Skip to main content

Part of the book series: Developments in Nuclear Medicine ((DNUM,volume 32))

Abstract

Positron Emission Tomography (PET) is intrinsically a three-dimensional (3D) imaging technique. Neutron-deficient isotopes may undergo nuclear decay by the emission of a positron, or positive electron, and a neutrino. A positron has the same mass, but opposite charge, to that of the electron. Depending on the specific isotope, positrons are emitted with a small amount of energy (a few MeV, maximum), which they rapidly lose by collisions with the atoms in the surrounding medium (tissue). Once the positron energy becomes sufficiently small, an encounter with a free electron in the tissue results in a matter-antimatter annihilation from which two photons emerge almost 180° opposed (fig. 1.1). The range of the positron in tissue from the point of emission to the point of annihilation with an electron may be a few millimeters, depending on the energy of emission from the nucleus. Deviation from 180° occurs when the positron-electron system has some residual momentum which must be conserved in the annihilation process. The energy of each of the photons from positron annihilation is 511 keV, equal to the rest mass of the electron or positron. The pairs of 511 keV annihilation photons are then emitted into a 4π solid angle (i.e. in 3D) without any particular preferential direction. Detection in coincidence of the pairs of photons from individual annihilations yields information on the underlying distribution of the positron-emitting tracer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allemand R, Gresset C, Vacher J. Potential advantages of a cesium fluoride scintillator for a time of flight positron camera. J Nucl Med 1980; 21: 153–155.

    PubMed  CAS  Google Scholar 

  • Bailey DL and Meikle SR. A convolution-subtraction scatter correction method for 3D PET. Phys Med Biol 1994; 39: 412–424.

    Article  Google Scholar 

  • Bailey DL, Young H, Bloomfield PM, Meikle SR, Glass D, Myers MJ, Spinks TJ, Watson CC, Luk P, Peters M, Jones T. ECAT ART–a continuosly rotating PET camera: performance characteristics, inital clinical studies, and installation considerations in a nuclear medicine department. Eur J Nucl Med 1997; 24 (1): 5–15.

    Article  Google Scholar 

  • Bendriem B, Trebossen R, Froulin V, Syrota A. A PET scatter correction using simultaneous acquisitions with low and high lower energy thresholds. IEEE Medical Imaging Conference Record 1993; 3: 1779–1783.

    Google Scholar 

  • Brix G, Zaers J, Adam L-E, Bellemann ME, Ostertag H, Trojan H, Haberkorm U, Doll J, Oberdorfer F, Lorenz WJ. Performance evaluation of a whole-body PET scanner using the NEMA protocol. J Nucl Med 1997; 38 (10): 1614–1623.

    PubMed  CAS  Google Scholar 

  • Casey ME and Nutt R. A multicrystal two-dimensional BGO detector system for positron emission tomography. IEEE Trans Nucl Sci 1986;NS-33:460–463.

    Article  Google Scholar 

  • Cherry SR, Dahlbom M, Hoffman EJ. Three-dimensional positron emission tomography using a conventional multislice tomograph without septa. J Comput Assist Tomogr 1991; 15: 655–668.

    Article  PubMed  CAS  Google Scholar 

  • Cho ZH, Faruhki MR. Bismuth germanate as a potential scintillation detector in positron cameras. J Nucl Med 1977; 18: 840–844.

    PubMed  CAS  Google Scholar 

  • Colsher JG. Fully three-dimensional positron emission tomography. Phys Med Biol 1980; 20: 103–115.

    Article  Google Scholar 

  • Dahlbom M, Mandelkern MA, Hoffman EJ, Ricci AR, Barton JB. Hybrid Mercuric iodide HgI2–gadolinium orthosilicate (GSO) detector for PET. IEEE Trans Nucl Sci 1985; 32: 533–537.

    Article  Google Scholar 

  • Daube-Witherspoon ME and Muehllehner G. Treatment of axial data in three-dimensional PET. J Nucl Med 1987; 28: 1717–1724.

    PubMed  CAS  Google Scholar 

  • DeGrado TR, Turkington TG, Williams JJ, Stearns CW, Hoffman JM, Coleman RE. Performance characteristics of a whole-body PET scanner. J Nucl Med 1994; 35: 1398 1406.

    Google Scholar 

  • deKemp RA, Nahmias C. Attenuation correction in PET using single photon transmission measurement. Med Phys 1994; 21: 771–778.

    Article  PubMed  CAS  Google Scholar 

  • Defrise M. A factorization method for the 3D x-ray transform. Inverse Problems 11 1995; 983–994.

    Article  Google Scholar 

  • Grootoonk S, Spinks TJ, Jones T, Michel C, Bol A. Correction for scatter using a dual energy window technique with a tomograph operating without septa. IEEE Medical Imaging Conference Record 1992; 2: 1569–1573.

    Google Scholar 

  • Jones T, Bailey DL, Bloomfield PM, Spinks TJ, Jones W, Vaigneur K, Reed J, Young J, Newport D, Moyers C, Casey ME, Nutt R. Performance characteristics and novel design aspects of the most sensitive PET camera built for high temporal and spatial resolution. J Nucl Med 1996; 37 (5): 85 P.

    Google Scholar 

  • Karp J, Muehllehner G, Mankoff DA, Ordonez CE, 011inger JM, Daube-Witherspoon ME, Haigh AT, Beerbohm DJ. Continuous-slice PENN-PET: a positron tomograph with volume imaging capability. J Nucl Med 1990; 31: 617–627.

    PubMed  CAS  Google Scholar 

  • Kinahan PE and Rogers JG. Analytic three-dimensional image reconstruction using all detected events. IEEE Trans Nucl Sci 1989;NS-36:964–968.

    Article  CAS  Google Scholar 

  • Laval M, Moszynski M, Allemand R, Cormoreche E, Guinet P, Odru R, Vacher J. Barium fluoride - Inorganic scintillator for subnanosecond timing. Nucl Inst Meth 1983; 206: 169176.

    Google Scholar 

  • Mazoyer B, Trebossen R, Schoukroun C, Verrey B, Syrota A, Vacher J, Lemasson P, Monnet O, Bouvier A, Lecomte JL. Physical characteristics of TTV03, a new high spatial resolution time-of-flight positron tomograph. IEEE Trans Nucl Sci 1990; 37: 778–782.

    Article  Google Scholar 

  • Muehllehner G. Positron camera with extended counting rate capability. J Nucl Med 1975; 16: 653–657.

    PubMed  CAS  Google Scholar 

  • Ollinger JM. Evaluation of a model-based scatter correction for fully 3D PET. IEEE Medical Imaging Conference Record 1994; 2: 1264–1268.

    Google Scholar 

  • Trebossen R, Bendriem B, Ribeiro MJ, Fontaine A, Frouin V, Remy P. Validation of the 3D acquisition mode in PET for the quantitation of the F-18 fluoradopa uptake in the striatum. J Cereb Blood Flow Metab 1998: in press.

    Google Scholar 

  • Townsend DW, Frey P, Jeavons AP, Reich G, Tochon-Danguy HJ, Donath A, Christin A, Schaller G. High density avalanche chamber (HIDAC) positron camera. J Nucl Med 1987; 28: 1554–1562.

    PubMed  CAS  Google Scholar 

  • Townsend DW, Spinks TJ, Jones T, Geissbuhler A, Defrise M, Gilardi MC, Heather J. Three-dimensional reconstruction of PET data from a multi-ring camera. IEEE Trans Nucl Sci 1989; 36: 1056–1065.

    Article  CAS  Google Scholar 

  • Townsend DW, Geissbuhler A, Defrise M, Hoffman EJ, Spinks TJ, Bailey DL, Gilardi MC, Jones T. Fully three-dimensional reconstruction for a PET camera with retractable septa. IEEE Trans Med Imaging 1991; 10 (4): 505–512.

    Article  PubMed  CAS  Google Scholar 

  • Townsend DW, Wensween M, Byars LG, Geissbuhler A, Tochon-Danguy HJ, Christin A, Defrise M, Bailey DL, Grootoonk S, Donath A, Nutt R. A rotating PET scanner using BGO block detectors: design, performance and applications. J Nucl Med 1993; 34 (8): 1367–1376.

    PubMed  CAS  Google Scholar 

  • Townsend DW, Choi Y, Sashin D, Mintun MA, Grootoonk S, Bailey DL. An investigation of practical scatter correction techniques for 3D PET. J Nucl Med Supplement 1994; 35 (5): 50 P.

    Google Scholar 

  • Watson CC, Newport D, Casey ME. A single scatter simulation technique for scatter correction in three-dimensional PET. In: Grangeat P, Amans JL, editors. Three-dimensional image reconstruction in radiology and nuclear medicine. Dordrecht, The Netherlands: Kluwer, 1996: 255–268.

    Chapter  Google Scholar 

  • Wienhard K, Eriksson L, Grootoonk S, Casey M, Pietrzyk U, Heiss W-D. Performance evaluation of the positron scanner ECAT EXACT. J Comput Assist Tomogr 1992; 16 (5): 804–813.

    Article  PubMed  CAS  Google Scholar 

  • Wienhard K, Dahlbom M, Eriksson L, Michel C, Bruckbauer T, Pietrzyk U, Heiss WD. The ECAT EXACT HR: performance of a new high resolution positron scanner. J Comput Assist Tomogr 1994; 18: 110–118.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Townsend, D.W., Bendriem, B. (1998). Introduction to 3D PET. In: Bendriem, B., Townsend, D.W. (eds) The Theory and Practice of 3D PET. Developments in Nuclear Medicine, vol 32. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3475-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3475-2_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5040-3

  • Online ISBN: 978-94-017-3475-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics