.

    PubMed  CAS  Google Scholar 

  • Higashiuchi, Y., Kido, K., Ichii, T., Nakanishi, T., Kawai, Y. and Osaki, T. (1990) The effect of gibberellins and growth retardants on in vitro flowering of the vegetative apex of Japanese pear, Sci. Hort 41, 223–232.

    Article  CAS  Google Scholar 

  • Holton, T.A., Brugliera, F., Lester, D.R., Tanaka, Y., Hyland, C.D., Menting, J.GT, Lu, C.Y., Farcy, E., Stevenson, T.W. and Cornish, E.C. (1993a) Cloning and expression of cytochrome P450 genes controlling flower colour, Nature 366, 276–279.

    Article  PubMed  CAS  Google Scholar 

  • Holton, T.A., Brugliera, F. and Tanaka, Y. (1993b) Cloning and expression of cytochrome P450 genes controlling flower colour, Plant. 14, 1003–1010.

    Google Scholar 

  • Holton, T.A. and Tanaka, Y. (1994) Blue roses — a pigment of our imagination?, Trends Biotech 12, 40–42.

    Article  Google Scholar 

  • Holton, T.A. and Cornish, E.C. (1995) Genetic and biochemistry of anthocyanin biosynthesis, Plant Cell 7, 1071–1083.

    PubMed  CAS  Google Scholar 

  • Honma, T and Goto, K. (2000) The Arabidopsis floral homeotic gene PISTILLATA is regulated by discrete cis-elements responsive to induction and maintenance signals, Development 127, 2021–2030.

    PubMed  CAS  Google Scholar 

  • Hudson, A. (1999) Axioms and axes in leaf formation? Curr. Opin. Plant Biol 2, 56–60.

    Article  PubMed  CAS  Google Scholar 

  • Hudson, A. (2000) Development of symmetry in plants, Annu. Rev. Plant Physiol. Plant Mol. Biol 51, 349–370.

    Article  PubMed  CAS  Google Scholar 

  • Immink, R.G.H., Hannapel, D.J., Ferrario, S., Busscher, M., Franken, J., Lookeren, C.M.M. and Angenent, GC. (1999). A petunia MADS box gene involved in the transition from vegetative to reproductive development, Development 126, 5117–5126.

    PubMed  CAS  Google Scholar 

  • Ingram, GC., Goodrich, J., Wilkinson, M.D., Simon, R., Haughn, G.W. and Coen, E.S. (1995) Parallels between UNUSUAL FLORAL ORGANS and FIMBRIATA, genes controlling flower development in Arabidopsis and Antirrhinum, Plant Cell 7, 1501–1510.

    PubMed  CAS  Google Scholar 

  • Inoue, T., Higuchi, M., Hashimoto, Y., Seki, M., Kobayashi, M., Kato, T., Tabata, S., Shinozaki, K. and Kakimoto, T. (2001) Identification of CRE] as a cytokinin receptor from Arabidospsis, Nature 409, 1060–1063.

    Article  PubMed  CAS  Google Scholar 

  • Itoh, J., Kitano, H., Matsuoka, M. and Nagato, Y. (2000) SHOOT ORGANIZATION genes regulate shoot apical meristem organization and the pattern of leaf primordium initiation in rice, Plant Cell 12, 2161–2174.

    PubMed  CAS  Google Scholar 

  • Ivanov, P., Encheva, J. and Ivanova, I. (1998) A protocol to avoid precocious flowering of sunflower plants in vitro, Plant Breed 117, 582–584.

    Article  Google Scholar 

  • Jack, T., Brockman, L. L. and Meyerowitz, E. M. (1992) The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens, Cell 68, 683–697.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, D. and Hake, S. (1999) Control of phyllotaxy in maize by the abphyll gene, Development 126, 315–323.

    PubMed  CAS  Google Scholar 

  • Jacobsen, S.E. and Olszewski, N.E. (1993) Mutations at the SPINDLY locus of Arabidopsis alter gibberellin signal transduction, Plant Cell 5, 887–896.

    PubMed  CAS  Google Scholar 

  • Jacobsen, S. E., Binkowski, K. A. and Olszewski, N. E. (1996) SPINDLY, a tetratricopeptide repeat protein involved in gibberellin signal transduction in Arabidopsis, Proc. Natl. Acad. Sci. USA 93, 9292–9296.

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen, S.E., Running, M.P. and Meyerowitz, E.M. (1999) Disruption of an RNA helicase/RNAse III gene in Arabidopsis causes unregulated cell division in floral meristems, Development 126, 5231–5243.

    PubMed  CAS  Google Scholar 

  • Jenik, P.D. and Irish, V.F. (2001) The Arabidopsis floral homeotic gene APETALA3 differentially regulates intercellular signaling required for petal and stamen development, Development 128, 13–23.

    PubMed  CAS  Google Scholar 

  • Jean, J.S., Jong, S., Lee, S., Nam, J., Kim, C., Lee, S.H., Chung, Y.Y., Kim, S.R., Lee, Y.H., Cho, Y.G. and An, G. (2000) Leafy hull sterile] is a homeotic mutation in a rice MADS box gene affecting rice flower development, Plant Cell 12: 871–884.

    Google Scholar 

  • Jofuku, K. D., den Boer, B. G. W., Van Montagu, M. and Okamuro, J. K. (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2, Plant Cell 6, 1211–1225.

    PubMed  CAS  Google Scholar 

  • Jorgensen, R.A. (1995) Cosuppression, flower colour patterns and metastable gene expression states, Science 268, 686–691.

    Article  PubMed  CAS  Google Scholar 

  • Juarez, C. and Banks, J.A. (1998) Sex determination in plants, Cure.. Opin. PlantBiol 1, 68–72.

    Article  CAS  Google Scholar 

  • Jumin, H.B. and Nito, N. (1995) Embryogenic protoplast cultures of orange jessamine (Murraya paniculata) and their regeneration into plants flowering in vitro, Plant Cell Tiss. Org. Cult 41, 277–279.

    Article  Google Scholar 

  • Jumin, H.B. and Nito, N. (1996) In vitro flowering of Fortunella hindsii (Champ.), Plant Cell Rep 15, 484–488.

    Article  CAS  Google Scholar 

  • Kakimoto, T. (1996) CKI1, a histidine kinase homolog implicated in cytokinin signai transduction, Science 274, 982–985.

    Article  PubMed  CAS  Google Scholar 

  • Kania, T., Russenberger, D., Peng, S., Apel, K. and Melzer, S. (1997) FPFI promotes flowering in Arabidopsis, Plant Cell 9, 1327–1338.

    PubMed  CAS  Google Scholar 

  • Kardailsky, I., Shukla, V.K., Ahn, J.T., Dagenais, N., Christensen, S.K., Nguyen, J.T., Chory, J., Harrison, M.J. and Weigel, D. (1999) Activation tagging of the floral inducer FT, Science 286, 1962–1965.

    Article  PubMed  CAS  Google Scholar 

  • Kaur-Sawhney, R., Tiburcio, A.F. and Galston, A.W. (1988) Spermidine and flower bud differentiation in thin layer tobacco tissue cultures, Planta 173, 282–284.

    Article  CAS  Google Scholar 

  • Kaya, H., Shibahara, K., Taoka, K., Iwabuchi, M., Stillman, B. and Araki, T. (2001) FA SCIA TA genes for chromatin assembly factor-1 in Arabidopsis maintain the cellular organization of apical meristems, Cell 104, 131–142.

    Article  PubMed  CAS  Google Scholar 

  • Kayes, J.M. and Clark, S.E. (1998) CLAVATA2, a regulator of meristem and organ development in Arabidopsis, Development 125, 3843–3851.

    PubMed  CAS  Google Scholar 

  • Kempin, S. A., Savidge, B. and Yanofsky, M. F. (1994) Molecular basis of the cauliflower phenotype in Arabidopsis, Science 267, 522–525.

    Article  Google Scholar 

  • Kim, K.N. and Ernst, S.G. (1994) Effects of inhibitors on phenocritical events of in vitro shoot organogenesis in tobacco thin cell layers, Plant Sci 103, 59–66.

    Article  CAS  Google Scholar 

  • King, R.W., Blundell, C. and Evans, L.T. (1993) The behaviour of shoot apices of Lolium temulentum in vitro as the basis of an assay system for florigenic extracts, Austr. J. Plant Physiol 20, 337–348.

    Article  CAS  Google Scholar 

  • Kintzios, S. and Michaelakis, A. (1999) Induction of somatic embryogenesis and in vitro flowering from inflorescences of chamomile (Chamomilla recutita L.), Plant Cell Rep 18, 684–690.

    Article  CAS  Google Scholar 

  • Kiyosue, T. and Wada, M. (2000) LKP1 (LOV ketch protein 1): a factor involved in the regulation of flowering time in Arabidopsis, Plant J 23, 807–815.

    Article  PubMed  CAS  Google Scholar 

  • Kondo, T., Yoshida, Y, Nakagawa, A., Kawai, T. and Fukui, H. (1992) Structural basis of blue-colour development in flower petals from Commelina communis, Nature 358, 515–518.

    Article  CAS  Google Scholar 

  • Koomneef, M., Alonso-Blanco, C., Blankestijn-de Vries, H., Hanhart, C.J. and Peeters, A.J.M. (1998a) Genetic interactions among late-flowering mutants of Arabidopsis, Genetics 148, 885–892.

    Google Scholar 

  • Koomneef, M., Alonso-Blanco, C., Peeters, A.J.M. and Soppe, W. (1998b) Genetic control of flowering time in Arabidopsis,Annu. Rev, Plant Physiol. Plant Mol. Biol 49, 345–370.

    Article  Google Scholar 

  • Koomneef, M., Manhart, C.J. and van den Veen, J.H. (1991) A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana, Mol. Gen. Genet 229, 57–66.

    Google Scholar 

  • Koomneef, M., Elgersma, A., Hanhart, C.J., Van Loenen-Martinet, E.P., Van Rijn, L. and Zeevaart, J.A.D. (1985) A gibberellin insensitive mutant of Arabidopsis thaliana, Physiol. Plant 65, 33–39.

    Article  Google Scholar 

  • Koomneef, M. and van der Veen, J.H. (1980) Induction and analysis of gibberellin-sensitive mutants in Arabidopsis thaliana (L.) Heynh., Theor. Appl. Genet 58, 257–263.

    Article  Google Scholar 

  • Kotilainen, M., Elomaa, P., Uimari, A., Albert, V.A., Yu, D. and Teeri, T.H. (2000) GRCDJ, an AGL2-like MADS-box gene, participates in the C function during stamen development in Gerbera hybrida, Plant Cell 12, 1893–1902.

    PubMed  CAS  Google Scholar 

  • Kovoor, A. (1981) Palm tissue culture: state of the art and its application to the coconut, FAO Plant Production and Protection Paper 30. FAO, UN, Rome.

    Google Scholar 

  • Krizek, B.A. (1999) Ectopie expression of AINTEGUMENTA in Arabidopsis plants results in increased growth of floral organs, Deu Genet 25, 224–236.

    Article  CAS  Google Scholar 

  • Kulkami, V.M., Choudhari, A.N., Shah, B.S. and Harinarayanna, G (1995) In vitro flowering in pearl millet (Pennisetum glaucum (L.) R.Br.), Indian J. Exp. Biol 33, 142–143.

    Google Scholar 

  • Kumar, T.A. and Reddy, G.M. (1997) Identification and expression of AGAMOUS gene homologue during in vitro flowering from cotyledons of groundnut, J. PlantBiochem. Biotech. 6, 81–84.

    CAS  Google Scholar 

  • Laufs, P., Dockx, J., Kronenberg, J. and Traas, J. (1998)MGOUNI and MGOUN2: two genes required for primordium initiation at the shoot apical and floral meristems in Arabidopsis thaliana, Development 125, 1253–1260.

    Google Scholar 

  • Laux, T., Mayer, K.F.X., Berger, J. and Juergen, G. (1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis, Development 122, 87–96.

    PubMed  CAS  Google Scholar 

  • Ledger, S.E., Dare, A.P. and Putterill, J. (1996) COL2 is a homologue of the Arabidopsis flowering time gene CONSTANS, Plant Physiol 112, 862–879.

    Google Scholar 

  • Lee, H., Suh, S-S., Park, E., Cho, E., Ahn, J.H., Kim, S-G, Lee, J.S., Kwon, Y.M. and Lee, I. (2000) The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis, Genes Dev 14, 2366–2376.

    Article  PubMed  CAS  Google Scholar 

  • Lee, I., Aukerman, M.J., Gore, S.L., Lohman, K.N., Michaels, S.D., Weaver, L.M., John, M.C., Feldman, K.A. and Amasino, R.M. (1994a) Isolation of LUMINIDEPENDENS: a gene involved in the control of flowering time in Arabidopsis, Plant Cell 6, 75–83.

    PubMed  CAS  Google Scholar 

  • Lee, I., Michaels, S. D., Masshardt, A. S. and Amasino, R. M. (1994b) The late-flowering phenotype of FRIGIDA and mutations in LUMINIDEPENDENS is suppressed in the Landsberg erecta strain of Arabidopsis, Plant J 6, 903–909.

    Article  CAS  Google Scholar 

  • Lee, I., Wolfe, D.S., Nilsson, O. and Weigel, D. (1997) A leafy coregulator encoded by unusual floral organs, Curr. Biol 7, 95–104.

    Article  PubMed  Google Scholar 

  • Lee-Stadlemann, O.Y., Lee, S., Hackett, W.P. and Read, P.E. (1989) The formation of adventitous buds in vitro on micro-sections of hybrid Populus leaf mid veins, Plant Sci 61, 263–272.

    Article  Google Scholar 

  • Lenhard, M and Laux, T. (1999) Shoot meristem formation and maintenance, Curr. Opin. Plant Biol 2, 44–50.

    Article  PubMed  CAS  Google Scholar 

  • Lenhard, M., Bohnert, A., Jürgens, G and Laux, T. (2001) Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS, Cell 105, 805–814.

    Article  PubMed  CAS  Google Scholar 

  • Lerouge, P., Roche, P., Faucher, C., Fabienne, M., Truchet, G, Prom, J.C. and Der, J. (1990) Symbiotic host specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal, Nature 344, 781–784.

    Article  PubMed  CAS  Google Scholar 

  • Levin, J. Z. and Meyerowitz, E. M. (1995) UFO: An Arabidopsis gene involved in both floral meristem and floral organ development, Plant Cell 7, 529–548.

    PubMed  CAS  Google Scholar 

  • Leyser, H.M.O. and Fumer, I.J. (1992) Characterization of three shoot apical meristem mutants of Arabidopsis thaliana, Development 116, 397–403.

    Google Scholar 

  • Levy, Y.Y. and Dean, C. (1998) The transition to flowering, Plant Cell 10, 1973–1989.

    PubMed  CAS  Google Scholar 

  • Li, Y., Zhang, H. and Han, B-W. (1996) Changes of endogenous hormone contents during floral bud and vegetative bud differentiation in thin cell layer culture of Cichorium intybus L. explant, Acta Bot. Sin 38, 131–135.

    Google Scholar 

  • Lin, C., Ahmad, M., Chan, A.R. and Cashmore, A.R. (1996) CRY2: a second member of the Arabidopsis cryptochrome gene family, Plant Physiol 110, 1047–1135.

    Article  Google Scholar 

  • Lin, T. P., Caspar, T., Somerville, C. and Preiss, J. (1988) Isolation and characterization of a starchless mutant of Arabidopsis thaliana (L.) Heyn lacking ADPglucose pyrophosphorylase activity, Plant Physiol 86, 1131–1135.

    Article  PubMed  CAS  Google Scholar 

  • Lister, C., Jackson, D. and Martin, C. (1993) Transposon-induced inversion in Antirrhinum modifies nivea gene expression to give novel flower color pattern under the control of cycloidecrradialis Plant Cell 5, 1541–1553.

    CAS  Google Scholar 

  • Liu, D. and Crawford, N.M. (1998) Characterization of the germinal and somatic activity of the Arabidopsis transposable element Tag 1, Genetics 148, 445–456.

    PubMed  CAS  Google Scholar 

  • Lin, D. Zhang, S., Fauquet, C. and Crawford, N.M. (1999) The Arabidopsis transposon Tagl is active in rice, undergoing germinal transposition and restricted, late somatic excision, Mol. Gen. Genet 262, 413–420.

    Google Scholar 

  • Liu, D., Galli, M. and Crawford, N.M. (2001) Engineering variegated floral patterns in tobacco plants using the Arabidopsis transposable element Tagl, Plant Cell Physiol 42, 419–423.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Z. and Meyerowitz, E. M. (1995) LEUNIG regulates AGAMOUS expression in Arabidopsis flowers, Development 121, 975–991.

    PubMed  CAS  Google Scholar 

  • Liu, Z., Running, M.P. and Meyerowitz, E.M. (1997) TSO1 functions in cell division during Arabidopsis flower development, Development 124: 665–672.

    PubMed  CAS  Google Scholar 

  • Lloyd, A.M., Walbot, V. and Davis, R.W. (1992) Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and CI, Science 258, 1773–1775.

    Article  PubMed  CAS  Google Scholar 

  • Long, J.A., Moan, E.I., Medford, J.I. and Barton, M.K. (1996) A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis, Nature 379, 66–69.

    Article  PubMed  CAS  Google Scholar 

  • Lotan, T, Ohto, M-A., Yee, K.M., West, M.A.L., Lo, R., Kwong, R.W., Yamagishi, K., Fischer, R.L., Goldberg, R.B. and Harada, J.J. (1998) Arabidopsis LEAFY COTYLEDON is sufficient to induce embryo development in vegetative cells, Cell 93, 1195–1205.

    Article  PubMed  CAS  Google Scholar 

  • Lu, Y-P., Li, Z-S. and Rea, P.A. (1997) AtMRP] gene of Arabidopsis encodes a glutathione S-conjugate pump: isolation and functional definition of a plant ATP-binding cassette transporter gene, Proc. Natl. Acad. Sci. USA 94, 8243–8248.

    Article  PubMed  CAS  Google Scholar 

  • Luo, D., Carpenter, R., Vincent, C., Copsey, L. and Coen, E. (1996) Origin of floral asymmetry in Antirrhinum, Nature 383, 794–799.

    Article  PubMed  CAS  Google Scholar 

  • Luo, D., Carpenter, R., Copsey, L., Vincent, C., Clark, J. and Coen, E. (1999) Control of organ asymmetry in flowers of Antirrhinum, Cell 99, 367–376.

    Article  PubMed  CAS  Google Scholar 

  • Lynn, K., Fernandez, A., Aida, M., Sedbrook, J., Tasaka, M., Masson, P. and Barton, M.K. (1999) The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping functions with the ARGONAUTE] gene, Development 126, 469–481.

    PubMed  CAS  Google Scholar 

  • Ma, H., Yanofsky, M.F. and Meyerowitz, E.M. (1991) AGL1–AGL6, and Arabidopsis gene family with similarity to floral homeotic and transcription factor genes, Genes Dev 5, 484–495.

    Article  PubMed  CAS  Google Scholar 

  • Macknight, R., Bancroft, I., Page, T., Lister, C., Schmidt, R., Love, K., Westphal, L., Murphy, G, Sherson, S. and Cobbett, C. (1997) FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains, Cell 89, 737–745.

    Article  PubMed  CAS  Google Scholar 

  • Maes, T., Van de Steene, N., Zethof, J., Karimi, M., D’Hauw, M., Mares, G, Van Montagu, M. and Gerats, T. (2001) Petunia Apt-like genes and their role in flower and seed development, Plant Cell 13, 229–244.

    PubMed  CAS  Google Scholar 

  • Mandel, M. A., Gustafson-Brown, C., Savidge, B. and Yanofsky, M. F. (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALAI, Nature 360, 273–277.

    Article  PubMed  CAS  Google Scholar 

  • Mandel, M.A. and Yanofsky, M.F. (1998) The ArabidopsisAGL9 MADS box gene is expressed in young flower primordia, Sex PlantReprod 11, 22–28.

    Article  CAS  Google Scholar 

  • Marfa, V., Gollin, D., Eberhardt, S., Mohnen, D., Darvill, A. and Albersheim, P. (1991) Oligogalacturonides are able to induce flowers to form on tobacco explants, Plant J 1, 217–225.

    Article  Google Scholar 

  • Markham, K.R., Gould, K.S., Winefield, C.S., Mitchell, K.A., Bloor, S.J. and Boase, M.R. (2000) Anthocyanic vacuolar inclusions — their nature and significance in flower colouration, Phytochemistry 55, 327–336.

    Article  PubMed  CAS  Google Scholar 

  • Mauro, M.L., Trovato, M., De Paolis, A., Gallelli, A., Costantino, P. and Altamura, M.M. (1996) The plant oncogene rolD stimulates flowering in transgenic tobacco plants, Dev. Biol 180, 693–700.

    Article  PubMed  CAS  Google Scholar 

  • McConnell, J.R. and Barton, M.K. (1998) Leaf polarity and meristem formation in Arabidopsis, Development 125, 2935–2942.

    PubMed  CAS  Google Scholar 

  • McDaniel, C.N., Sangry, H.K. and Singer, S.R. (1989) Node counting in axillary buds of Nicotiana tabacum cv. Wisconsin 38, a day-neutral plant, Amer. J. Bot 76, 403–408.

    Article  Google Scholar 

  • McKelvie, A.D. (1962) A list of mutant genes in Arabidopsis thaliana (L.) Heynh., Radiat. Bot 1, 233–241.

    Article  Google Scholar 

  • McSteen, P., Laudencia-Chingcuanco, D. and Colasanti, J. (2000) A floret by any other name: control of meristem identity in maize, Trends Plant Sci 5, 61–66.

    Google Scholar 

  • McSteen, P. and Hake, S. (2001) barren inflorescence2 regulates axillary meristem development in the maize inflorescence, Development 128, 2881–2891.

    Google Scholar 

  • Meeks Wagner, D., Dennis, E.S., Tran Thanh Van, K. and Peacock, W.J. (1989) Tobacco genes expressed during in vitro floral initiation and their expression during normal plant development, Plant Cell 1, 25–35.

    PubMed  CAS  Google Scholar 

  • Mena, M., Ambrose, B.A., Meeley, R.B., Briggs, S.P., Yanofsky, M.F. and Schmidt, R.J. (1996) Diversification of C-function activity in maize flower development, Science 61, 1537–1540.

    Article  Google Scholar 

  • Meyer, P., Heidmann, I., Forkmann, G. and Saedler, H (1987) A new petunia flower colour generated by transformation of a mutant with a maize gene, Nature 330, 677–678.

    Article  PubMed  CAS  Google Scholar 

  • Meyerowitz, E.M. (1997) Genetic control of cell division patterns in developing plants, Cell 88, 299–308.

    Article  PubMed  CAS  Google Scholar 

  • Meyerowitz, E.M. (1998) Genetic and molecular mechanisms of pattern formation in Arabidopsis flower development, J. Plant Res 111, 233–242.

    Article  CAS  Google Scholar 

  • Michaels, S.D. and Amasino, R.M. (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering, Plant Cell 11, 949–956.

    PubMed  CAS  Google Scholar 

  • Miles, C.O. and Main, L. (1985) Kinetics and mechanism of the cyclisation of 2’,6’-dihydroxy-4,4’-dimetghoxychalcone; influence of the 6’-hydroxyl group on the rate of cyclisation under neutral conditions, J. Chem. Soc. Perkin Trans. 11, 1639–1642.

    Google Scholar 

  • Millar, A.J., Carré, I.A., Strayer, C.A., Chua, N.H. and Kay, S.A. (1995) Circadian clock mutants in Arabidopsis identified by luciferase imaging, Science 267, 1161–1163.

    Article  PubMed  CAS  Google Scholar 

  • Misera, S., Mueller, A.J., Weiland-Heidecker, U. and Juergens, G (1994) The FUSCA genes of Arabidopsis: negative regulators of light responses, Mol. Gen. Genet 244, 242–252.

    Article  PubMed  CAS  Google Scholar 

  • Mohnen, D., Eberhardt, S., Marfa, V., Doubrava, N., Toubart, P., Gollin, D.J., Gruber, T.A., Nuri, W., Albersheim, P. and Darvill, A. (1990) The control of root, vegetative shoot and flower morphogenesis in tobacco thin cell-layer explants (TCLs), Development 108, 191–201.

    PubMed  CAS  Google Scholar 

  • Mol, J.N.M., Holton, T.A. and Koes, R.E. (1995) Floriculture: genetic engineering of commercial traits, Trends Biotech 13, 350–355.

    Article  CAS  Google Scholar 

  • Mol, J., Grotewold, E. and Koes, R. (1998) How genes paint flowers and seeds, Trends Plant Sci 3, 212–217.

    Article  Google Scholar 

  • Mooney, M., Desnos, T., Harrison, K., Jones, J., Carpenter, R. and Coen, E. (1995) Altered regulation of tomato and tobacco pigmentation genes caused by the DELILA gene of Antirrhinum, Plant J 7, 333–339.

    Article  CAS  Google Scholar 

  • Motte, P., Saedler, H. and Schwarz-Sommer, Z. (1998) STYLOSA and FISTULATA: regulatory components of the homeotic control of Antirrhinum floral organogenesis, Development 125, 71–84.

    PubMed  CAS  Google Scholar 

  • Moussian, B., Schoof, H., Haecker, A., Jurgens, G and Laux, T. (1998) Role of the ZWILLE gene in the regulation of central shoot meristem cell fate during Arabidopsis embryogenesis, EMBO J 17, 1799–1809.

    Article  PubMed  CAS  Google Scholar 

  • Msikita, W., Skirvin, R.M., Juvik, J.A., Splittstoesser, W.E. and Ali, N. (1990) Regeneration and flowering in vitro of `Burpless Hybrid’ cucumber from excised seed, HortScience 25, 474–477.

    CAS  Google Scholar 

  • Mulin, M. and Tran Thanh Van, K. (1989) Obtention of in vitro flowers from thin epidermal cell layers of Petunia hybrida (Bort.), Plant Sci 62, 113–121.

    Article  Google Scholar 

  • Muller, J-F., Goujaud, J. and Caboche, M. (1985) Isolation in vitro of napthaleneacetic acid-tolerant mutants of Nicotiana tabacum, which are impaired in root morphogenesis, Mol. Gen. Genet 199, 194–200.

    Article  CAS  Google Scholar 

  • Mutafstchiev, S., Cousson, A. and Tran Thanh Van, K. (1987) Modulation of cell growth and differentiation by pH and oligosaccharides, in British Plant Growth regulator Group, Monograph 16.

    Google Scholar 

  • Nadgauda, R.S., Parasharami, V.A. and Mascarenhas, A.F. (1990) Precocious flowering and seedling behaviour in tissue cultured bamboos, Nature 344, 335–336.

    Article  Google Scholar 

  • Nadgauda, R.S., John, C.K., Parasharami, V.A., Joshi, M.S. and Mascarenhas, A.F. (1997) A comparison of in vitro with in vivo flowering in bamboo, Bambusa arundinacea, Plant Cell Tiss. Org. Cult 48, 181–188.

    Article  Google Scholar 

  • Napoli, C., Lemieux, C. and Jorgensen, R. (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans, Plant Cell 2, 279–290.

    CAS  Google Scholar 

  • Napp-Zinn, K. (1962) Uber die genetischen grundlagen des vernalisations bedurgnisses bei Arabidopsis thaliana. I. Die zahl der beteiligting faktoren, Z. Vererbungsl 93, 154.

    Google Scholar 

  • Nelson, D.C., Lasswell, J., Rogg, L.E., Cohen, M.A. and Bartel, B. (2000) FKFI, a clock-controlled gene that regulates the transition to flowering in Arabidopsis, Cell 101, 331–340.

    Article  PubMed  CAS  Google Scholar 

  • Nhut, D.T. (1998) Micropropagation of lily (Lilium longiflorum) via in vitro stem node and pseudo-bulblet culture, Plant Cell Rep 117, 913–6.

    Article  Google Scholar 

  • Nhut, D.T., Bui, V.L., Fukai, S., Tanaka, M. and Tran Thanh Van, K. (2000) Direct somatic embryogenesis through pseudo-bulblet thin cell layer of Lilium longiflorum, Abstract of 2000 World Congress on In Vitro Biology San Diego, California, p. 46. A.

    Google Scholar 

  • Nhut, D.T., Bui, V.L., Tanaka, M. and Tran Thanh Van, K. (200la) Shoot induction and plant regeneration from receptacle tissue of Lilium longiflorum, Sci. Hort 87, 131–8.

    Google Scholar 

  • Nhut, D.T., Bui, V.L., Fukai, S., Tanaka, M. and Tran Thanh Van, K. (200 lb) Effects of activated charcoal, explant size, explant position and sucrose concentration on plant and shoot regeneration of Lilium longiflorum via young stem culture, Plant Growth Reg 33, 59–65.

    Google Scholar 

  • Nhut, D.T., Bui, V.L. and Tran Thanh Van, K. (2001e) Manipulation of the morphogenetic pathways of Lilium longiflorum transverse thin cell layer explants by auxin and cytokinin, In Vitro Cell. Dev. Biol 37, 44–49.

    Google Scholar 

  • Nhut, D.T., Bui, V.L., da Silva, J.A.T. and Aswath, C.R. (2001d) Thin cell layer culture system in Lilium: Regeneration and Transformation Perspectives, In Vitro Cell, Dev. Biol 37, 516–523.

    Google Scholar 

  • Nhut, D.T., Huong, N.T.D., Bui, V.L., da Silva, J.A.T., Fukai, S. and Tanaka, M. (2001e) The changes in shoot regeneration potential of protocorm-like bodies derived from Lilium longiflorum young stem explants exposed to medium volume, pH, light intensity and sucrose concentration pretreatment, J. Hort. Sci. Biotech 77, 79–82.

    Google Scholar 

  • Nhut, D.T., Bui, V.L., Minh, N.T., da Silva, J.A.T., Fukai, S., Tanaka, M. and Tran Thanh Van, K. (2001f) Direct somatic embryogenesis through pseudo-bulblet transverse thin cell layers of Lilium longiflorum, Plant Sei 77, 79–82.

    Google Scholar 

  • Nhut, D.T. (2001g) Effect of explant age on direct somatic embryogenesis by culturing young stem transverse thin cell layers of Lilium longiflorum, Sci. Hort (Summited paper).

    Google Scholar 

  • Nhut, D.T. and da Silva, J.A.T. (2001h) The control of in vitro direct main stem formation of Lilium longiflorum derived from receptacle culture and micropropagation by using in vitro stem nodes, J. Plant Physiol (Summited paper).

    Google Scholar 

  • Nhut, D.T., da Silva, J.A.T., Bui, V.L. and Tran Thanh Van, K. (2001i) Thin cell layer (TCL) morphogenesis as a powerful tool in woody plant and fruit crop micropropagation and biotechnology, floral genetics and genetic transformation,, In: X and Y (eds.) Cell and tissue culture in forestry, Kluwer Academic Publishers.

    Google Scholar 

  • Noda, K., Glover, B.J., Linstead, P. and Martin, C. (1994) Flower colour intensity depends on specialized cell shape controlled by a Myb-related transcription factor, Nature 369, 661–664.

    Article  PubMed  CAS  Google Scholar 

  • Okada, K., Ueda, J., Komaki, M.K., Bell, C.J. and Shimura, Y. (1991) Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation, Plant Cell 3, 677–684.

    PubMed  CAS  Google Scholar 

  • Otsuga, D., DeGuzman, B., Prigge, M.J., Drews, G.N. and Clark, S.E. (2001) REVOLUTA regulates meristem initiation at lateral positions, Plant 25, 223–236.

    Article  CAS  Google Scholar 

  • Oud, J.S.N., Schneiders, H., Kool, A.J. and van Grinsven, M.Q.J.M. (1995) Breeding of transgenic orange Petunia hybrida varieties, Euphytica 85, 403–409.

    Article  Google Scholar 

  • Page, T., Macnight, R., Yang, C-I-I. and Dean, C. (1999) Genetic interactions of the Arabidopsis flowering time gene FCA, with genes regulating floral initiation, Plant 17, 231–239.

    Article  CAS  Google Scholar 

  • Park, D.H., Somers, D.E., Kim, Y.S., Choy, Y.H., Lim, H.K., Soh, M.S., Kim, H.J., Kay, S.A. and Nam, H.G. (1999) Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene, Science 285, 1579–1582.

    Article  PubMed  CAS  Google Scholar 

  • Parks, B.M. and Quail, P.H. (1991) Phytochrome-deficient hyl and hy2 long hypocotyls mutants of Arabidopsis are defective in phytochrome chromophore biosynthesis, Plant Cell 3, 1177–1186.

    PubMed  CAS  Google Scholar 

  • Pautot, V., Dockx, J., Ramant, O., Kronenberger, J., Grandjean, O., Jublot, D. and Traas, J. (2001) KNAT2: evidence for a link between Knotted-like genes and carpel development, Plant Cell 13, 1719–1734.

    PubMed  CAS  Google Scholar 

  • Pedersen, C., Hansen, C.W., Brandt, K. and Kristiansen, K. (1996) Alstroemeria plantlets can be induced to flowering by cold treatment during in vitro culture, Sci. Hort 66, 217–228.

    Google Scholar 

  • Pelaz, S., Ditta, G, Baumann, E., Wisman, E. and Yanofsky, M. (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes, Nature 405, 200–203.

    Article  PubMed  CAS  Google Scholar 

  • Peng, J., Carol, P., Richards, D. E., King, K. E., Cowling, R. J., Murphy, G P. and Harberd, N. P. (1997) The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses, Genes Dev 11, 3194–3205.

    Article  PubMed  CAS  Google Scholar 

  • Pepper, A.E. and Chory, J. (1997) Extragenic suppressors of the atabidopsis det1 mutant identify elements of flowering time and light response regulatory pathways, Genetics 145, 1125–1137.

    PubMed  CAS  Google Scholar 

  • Perica, M.C. and Berljak, J. (1996) In vitro growth and regeneration of Drosera spatulata Labill. on various media, HortScience 31, 1033–1034.

    Google Scholar 

  • Pidkowich, M.S., Klenz, J.E. and Haughn, G.W. (1999) The making of a flower: control of floral meristem identity in Arabidopsis, Trends Plant Sci 4, 64–70.

    Article  Google Scholar 

  • Pinero, M. and Coupland, G (1998) The control of flowering time and floral identity in Arabidopsis, PlantPhysiol 117, 1–8.

    Article  Google Scholar 

  • Pnueli, L., Hareven, D., Broday, L., Hurwitz, C. and Lifschitz, E. (1994) The TM5 MADS box gene mediates organ differentiation in the three inner whorls of tomato flowers, Plant Cell 6, 175–186.

    PubMed  CAS  Google Scholar 

  • Pnueli, L., Carmel-Goren, L., Harevan, D., Gutfinger, T., Alvarez, J., Ganal, M., Zamir, D. and Lifschitz, E. (1998) The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1, Development 125, 1979–1989.

    CAS  Google Scholar 

  • Porath, D. and Galun, E. (1967) In vitro culture of hermaphrodite floral buds of Cucumis melo L.: microsporogenesis and ovary formation, Ann. Bot 31, 283–289.

    Google Scholar 

  • Pouteau, S., Nicholls, D., Tooke, F., Coen, E. and Battey, N. (1997) The induction and maintenance of flowering in Impatiens, Development 124, 3343–3351.

    CAS  Google Scholar 

  • Pouteau, S. (2001) Conceptual context of floral repression in Arabidopsis, Flower: Nwsltr 31, 12–18. Purohit, M., Pande, D., Dana, A. and Srivastava, P.S. (1996) In vitro flowering and high xanthotoxin in Ammi majus L., J. Plant Biochem. Biotech. 4, 73–76.

    Google Scholar 

  • Putterill, J., Robson, F., Lee, K., Simon, R. and Coupland, G (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors, Cell 80, 847–857.

    Article  PubMed  CAS  Google Scholar 

  • Putterill, J., Ledger, S.E., Lee, K., Robson, F., Murphy, G and Coupland, G. (1997) The flowering time gene CONSTANS and homologue CONSTANS LIKE 1 exist as a tandem repeat on chromosome 5 of Arabidopsis, Plant Physiol 114, 396–405.

    Google Scholar 

  • Qian, D., Zhou, D., Ju, R., Cramer, C.L. and Yang, Z. (1996) Protein famesyltransferases in plants: molecular characterization and involvement in cell cycle control, Plant Cell 8, 2381–2394.

    PubMed  CAS  Google Scholar 

  • Quattrocchio, F., Wing, J.F., van der Woude, K., Mol, J.N.M. and Koes, R. (1998) Analysis of bHLH and MYB domain proteins: species-specific regulatory differences are caused by divergent evolution of target anthocyanin genes, Plant J 13, 475–488.

    Article  PubMed  CAS  Google Scholar 

  • Rajeevan, M.S. and Lang, A. (1987) Comparison of de novo flower-bud formation in a photoperiodic and a day-neutral tobacco, Planta 171, 560–564.

    Article  Google Scholar 

  • Ramanayake, S.M.S.D. (1999) Viability of excised embryos, shoot proliferation and in vitro flowering in a species of rattan Calamus thwaitesii Becc., J. Hort. Sci. Biotech 74, 594–601.

    Google Scholar 

  • Ray, A., Land, J.D., Golden, T. and Ray, S. (1996) SHORT INTEGUMENT (SIN1), a gene required for ovule evelopment in Arabidopsis, also controls flowering time, Development 122, 2631–2638.

    PubMed  CAS  Google Scholar 

  • Rédei, GP. (1962) Supervital mutants of Arabidopsis, Genetics 47, 443–460.

    Google Scholar 

  • Reed, J.W., Nagpal, P., Poole, D.S., Furuya, M. and Chory, J. (1993) Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout A rabidopsis development, Plant Cell 5, 147–157.

    PubMed  CAS  Google Scholar 

  • Reed, J. W., Nagatani, A., Elich, T. D., Fagan, M. and Chory, J. (1994) Phytochrome Aand Phytochrome B have overlapping but distinct functions in Arabidopsis development, Plant Physiol 104, 1139–1149.

    PubMed  CAS  Google Scholar 

  • Reinhardt, D., Mandel, T. and Kuhlemeier, C. (2000) Auxin regulates the initiation of and radial position of plant lateral organs, Plant Cell 12, 507–518.

    PubMed  CAS  Google Scholar 

  • Richmond, T.A. and Bleecker, A.B. (1999) A defect in beta-oxidation causes abnormal inflorescence development in Arabidopsis, Plant Cell 11, 1911–1923.

    CAS  Google Scholar 

  • Rinne, P.L.H. and van der Schoot, C. (1998) Symplastic fields in the tun ca of the shoot apical meristem coordinate morphogenetic events, Development 125, 1477–1485.

    PubMed  CAS  Google Scholar 

  • Roberts, N.J., Luckman, GA. and Menary, R.C. (1993) In vitro flowering of Boronia megastigma Nees. and the effect of 6-benzylaminopurine, J. Plant Growth Reg 12, 117–122.

    Article  CAS  Google Scholar 

  • Robertson, S., Li, Y., Scutt, C., Willis, M. and Gilmartin, P. (1997) Spatial expression dynamics of/fen-9 delineate the thrird whorl in male and female flowers of dioecious Silene latifolia, Plant J 12, 155–168.

    Article  CAS  Google Scholar 

  • Robinson, K.E.P. and Firoozabady, E. (1993) Transformation of floriculture crops, Sci. Hort 55, 83–99.

    Article  CAS  Google Scholar 

  • Roe, J.L., Rivin, C.J., Sessions, R.A., Feldmann, K.A. and Zambryski, P.C. (1993) The TOUSLED gene in A. thaliana encodesa protein kinase homolog that is required for leaf and flower development, Cell 75, 938–950.

    Article  Google Scholar 

  • Roldân, M., Gomez-Mena, C., Ruiz-Garcia, L., Salinas, J. and Martinez-Zapater, J.M. (1999) Sucrose availability on the aerial part of the plant promotes morphogenesis and flowering of Arabidopsis in the dark, Plant J 20, 581–590.

    Article  PubMed  Google Scholar 

  • Rounsley, S.D., Ditta, G.S. and Yanofsky, M.F. (1995) Diverse roles for MADS box genes in Arabidopsis development, Plant Cell 7, 1259–1269.

    PubMed  CAS  Google Scholar 

  • Rout, G.R. and Das, P. (1994) Somatic embryogenesis and in vitro flowering of three bamboos, Plant Cell Rep 13, 683–686.

    Article  CAS  Google Scholar 

  • Running, M.P. and Meyerowitz, E.M. (1996) Mutations in the PERIANTHIA gene of Arabidopsis specifically alter floral organ number and initiation pattern, Development 122, 1261–1269.

    PubMed  CAS  Google Scholar 

  • Running, M.P., Fletcher, J.C. and Meyerowitz, E.M. (1998) The WIGGUM gene is required for proper regulation of floral meristem size in Arabi dopsis, Development 125, 2545–2553.

    CAS  Google Scholar 

  • Running, M.P. and Hake, S. (2001) The role of floral meristems in patterning, Carr. Opin. Plant Biol 4, 69–74.

    Article  CAS  Google Scholar 

  • Sablowski, R. W. and Meyerowitz, E. M. (1998) A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETAL43/PISTILLATA, Cell 92, 93–103.

    Article  CAS  Google Scholar 

  • Sakai, H., Medrano, L.J. and Meyerowitz, E.M. (1995) Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries, Nature 378, 199–203.

    Article  PubMed  CAS  Google Scholar 

  • Sakai, T., Kagawa, T., Kasahara, M., Swartz, T.E., Christie, J.M., Briggs, W.R., Wada, M. and Okada, K. (2001) Arabidopsis nphl and npll: blue light receptors that mediate both phototropism and chloroplast relocation, Proc. Natl. Acad. Sci. USA 98, 6969–6974.

    Article  PubMed  CAS  Google Scholar 

  • Samach, A., Onouchi, H., Gold, S., Ditta, G., Schwarz-Sommer, Z., Yanofsky, M. and Coupland, G. (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis, Science 288, 1613–1616.

    CAS  Google Scholar 

  • Sankhla, D., Davis, T.D., Sankhla, N. And Upadhyaya, A. (1995) In vitro regeneration of the heat-tolerant `German Red’ carnation through organogenesis and somatic embryogenesis, Gartenbauwissenschaft 60, 228–233.

    CAS  Google Scholar 

  • Sarma, D., Sarma, S. And Baruah, A. (1999) Micropropagation and in vitro flowering of Rauvolfia tetraphylla; A potent source of anti-hypertension drugs, Planta Med 65, 277–278.

    CAS  Google Scholar 

  • Satoh, N., Hong, S.K., Nishimura, A., Matusoka, M., Kitano, H. And Nagato, Y. (1999) Initiation of shoot apical meristem in rice: characterization of four SHOOTLESS genes, Development 126, 3629–3636.

    CAS  Google Scholar 

  • Savidge, B., Rounsley, S.D. and Yanofsky, M.F. (1995) Temporal relationships between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes, Plant Cell 7, 721–733.

    PubMed  CAS  Google Scholar 

  • Sawa, S., Ito, T., Shirnura, Y. And Okada, K. (1999) FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG-related domains, Genes Dev 13, 1079–1088.

    CAS  Google Scholar 

  • Schaffer, R., Ramsay, N., Samach, A., Corden, S., Putterill, J., Carré, I. A. and Coupland, G. (1998) The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering, Cell 93, 1219–1229.

    Article  PubMed  CAS  Google Scholar 

  • Schoof, H., Lenhard, M., Haecker, A., Mayer, K.F.X., Jürgens, G and Laux, T. (2000) The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes, Cell 100, 635–644.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, E.A. and Haugh, G.W. (1991) LEAFY, a homeotic gene that regulates inflorescence development in Arabidopsis, Plant Cell 3, 771–781.

    PubMed  Google Scholar 

  • Scorza, R. (1982) In vitro flowering, Hort. Rev 4, 106–127.

    CAS  Google Scholar 

  • Scorza, R. and Janick, J. (1980) In vitro flowering of Passi flora suberosa L., J. Amer. Soc. Hort. Sci. 105, 892–898.

    Google Scholar 

  • Segers, G, Gadisseur, I., Bergounioux, C., Engler, J.A., Jacqmard, A., Montagu, M.V. and Inzé, D. (1996) The Arabidopsis cyclin-dependent kinase gene cdc2bAt is preferentially expressed during S and G2 phases of the cell cycle, Plant J 10, 601–612.

    Article  PubMed  CAS  Google Scholar 

  • Sessions, A., Nemhauser, J.L., McColl, A., Roe, J.L., Feldmann, K.A. and Zambryski, P.C. (1997) ETTIN patterns the Arabidopsis floral meristem and reproductive organs, Development 124, 4481–4491.

    PubMed  CAS  Google Scholar 

  • Shannon, S. and Meeks-Wagner, D.R. (1991) A mutation in the Arabidopsis TFLI gene affects inflorescence meristem development, Plant Cell 3, 877–892.

    PubMed  CAS  Google Scholar 

  • Sheldon, C.C., Bum, J.E., Perez, P.P., Metzger, J., Edwards, J.A., Peacock, W.J. and Dennis, E.S. (1999) The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation, Plant Cell 11, 445–458.

    PubMed  CAS  Google Scholar 

  • Shevade, A., Sharma, R. and Verma, R.C. (1997) In vitro flowering in colchltetraploid Phlox drummondii, Phytomorphology 47, 173–175.

    Google Scholar 

  • Siegfried, K.R., Eshed, Y., Baum, S.F., Otsuga, D., Drews, G.N. and Bowman, J.L. (1999) Members of the YABBY gene family specify abaxial cell fate in Arabidopsis, Development 126, 4117–4128.

    CAS  Google Scholar 

  • Silverstone, A. L., Ciampaglio, C. N. and Sun, T. (1998) The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway, Plant Cell 10, 155–169.

    PubMed  CAS  Google Scholar 

  • Simon, R. and Coupland, G (1996) Arabidopsis genes that regulate flowering time in response to day-length, Semin. Cell. Dev. Biol 7, 19–25.

    Google Scholar 

  • Simon, R., Igeno, M.I. and Coupland, G (1996) Activation of floral meristem identity genes in Arabidopsis, Nature 384, 59–62.

    Article  CAS  Google Scholar 

  • Sitbon, M. (1989) Observations on the in vitro production of vernalized sugar beet (Beta vulgaris L.), Plant Breed 102, 338–340.

    Article  Google Scholar 

  • Somers, D.E., Sharrock, R.A., Teppernran, J.M. and Quail, P.H. (1991) The hy3 long hypocotyl mutant of Arabidopsis is deficient in phytochrome B, Plant Cell 3, 1263–1274.

    PubMed  CAS  Google Scholar 

  • Somers, D.E., Webb, A.A.R., Pearson, M. and Kay, S.A. (1998) The short period mutant, toc-1, alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana, Development 125, 485–494.

    CAS  Google Scholar 

  • Somers, D. E., Schultz, T. F., Milnamow, M. and Kay, S. A. (2000) ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis, Cell 101, 319–329.

    Article  PubMed  CAS  Google Scholar 

  • Sommer, H., Beitrân, J-P., Huijser, P., Pape, H., Lönnig, W-E., Saedler, H. and Schwarz-Sommer, Z. (1990) Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors, EMBO J 9, 605–613.

    PubMed  CAS  Google Scholar 

  • Soppe, W.J.J., Bentsink, L. and Koomneef, M. (1999) The early-flowering mutant efs is involved in the autonomous promotion pathway of Arabidopsis thaliana, Development 126, 4763–4770.

    CAS  Google Scholar 

  • Souer, E., van Houwelingen, A., Kloos, D., Mol, J. and Koes, R. (1996) The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries, Cell 85, 159–170.

    Article  PubMed  CAS  Google Scholar 

  • Souer, E., van der Kroll, A., Kloos, D., Spelt, C., Bliek, M., Mol, J. and Koes, R. (1998) Genetic control of branching pattern and floral identity during Petunia inflorescence development, Development 125, 733–742.

    Google Scholar 

  • Srinivasan, C. and Mullins, M. (1978) Control of flowering in the grapevine (Vitis vinifera L.): Formation of inflorescence in vitro by isolated tendrils, Plant Physiol 61, 127–130.

    Article  PubMed  CAS  Google Scholar 

  • Stafford, H.A. (1994) Anthocyanins and betalains: evolution of the mutually exclusive pathways, Plant Sci 101, 91–98.

    Article  CAS  Google Scholar 

  • Stephen, R. and Jayabalan, N. (1998) In vitro flowering and seed setting formation of coriander (Cari andrum sativum L.), Cure Sci 74, 195–197.

    Google Scholar 

  • Sticklen, M.B. (1991) Direct somatic embryogenesis and fertile plants from rice root cultures, J. Plant Physiol 138, 577–580.

    Article  Google Scholar 

  • Stimart, D.P. and Ascher, P.D. (1978) Tissue culture of bulb scale section for asexual propagation of Lilium longiflorum Thumb, J. Amer. Soc. Hort. Sci 103, 1982–1984.

    Google Scholar 

  • Sugano, S., Andronis, C., Ong, M.S., Green, R.M., and Tobin, E.M. (1999) The protein kinase CK2 is involved in regulation of circadian rhythms in Arabidopsis, Proc. SD Acad. Sci. USA 96: 12362–12366.

    Article  CAS  Google Scholar 

  • Sugiyama, M. (1999) Organogenesis in vitro, Cue. Opin. Plant Biol 2, 61–64.

    Article  CAS  Google Scholar 

  • Sung, Z.R., Belachew, A., Shunong, B. and Bertrand-Garcia, R. (1992) EVE, an Arabidopsis gene required for vegetative shoot development, Science 258, 1645–1647.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, K., Zue, H., Tanaka, Y., Fukui, Y., Mizutani, M. and Kusumi, T. (1997) Function of Arabidopsis thaliana homeodomain proteins Athbs in plant morphogenesis responding to environmental stimuli, Plant Cell Physiol 38, 38.

    Google Scholar 

  • Takada, S., Hibara, K-I., Ishida, T. and Tasaka, M. (2001) The CUP-SHAPED COTYLEDON] gene of Arabidopsis regulates shoot apical meristem formation, Development 128, 1127–1135.

    PubMed  CAS  Google Scholar 

  • Tanaka, O. (1986) Flower induction by nitrogen deficiency in Lemna paucicostata 6746, Plant Cell Physiol 27, 875–880.

    CAS  Google Scholar 

  • Tanaka, Y., Fukui, Y, Fukuchi-Mizutani, M., Holton, T.A., Higgens, E. and Kusumi, T. (1995) Molecular cloning and characterization of Rosa hybrida dihydroflavonol 4-reductase gene, Plant Cell Physiol 36, 1023–1031.

    PubMed  CAS  Google Scholar 

  • Tanaka, Y., Tsuda, S. and Kusumi, T. (1998) Metabolic engineering to modify flower colour, Plant Cell Physiol 39, 1119–1126.

    Article  CAS  Google Scholar 

  • Tang, W. (2000) High frequency plant regeneration via somatic embryogenesis and organogenesis and in vitro flowering of regenerated plantlets of Panax ginseng, Plant Cell Rep 19, 727–732.

    Article  CAS  Google Scholar 

  • Taylor, S., Hofer, J. and Murfet, I. (2001) Stamina pistilloida, the pea ortholog of Fim and UFO, is required for normal development of flowers, inflorescences, and leaves, Plant Cell 13, 31–46.

    PubMed  CAS  Google Scholar 

  • Telfer, A. and Poethig, R.S. (1998) HASTY: a gene that regulates the timing of shoot maturation in Arabidopsis thaliana, Development 125, 1889–1898.

    PubMed  CAS  Google Scholar 

  • Thakur, R., Rao, P.S. and Bapat, V.A. (1998) In vitro plant regeneration in Melia azedarach L., Plant Cell Rep 18, 127–131.

    Article  CAS  Google Scholar 

  • Theissen, G, Becker, A., Di Rosa, A., Kanno, A., Kim, J.T., Munster, T., Winter, K-U. and Saedler, H. (2000) A short history of MADS-box genes in plants, Plant Mol. Biol 42, 115–149.

    Article  PubMed  CAS  Google Scholar 

  • Theissen, G (2001) Development of floral organ identity: stories from the MADS house, Cure Opin. Plant Biol 4, 75–85.

    Article  CAS  Google Scholar 

  • Thorpe, T., Tran Thanh Van, K. and Caspar, T. (1978) Isoperoxidases in epidermal layers of tobacco and changes during organ formation in vitro, Physiol. Plant 44, 388–394.

    Article  CAS  Google Scholar 

  • Tisserat, B., Galletta, P.D. and Jones, D. (1990) In vitro flowering from Citrus limon lateral buds, J. Plant Physiol 136, 56–60.

    Article  Google Scholar 

  • Tisserat, B. and Galletta, P.D. (1995) In vitro flowering and fruiting of Capsicum frutescens L., HortScience 30, 130–132.

    Google Scholar 

  • Tran Thanh Van, M. (1973a) In vitro control of de novo flower, bud, root and callus differentiation from excised epidermal tissues, Nature 246, 44–45.

    Article  Google Scholar 

  • Tran Thanh Van, M. (1973b) Direct flower neoformation from superficial tissue of small explant of Nicotiana tabacum, Planta 115, 87–92.

    Google Scholar 

  • Tran Thanh Van, M. (1974a) Methods of acceleration of growth and flowering in a few species of orchids, Am. Orchid. Soc. Bull 43, 699–707.

    Google Scholar 

  • Tran Thanh Van, M. (1974b) Growth and flowering of Cyrnbidium buds normally inhibited by apical dominance, J. Amer. Soc. Hort. Sci 99, 450–453.

    Google Scholar 

  • Tran Thanh Van, K. (1977) Regulation of morphogenesis, In: Plant tissue culture and its biotechnological application, Springer-Verlag, pp. 367–385.

    Google Scholar 

  • Tran Thanh Van, K. (1980) Control of morphogenesis by inherent and exogenously applied factors in thin cell layers, Intl. Rev. Cytol 32, 291–311.

    Google Scholar 

  • Tran Thanh Van, K. (1981) Control of morphogenesis, Annu. Rev. Plant Physiol 32, 291–311.

    Article  Google Scholar 

  • Tran Thanh Van, K. (1991) Molecular aspects of flowering, In: Harding, J., Singh, F. and Mol, J.N.M. (eds.) Genetics and breeding of ornamental species, Kluwer Academic Publishers, The Netherlands, pp. 253–269.

    Google Scholar 

  • Tran Thanh Van, K. and Dien, N.T. (1975) Étude au niveau cellulaire de la differenciation in vitro et de novo de bourgeons vegetatifs, de racines, ou de cal à partir de couches minces de cellules de type-epidermique de Nicotiana tabacum Wisc, Can. J. Bot 53, 553–550.

    Article  Google Scholar 

  • Tran Thanh Van, K. and Chlyah, A. (1976) Differenciation de bouton floraux, de bourgeons végétatifs, de raciness et de cals à partir de l’assis sous-épidermiques de ramification florales de Nicotiana tabacum L. Wisc.38. Etude infrastructurale, Can. J. Bot 54, 1979–1996.

    Article  Google Scholar 

  • Tran Thanh Van, K. and Marcotte, J.C. (1981) Differential organogenic responses related to the nature of cytokinins, XIII International Botanical Congress, Sydney, Abstr. p. 50.

    Google Scholar 

  • Tran Thanh Van, K., Toubart, P., Cousson, A., Darvill, A.G., Gollin, D.J., Chelf, P. and Albersheim, P. (1985a) Manipulation of the morphogenetic pathways of tobacco explants by oligosaccharins, Nature 314, 615–617.

    Article  Google Scholar 

  • Tran Thanh Van, K., Yilmaz, A. and Trinh, H.T. (1985b) How to programme in vitro different morphogenetic expression in some conifers, In: J.M. Bonga and D.J. Durzan (eds.) Cell and tissue culture in forestry, Martinus Nijhoff Publishers, Dordrecht.

    Google Scholar 

  • Tran Thanh Van, K. and Trinh, T.H. (1986) Fundamental and applied aspects of differentiation in vitro and in vivo, In: D.A. Evans, W.R. Sharp and P.V. Ammirato (eds) Handbook of plant cell culture, techniques and application, Vol 4, McMillan Publishing Company, New York, pp. 316–335.

    Google Scholar 

  • Tran Thanh Van, K. and Mutaftschiev, S. (1990) Signals influencing cell elongation, cell enlargement, cell division and morphogenesis, In: Nijkam HJJ, van der Plaas LHW and Aartij J (eds.) Progress in Plant cellular and Molecular Biology, Kluwer Academic, pp 514–519.

    Chapter  Google Scholar 

  • Tran Thanh Van, K., Richard, L. and Gendy, C.A. (1990) An experimental model for the analysis of plant/ cell differentiation: thin cell layer. Concept, strategy, methods, records and potential, In: D. Durzan and R. Rodriguez (eds.) NATO Biotechnology Series. Plenum press, New York, pp 215–224.

    Google Scholar 

  • Tran Thanh Van, K. and Bui Van Le (2000) Curent status of thin cell layer method for the induction of organogenesis or somatic embryogenesis, In: Somatic embryogenesis in woody plants, Vol 6, S.J. Mohan, P.K. Gupta and R.J. Newton (eds), Kluwer Academic, Publishers, Dordrecht, pp 51–92.

    Google Scholar 

  • Trinh, T.H., Mante, S., Pua, E-C. and Chua, N-H. (1987) Rapid production of transgenic flowering shoots and F1 progeny from Nicotiana plumbaginifolia epidermal peels, Biotechnology 5, 1081–1084.

    Article  Google Scholar 

  • Tröbner, W., Ramirez, L., Motte, P., Hue, I., Huijser, P., Lönnig, W-E., Saedler, H., Sommer, H. and Schwartz-Sommer, Z. (1992) GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis, EvIBO J 11, 4693–4704.

    Google Scholar 

  • Tsujikawa, T., Ichii, T., Nakanishi, T., Ozaki, T. and Kawai, Y. (1990) In vitro flowering of Japanese pear and the effect of GA4+7, Sci. Hort 41, 233–245.

    Article  CAS  Google Scholar 

  • Ur, R.L., Abuja, P.S., Banerjee, S. and Bhargava, S.C. (1998) Analysis of asymmetric intergeneric somatic hybrid plants produced between Hyoscyamus muticus L. and double mutant of Nicotiana tabacum L., J. Gen. Breed 52, 333–337.

    Google Scholar 

  • van den Ende, G, Cross, A.F., Kemp, A. and Barendse, G.W.M. (1984) Floral morphogenesis in thin-layer tissue cultures of Nicotiana tabacum, Physiol. Plant 62, 83–88.

    Article  Google Scholar 

  • van der Geer, P., Hunter, T. and Lindberg, R.A. (1994) Receptor protein-tyrosine kinases and their signal transduction pathways, Annu. Rev. Cell Biol 10, 251–337.

    Article  PubMed  Google Scholar 

  • van der Krol, A.R., Lenting, P.E., Veenstra, J., van der Meer, I.M., Koes, R.E., Gerats, A.G.M., Mol, J.N.M. and Stuitje, A.R. (1988) An anti-sense chalcone synthase gene in transgenic plants inhibits flower pigmentation, Nature 333, 866–869.

    Article  Google Scholar 

  • van der Krol, A.R., Mur, L.A., Beld, M., Mol, J.N.M. and Stuit, J.A.R. (1990) Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression, Plant Cell 2, 291–299.

    PubMed  Google Scholar 

  • van Houwelingen, A., Souer, E., Spelt, K., Kloos, D., Mol, J. and Loes, R. (1998) Analysis of flower pigmentation mutants generated by random transposon mutagenesis in Petunia hybrida, Plant J 13, 39–50.

    Google Scholar 

  • Van Staden, J. and Dickens, C.W.S. (1991) In vitro induction to flowering and its relevance to micropropagation, In: Y.P.S. Bajaj (ed.) Biotechnology in agriculture and forestry Vol. 17, High-Tech and micropropagation I, Springer-Verlag, Belin, Germany pp. 85–109.

    Google Scholar 

  • Vaz, A.P.A. and Kerbauy, GB. (1998) Effects of mineral nutrients on in vitro flowering of Psygmorchis pusilla (Orchidaceae), Abstract of 25 6 ’ International Horticultural Congress, Gent, Belgium, p. 417.

    Google Scholar 

  • Verbeke, J.A. (1992) Fusion events during floral morphogenesis, Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 583–598.

    Article  Google Scholar 

  • Vemoux, T., Kronenberger, J., Grandjean, O., Laufs, P. and Traas, J. (2000) PIN-FORMED I regulates cell fate at the periphery of the shoot apical meristem, Development 127, 5157–5165.

    Google Scholar 

  • Vetrilova, M. (1973) Genetic and physiological analysis of induced late mutants of Arabidopsis thaliana (L.) Heynh., Biol. Plant 15, 391–397.

    Article  CAS  Google Scholar 

  • Vishwanath, P.M. (1998) Micropropagation studies in Ceropegia spp., In Vitro Cell. Dev. Biol 34, 240–243.

    Google Scholar 

  • Vollbrecht, E., Reiser, L. and Hake, S. (2000) Shoot meristem size is dependent on inbred background and presence of the maize homeobox gene, knotted 1, Development 127, 3161–3172.

    CAS  Google Scholar 

  • Vongs, A., Kakutani, T., Martienssen, R.A. and Richards, E.J. (1993) Arabidopsis thaliana DNA methylation mutants, Science 260, 1926–1928.

    Article  PubMed  CAS  Google Scholar 

  • Wada, K. and Tostsuka, T. (1982) Long-day flowering of Penile plants cultured in nitrogen-poor media, Plant Cell Physiol 23, 977–985.

    Google Scholar 

  • Wagner, D., Sablowski, R.W. and Meyerowitz, E.M. (1999) Transcriptional activation of APETALAI by LEAFY, Science 285, 582–584.

    Article  CAS  Google Scholar 

  • Waites, R. and Hudson, A. (1995) phantastica: a gene required for dorsoventrality of leaves in Antirrhinum malus, Development 121 2143–2154.

    Google Scholar 

  • Wang, G, Xu, Z., Chia, T-F. and Chua, N-H. (1997) In vitro flowering of Dendrobium candidum, Sci. China Sen. C Life Sci 40, 35–42.

    Article  CAS  Google Scholar 

  • Wang, Z. Y. and Tobin, E. M. (1998) Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED (CCAI) gene disrupts circadian rhythms and suppresses its own expression, Cell 93, 1207–1217.

    Article  PubMed  CAS  Google Scholar 

  • Wang, S., Tang, L. and Chen, F. (2001) In vitro flowering of bitter melon, Plant Cell Rep 20, 393–397.

    Article  CAS  Google Scholar 

  • Wardell, W.L. and Skoog, F. (1969a) Flower formation in excised tobacco stem segments; I. Methodology and effects of plant hormones, Plant Physiol 44, 1402–1406.

    Article  PubMed  CAS  Google Scholar 

  • Wardell, W.L. and Skoog, F. (1969b) Flower formation in excised tobacco stein segments; II. Reversible removal of IAA inhibition by RNA base analogues, Plant Physiol 44, 1407–1412

    Article  PubMed  CAS  Google Scholar 

  • Weigel, D. 1995. The genetics of flower development: from floral induction to ovule morphogenesis, Annu. Rev. Genet 29, 19–39.

    Article  PubMed  CAS  Google Scholar 

  • Weigel, D., Alvarez, J., Smyth, D. R., Yanofsky, M. F. and Meyerowitz, E.M. (1992) LEAFY controls floral meristem identity in Arabidopsis, Cell 69, 843–859.

    Article  PubMed  CAS  Google Scholar 

  • Weller, J.L., Murfet, I.C. and Reid, J.B. (1997e) Pea mutants with reduced sensitivity to far-red light define an important role for phytochrome A in day-length detection, Plant Physiol 114, 1225–1236.

    PubMed  CAS  Google Scholar 

  • Weller, J.L., Reid, J.B., Taylor, S.A. and Murfet, I.C. (19976) The genetic control of flowering in pea, Trends Plant Sci 2, 412–418.

    Google Scholar 

  • White, D.W.R., Woodfield, D.R. and Caradus, J.R. (1998) Mortal: a mutant of white clover defective in nodal root development, Plant Physiol 116, 913–921.

    Article  PubMed  CAS  Google Scholar 

  • Whitelam, GC., Johnson, E., Peng, J., Carol, P., Anderson, M.L., Cowl, J.S. and Harberd, N.P. (1993) Phytochrome A null mutants of Arabidopsis display a wild-type phenotype in white light, Plant Cell 5, 757–768.

    PubMed  CAS  Google Scholar 

  • Whitelam, GC. and Harberd, N.P. (1994) Action and function of phytochrome family members revealed through the study of mutant and transgenic plants, Plant Cell Environ 17, 615–625.

    Article  CAS  Google Scholar 

  • Wiennann, R. and Vieth, K. (1983) Outer pollen wall, an important site for flavonoids, Protoplasma 118, 230–233.

    Article  Google Scholar 

  • Wilkinson, M., de Andrade Silva, E., Zachgo, S., Saedler, H. and Schwarz-Sommer, Z. (2000) CHORIPETALA and DESPENTEADO: general regulators during plant development and potential targets ofFIMBRIATA-mediated degradation, Development 127, 3725–3734.

    PubMed  CAS  Google Scholar 

  • Williams-Carrier, R.E., Lie, Y.S., Hake, S. and Lemaux, P.G. (1997) Ectopic expression of the maize knI gene phenocopies of the Hooded mutant of barley, Development 124, 3737–3745.

    PubMed  CAS  Google Scholar 

  • Wilson, R. N., Heckman, J. W. and Somerville, C. R. (1992) Gibberellin is required for flowering in A. thaliana under short days, Plant Physiol 100, 403–408.

    Article  PubMed  CAS  Google Scholar 

  • Wiiniewska, J., Trejgell, A. and Tretyn, A. (2001) Influence of animal peptide growth factors on flowering of Pharbitis nil in vitro, Abstract l7h International Conference on Plant Growth Regulators, p. 112, Brno, Czech Republic.

    Google Scholar 

  • http://www.salk.edu/LABS/.bio-w/flower web.html

  • Yamaguchi, T., Fukada-Tanaka, S., Inagaki, Y., Saito, N., Yonekura-Sakakibara, K., Tanaka, Y., Kusumi, T. and Iida, S. (2001) Genes encoding the vacuolar Na+/H+ exchanger and flower coloration, Plant Cell Physiol 42, 451–461.

    Article  PubMed  CAS  Google Scholar 

  • Yang. C-H., Cheng, L-J. and Sung, Z.R. (1995) Genetic regulation of shoot development in Arabidopsis: the role of EMT’ genes, Dev. Biol 169, 421–435.

    Article  PubMed  CAS  Google Scholar 

  • Yanofsky, M.F., Ma, H., Bowman, J.L., Drews, G.N., Feldmann, K.A. and Meyerowitz, E.M. (1990) The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors, Nature 346, 35–39.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, N., Yanai, Y., Chen, L., Kato, Y., Hiratsuka, J., Miwa, T., Sung, Z.R. and Takahashi, S. (2001) EMBRYONIC FLOWER2, a novel polycomb group protein homolog, mediates shoot development and flowering in Arabidopsis, Plant Cell 13, 2471–2481.

    PubMed  CAS  Google Scholar 

  • Yoshiyuki, N:, Maki, I. And Yasuyoshi, H. (1998) Organogenesis and in vitro flowering of temperate cymbidium using rhizome, Abstract of 25 International Horticultural Congress, Gent, Belgium, p. 412.

    Google Scholar 

  • Yu, D., Kotilainen, M., Pollanen, E., Mehto, M., Elomaa, P., Helariutta, Y., Albert, V.A. and Teeri, T.H. (1999) Organ identity genes and modified patterns of flower development in Gerbera hybrida (Asteraceae), Plant 17, 51–62.

    Article  CAS  Google Scholar 

  • Yu, H., Yang, S.H. and Goh, C.J. (2000) DOH I, a class 1 knox gene, is required for maintenance of the basic plant architecture and floral transition in orchid, Plant Cell 12, 2143–2159.

    PubMed  CAS  Google Scholar 

  • Yu, L.P., Simon, E.J., Trotochaud, A.E. and Clark, S.E. (2000) POLTERGEIST functions to regulate meristem development downstream of the CLAVATA loci, Development 127, 1661–1670.

    PubMed  CAS  Google Scholar 

  • Zagotta, M.T., Shannon, S., Jacobs, C. and Meeks-Wagner, D.R. (1992) Early-flowering mutants of Arabidopsis thaliana, Austr. J. Plant Physiol 19, 411–418.

    Article  Google Scholar 

  • Zagotta, M.T., Hicks, K.A., Jacobs, C.I., Young, J.C., Hangarter, R.P. and Meeks-Wagner, D.R. (1996) The Arabidopsis ELF3 gene regulates vegetative photomorphogenesis and the photoperiodic induction of flowering, Plant J 10, 691–702.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Z. and Leung, D.W.M. (2000) A comparison of in vitro with in vivo flowering in gentian, Plant Cell Tiss. Org. Cult 63, 223–226.

    Article  CAS  Google Scholar 

  • Zucker, A., Ahroni, A., Tzfira, T., Ovadis, M., Itzhaki, H., Scklarman, E., Ben-Meir, H. and Vainstein, A. (1998) In Abstr. 9th Intl. Congr. Plant Tiss. Cell Cult, 35.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Teixeira da Silva, J.A., Nhut, D.T. (2003). Thin Cell Layers and Floral Morphogenesis, Floral Genetics and in Vitro Flowering. In: Nhut, D.T., Van Le, B., Tran Thanh Van, K., Thorpe, T. (eds) Thin Cell Layer Culture System: Regeneration and Transformation Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3522-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3522-3_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6259-8

  • Online ISBN: 978-94-017-3522-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics