Skip to main content

Data Acquisition and Image Reconstruction for 3D PET

  • Chapter
The Theory and Practice of 3D PET

Part of the book series: Developments in Nuclear Medicine ((DNUM,volume 32))

Abstract

The purpose of this chapter is to explain the underlying concepts of the most common image reconstruction methods. The question to be answered in this chapter is: how can we use the additional information from a 3D PET scan (as compared to a 2D scan) to improve the signal to noise ratio in the reconstructed image?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Badawi RD, Marsden PK, Cronin BF, Sutcliffe JL, Maisey MN. Optimization of noise-equivalent count rates in 3D PET. Phys Med Biol 1997; 41: 1755–1776.

    Article  Google Scholar 

  • Barrett HH, Swindell W. Radiological Imaging. New York: Academic Press, 1981.

    Google Scholar 

  • Barrett HH, Wilson DW, Tsui BMW. Noise properties of the EM algorithm: I. Theory. Phys Med Biol 1994; 39: 833–846.

    Article  CAS  Google Scholar 

  • Cheung WK, Lewitt RM. Modified Fourier reconstruction method using shifted transform samples. Phys Med Biol 1991; 36: 269–277.

    Article  PubMed  CAS  Google Scholar 

  • Colsher JG. Fully three-dimensional positron emission tomography. Phys Med Biol 1980; 25: 103–115.

    Article  PubMed  CAS  Google Scholar 

  • Cutler PD, Xu M. Strategies to improve 3D whole body PET image reconstruction. J Nuc Med 1995; 36: 93–94.

    Google Scholar 

  • Daube-Witherspoon ME, Muehllehner G. Treatment of axial data in three-dimensional PET. J Nuc Med 1987; 28: 1717–1724.

    CAS  Google Scholar 

  • Deans SR. The Radon transform and some of its applications. New York: Wiley, 1983.

    Google Scholar 

  • Defrise M, Geissbuhler A, Townsend DW. Performance study of 3D reconstruction algorithms for PET. Phys Med Biol 1994; 39.

    Google Scholar 

  • Defrise M, Kinahan PE, Townsend DW, Michel C, Sibomana M, Newport D. Exact and approximate rebinning algorithms for 3D PET data. IEEE Trans Med Imag 1997; 16: 145–158.

    Article  CAS  Google Scholar 

  • Defrise M, Townsend DW, Clack R. FaVoR: A fast reconstruction algorithm for volume imaging in PET. Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference; 1991 November 2–9; Santa Fe, NM;1919–1923.

    Google Scholar 

  • Defrise M, Townsend DW, Deconinck F. Statistical noise in three-dimensional positron tomography. Phys Med Biol 1990; 35: 131–138.

    Article  Google Scholar 

  • Edholm PR, Lewitt RM, Lindholm B. Novel Properties of the Fourier Decomposition of the Sinogram. Proceedings of the International Workshop on Physics and Engineering of Computerized Multidimensional Imaging and Processing; 1986; Proceedings of the SPIE 671: 8–18.

    Article  Google Scholar 

  • Egger M. Fast Volume reconstruction in positron emission tomography. [PhD Thesis]. Laussane, University of Laussane, 1996.

    Google Scholar 

  • Fessier JA. Penalized weighted least squares image reconstruction for positron emission tomography. IEEE Trans Med Imag 1994; 13 (2): 290–300.

    Article  Google Scholar 

  • Furuie SS, Herman GT, Narayan TK, Kinahan PE, Karp JS, Lewitt RM, Matej S. A methodology for testing for statistically significant differences between fully 3D PET reconstruction algorithms. Phys Med Biol 1994; 39: 341–354.

    Article  PubMed  CAS  Google Scholar 

  • Hudson H, Larkin R. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imag 1994; 13: 601–609.

    Article  CAS  Google Scholar 

  • Herbert T, Leahy RM. A generalized EM algorithm for 3-D Bayesian reconstruction for Poisson data using Gibbs priors. IEEE Trans Med Imag 1989;MI-8:194–202.

    Google Scholar 

  • Jackson JI, Meyer CH, Nishimura DG, Macovski A. Selection of a convolution function for Fourier inversion using gridding. IEEE Trans Med Imag 1991; 10: 473–478.

    Article  CAS  Google Scholar 

  • Johnson CA, Yan Y, Carson RE, Martino RL, Daube-Witherspoon ME. A system for the 3D reconstruction of retracted-septa data using the EM algorithm. IEEE Trans Nuc Sci 1995; 42: 1223–1227.

    Article  Google Scholar 

  • Kak AC, Slaney M. Principles of Computerized Tomographic Imaging. New York: IEEE Press, 1988.

    Google Scholar 

  • Kinahan PE, Karp JS. Figures of Merit for comparing reconstruction algorithms with a volume-imaging PET scanner. Phys Med Biol 1994; 39: 631–638.

    Article  PubMed  CAS  Google Scholar 

  • Kinahan PE, Michel C, Defrise M, Townsend DW, Sibomana M, Lonneux M, Newport DF, Luketich JD. Fast Iterative Image Reconstruction of 3D PET Data. Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference; 1996 November 5–8; Anaheim, CA; 1918–1922.

    Google Scholar 

  • Kinahan PE, Rogers JG. Analytic 3D image reconstruction using all detected events. IEEE Trans Nuc Sci 1989; 36: 964–968.

    Article  CAS  Google Scholar 

  • Lewitt RM, Muehllehner G, Karp JS. Three-dimensional image reconstruction for PET by multi-slice rebinning and axial image filtering. Phys Med Biol 1994; 39: 321–339.

    Article  Google Scholar 

  • Liow J-S, Strother SC, Rehm K, Rottenburg A. Improved resolution for PET volume-imaging through three-dimensional iterative reconstruction. J Nuc Med 1997; 38: 1623 1630.

    Google Scholar 

  • Matej S, Herman GT, Narayan TK, Furuie SS, Lewitt RM, Kinahan PE. Evaluation of task-oriented performance of several fully 3-D PET reconstruction algorithms. Phys Med Biol 1994; 39: 355–367.

    Article  PubMed  CAS  Google Scholar 

  • Matej S, Karp JS, Lewitt RM, Becher AJ. Performance of the Fourier Rebinning Algorithm for PET with Large Acceptance Angles. Phys Med Biol 1998; 43.

    Google Scholar 

  • Natterer F. The Mathematics of Computerized Tomography. New York: Wiley, 1986.

    Google Scholar 

  • Orlov SS. Theory of three-dimensional image reconstruction: I Conditions for a complete set of projections. Soviet Physics Crystallography 1976; 20: 429–433.

    Google Scholar 

  • Orlov SS. Theory of three-dimensional image reconstruction: II The recovery operator. Soviet Physics Crystallography 1976; 20: 429–433.

    Google Scholar 

  • Qi J, Leahy RM, Cherry SR, Chatziioannou A, Farquhar TH. High Resolution 3D Bayesian Image Reconstruction Using the Small Animal microPET Scanner. Phys Med Biol 1998; 43.

    Google Scholar 

  • Shepp LA, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imag 1982; 2: 113–119.

    Article  Google Scholar 

  • Sossi V, Stazyk M, Kinahan PE, Ruth T. Implementation of a 3D acquisition and 2D reconstruction technique on an ECAT 953B for phantom and human basal ganglia studies. J Comp Assist Tomogr 1994; 18: 1004–1010.

    Article  CAS  Google Scholar 

  • Stearns CW, Chesler DA, Brownell GL. Accelerated image reconstruction for a cylindrical positron tomograph using Fourier domain methods. IEEE Trans Nuc Sci 1990; 37: 773–777.

    Article  Google Scholar 

  • Stearns CW, Crawford CR, Hu H. Oversampled filters for quantitative volumetric PET reconstruction. Phys Med Biol 1994; 39: 381–388.

    Article  PubMed  CAS  Google Scholar 

  • Townsend DW, Defrise M. Image reconstruction methods in positron tomography. CERN;Technical Report. 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Defrise, M., Kinahan, P. (1998). Data Acquisition and Image Reconstruction for 3D PET. In: Bendriem, B., Townsend, D.W. (eds) The Theory and Practice of 3D PET. Developments in Nuclear Medicine, vol 32. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3475-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3475-2_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5040-3

  • Online ISBN: 978-94-017-3475-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics