Skip to main content

Inter-Species Pharmacokinetic Comparison of Organic Acid Herbicides. Is the Dog a Relevant Species for Evaluation of Human Health Risk?

  • Conference paper
The Practical Applicability of Toxicokinetic Models in the Risk Assessment of Chemicals

Abstract

3,5,6-Trichloro-2-pyridinyloxyacetic acid (triclopyr) and 2,4-dichlorophenoxyacetic acid (2,4-D) are widely utilized herbicides that have undergone extensive toxicity and pharmacokinetic analysis. Based on this large data-base, the dog appears to exhibit the lowest No-Observed-Effect Levels (NOEL) relative to other species that have undergone toxicological evaluation. It is proposed that this unique sensitivity of the dog to organic acid herbicides is primarily due to the dog’s low capacity, relative to other species (including humans), to excrete organic acids. The excretion of organic acids, like triclopyr and 2,4-D, in the kidney is the net result of filtration, secretion and reabsorption processes. Although renal clearance mechanisms for organic acids are ubiquitous in mammalian species there are qualitative differences between species that account for observed discrepancies in clearance capacity. The pharmacokinetics and metabolism of triclopyr and 2,4-D are fairly consistent across species (including the dog), these herbicides are rapidly absorbed following oral administration and quickly cleared from the body into the urine predominantly unmetabolized. Aliometric parameter scaling was used to compare the triclopyr and 2,4-D pharmacokinetic parameters across species. The results of this analysis clearly illustrated the decreased capacity of the dog to effectively clear these organic acids relative to other species, including humans. In addition, this decreased clearance capacity of the dog is not compound specific, but is associated with organic acids that share common pharmacokinetic properties: as (1) extensive but reversible plasma protein-binding, (2) weak acids that are highly ionized at physiological pH, (3) limited metabolism of the parent acid, and (4) urinary excretion primarily involving a saturable, active secretion. The most likely mechanism responsible for the lower clearance in the dog, is a low capacity to actively secrete organic acids by the kidney. Other potential mechanisms for the lower clearance such as increased reabsorption from the tubules can not be excluded. This comparative species evaluation of the pharmacokinetics and renal clearance of triclopyr and 2,4-D questions the relevance of using dog toxicity data for the extrapolation of human health risk for these organic acids. Based on the lack of a pharmacokinetic concordance between the dog and other mammalian species it is suggested that the dog is not a reasonable surrogate for humans. Therefore, from a risk assessment perspective, it would seem prudent to utilize toxicity data from other species (e.g. rodents) for extrapolation of human health risk for these organic acid herbicides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnold, E. K. and Beasley, V. R. (1989). The pharmacokinetics of chlorinated phenoxy acid herbicides: a literature review. Vet. Hum. Toxicol., 31 (2), 121 — 125.

    Google Scholar 

  • Berndt, W. O. and Koschier, F. (1973). In vitro uptake of 2,4-dichlorphenoxyacetic acid (2,4D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) by renal cortical tissue of rabbits and rats. Toxicol. Appl. Pharmacol.,26, 559 — 570.

    Google Scholar 

  • Boxenbaum, H. (1982). Interspecies scaling, allometry, physiological time and the ground plan of pharmacokinetics. J. Pharmacokinetics and Biopharmaceutics, 10(2), 201 — 227.

    Google Scholar 

  • Braunlich, H., Bernhardt, H., and Bernhardt, I. (1989). Renal handling of 2-methyll-4chloropheoxyacetic acid (MCPA) in rats. J. Appl. Toxicol., 9 (4), 255–258.

    Article  PubMed  CAS  Google Scholar 

  • Carmichael, N. G., Nolan, R. J., Perkins, J. M., Davies, R., and Warrington, S. J. (1989). Oral and dermal pharmacokinetics of triclopyr in human volunteers. Human Toxicol., 8, 431–437.

    Article  CAS  Google Scholar 

  • Charles, J. M., Bond, D. M., Jefferies, T. K., Yano, B. L., Stott, W.T., Johnson, K. A., Cunny, H. C., Wilson, R. D. and Bus, J. S. (1996a) Chronic dietary toxicity/oncogenicity studies on 2,4-dichlorophenoxyacetic acid in rodents. Fund. Appl. Pharmacol., 33, 166–172.

    Article  CAS  Google Scholar 

  • Charles, J. M., Dalgard, D. W., Cunny, H. C., Wilson, R. D. and Bus, J. S. (1996b). Comparative subchronic and chronic dietary toxicity studies on 2,4-dichlorophenxoyacetic acid, amine and ester in the dog. Fund. Appl. Pharmacol., 29, 78–85.

    Article  CAS  Google Scholar 

  • Cherkofsky, S. C. (1995). 1-Aminocyclopropanecarboxylic acid: mouse to man interspecies pharmacokinetic comparisons and allometric relationships. J. Pharm. Sci.,84(10), 1231–1235.

    Google Scholar 

  • Dalgaard-Mikkelsen, S., and Poulsen, E. (1962). Toxicology of herbicides. Pharmac. Rev., 14, 225–250.

    CAS  Google Scholar 

  • Dawson, M. J. and Renfro, J. L. (1993). Interaction of structurally similar pesticides with organic anion transport by primary cultures of winter flounder renal proximal tubule. J. Pharmacol. Exper. Therap., 226 (2), 673–677.

    Google Scholar 

  • Derelanko, M. J. (1995). Risk assessment. In: CRC Handbook of Toxicology, Ed. M. J. Derelanko and M. A. Hollinger, CRC Press Inc., Boca Raton, Fl., pp. 278–280.

    Google Scholar 

  • Duncan, J. R. and Prasse, K. W. (1986). Veterinary Laboratory Medicine- Clinical Pathology, 2“d ed., Iowa State Univ. Press, Ames IA.

    Google Scholar 

  • Eiseman, J. L. (1984). The pharmacokinetic evaluation of 14C-2,4-dichlorophenoxyacetic acid (2,4-D) in the mouse. Final Report, Industry Task Force on 2,4-D Research Data, Midland, MI.

    Google Scholar 

  • Eisenbrandt, D. L., Landry, T. D., Firchau, H. M., Tsuda, S. and Quast, J. F. (1988). Dietary chronic toxicity and oncogenicity studies of triclopyr in rats and mice. Toxicologist, 8: 704.

    Google Scholar 

  • Environmental Protection Agency (EPA) (1995). RID/Peer Review Report of Triclopyr (3,5,6-Trichloro-2-pyridinyloxyacetic acid) and Triethylamine Salt and Butoxyethylester of Triclopyr. Office of Prevention, Pesticides and Toxic Substances.

    Google Scholar 

  • EPA (1989). Interim methods for development of inhalation reference doses. EPA/600/8881006F.

    Google Scholar 

  • Erne, K. (1966). Distribution and elimination of chlorinated phenoxyacetic acids in animals. ACTA Vet Scand., 7, 240–256.

    PubMed  CAS  Google Scholar 

  • Erne, K., and Sperber, I. (1974). Renal tubular transfer of phenoxyacetic acids in the chicken. Acta Pharmacol. Toxicol., 35, 233–241.

    Article  CAS  Google Scholar 

  • Finco, D. R. (1989). Kidney function. In: Clinical Biochemistry of Domestic Animals (J. J. Kaneko, Ed.), pp. 496–542. Academic Press, New York.

    Google Scholar 

  • Foreman, J. W. (1984). Renal handling of urate and other organic acids. In Canine nephrology ( Foreman, J. W, Ed.), pp. 135–151. Harwal Publishing Co.

    Google Scholar 

  • Gehring, P. J., Kramer, C. G., Schwetz, B. A., Rose, J. Q. and Rowe, V. K. (1973). The fate of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) following oral administration to man. Toxicol. Appl. Pharmacol., 26, 352–361.

    Google Scholar 

  • Gehring, P.J., and Betso, J. E. (1978). Phenoxy acids: effects and fate in mammals. In Chlorinated phenoxy acids and their dioxins ( C. Ramel Ed.), Vol. 27, pp. 122–133. Ecol. Bull., Stockholm.

    Google Scholar 

  • Gorzinski, S. J., Kociba, R. J., Campbell, R. A., Smith, F. A., Nolan, R. J., and Eisenbrandt, D. L. (1987). Acute, pharmacokinetic and subchronic toxicological studies of 2,4dichlorophenoxyacetic acid. Fund. Appl. Toxicol., 9, 423 — 435.

    Google Scholar 

  • Griffin, R. J., Godfrey, V. B., Kim, Y.C., and Burka, L. T. (1997). Sex dependent differences in the disposition of 2,4-dichlorophenoxyacetic acid in Sprague-Dawley rats, B6C3F1 mice and Syrian hamsters. Drug Metab. Disposition, 25(9), 1065 — 1071.

    Google Scholar 

  • Grizzle, T. B., Buckley-Kedderis, L., Collins, B. J., Goehl, T. J., Handy, R. W. and Marsman, D. S. (1995). Toxicokinetics of 2,4-dichlorophenoxyacetic acid (2,4-D) in rats, mice and hamsters. The Inter. Cong. Toxicol. VII, 47-P-9.

    Google Scholar 

  • Hook, J. B., Bailie, M. D., Johnson, J. T., and Gehring, P. J. (1974). In vitro analysis of transport of 2,4,5-trichlorophenoxyacetic acid by rat and dog kidney. Fd. Cosmet. ToxicoL,12, 209 — 218.

    Google Scholar 

  • Hook, J. B., Cardona, R., Osborn, J. L. and Bailie, M. D. (1976). The renal handling of 2,4,5trichlorophenoxyacetic acid (2,4,5-T) in the dog. Fd. Cosmet. Toxicol., 14, 19 — 23.

    Google Scholar 

  • Kim, C. S., Gargas, M. L. and Andersen, M. E. (1994). Pharmacokinetic modeling of 2,4dichlorophenoxyacetic acid (2,4-D) in rat and in rabbit brain following single dose administration. Toxicol. Lett., 74: 189 — 201.

    Google Scholar 

  • Koschier, F. J. and Berndt, W. O. (1977). Evaluation of acute and short-term administration of 2,4,5-trichlorophenoxyacetate with respect to renal proximal tubular transport. Fd Cos-met Toxicol., 15, 297 — 301.

    Google Scholar 

  • Koschier, F. J., Girard, P. R., and Hong, S.K. (1978). Transport of 2,4dichlorophenoxyacetate by rat renal cortical slices. Toxicol. AppL Pharmacol., 45, 883 —894.

    Google Scholar 

  • Landry, T. D., Eisenbrandt, D. L., Gushow, T. S., Phillips, J. E., and Wackerly, D. L. (1985). Triclopyr: 13-week dietary toxicity study and 4-week pharmacokinetic study in Fischer 344 rats. Toxicologist 5: 1.

    Google Scholar 

  • Mann, W. A., Wetzel, G. E., Goldstein, R. S., Sozio, R. S., Cyronak, M. J., Kao, J., and Kinter, L. B. (1991). Characterization of the renal effects and renal elimination of sulotroban in the dog. J. Pharm. Exp. Ther., 259(3): 1231 — 1240.

    Google Scholar 

  • Middendorf, P., Timchalk, C., Kropscott, B., and Rick, D. (1994). Forest worker exposure to GARLON 4 herbicide. App. Occup. Environ. Hyg., 9(9): 589 — 594.

    Google Scholar 

  • Mordenti, J. (1986). Man versus beast: pharmacokinetic scaling in mammals. J. Pharm. Sci., 75(11), 1028 — 1040.

    Google Scholar 

  • Munro, I. C., Carlo, G. L., Orr, J. C., Sund, K. G., Wilson, R. M., Kennelpohl, E., Lunch, B. S., Jablinske, M., and Lee, N. L. (1992). A comprehensive, integrated review and evaluation of the scientific evidence relating to the safety of the herbicide 2,4-D. J. Am. Coll. Toxicol., 11 (5), 559 —664.

    Google Scholar 

  • Orberg, J. (1980). Effects of low protein consumption on the renal clearance of 2,4-dichlorophenoxyacetic acid (2,4-D) in goats. Acta Pharmacol. et Toxicol., 46, 138 — 140.

    Google Scholar 

  • Orberg, J. (1980). Observations on the 2,4-dichloropheoxyacetic acid (2,4-D) excretion in the goat. Acta Pharmacol. et Toxicol., 46, 78 — 80.

    Google Scholar 

  • Osborne, C. A., Low, D. G., and Finco, D. R. (1972). Canine and Feline Urology, pp. 70 —73. Saunders, Philadelphia, PA.

    Google Scholar 

  • Pelletier, O., Ritter, L., Caron, J. and Somers, D. (1989). Disposition of 2,4dichlorophenoxyacetic acid salt by Fischer 344 rats dosed orally and dermally. J. Toxicol. Environ. Health, 28, 221 — 234.

    Google Scholar 

  • Piper, W. N., Rose, J. Q., Leng, M. L. and Gehring, P. J. (1973). The fate of 2,4,5trichlorophenoxyacetic acid (2,4,5-T) following oral administration to rats and dogs. Toxicol. Appl. PharmacoL, 26(3), 339 — 351.

    Google Scholar 

  • Rees, D. C. and Hattis, D. (1994). Developing quantitative strategies for animal to human extrapolation. In: Principles and Methods of Toxicology, 3` a Ed., (Ed. A.W. Hayes), Raven Press, N.Y., pp. 275 — 313.

    Google Scholar 

  • Rennick, B., Hamilton, B., and Evans, R. (1961). Development of renal tubular transports of TEA and PAH in the puppy and piglet. Am. J. Physiol., 201: 743 — 746.

    Google Scholar 

  • Rowe, V.K. and Humas, T. A. (1954). Summary of toxicological information on 2,4-D and 2,4,5-T type herbicides and an evaluation of the hazards to livestock associated with their use. Am. J. Vet. Res., 15, 622 — 629.

    Google Scholar 

  • Rowland, M. and Tozer, T. N. (1996). In Clinical pharmacokinetics: concepts and applications., pp. 160 —172. Lea and Febiger, Philadelphia, PA.

    Google Scholar 

  • Russel, F. G. M., Wouterse, A. C., and Van Ginneken, C. A. M. (1987a). Physiologically based pharmacokinetic model for the renal clearance of phenosulfonphthalein and the interaction with probenecid and salicyluric acid in the dog. J. Pharm. Biopharm.,15(4): 349 — 368.

    Google Scholar 

  • Russel, F. G. M., Wouterse, A. C., and Van Ginneken, C. A. M. (1987b). Physiologically based pharmacokinetic model for the renal clearance of salicyluric acid and the interaction with phenolsulfonphthalein in the dog. Drug Metab. Dispos., 15: 695 — 701.

    Google Scholar 

  • Russel, F. G. M., Wouterse, A. C., and Van Ginneken, C. A. M. (1989). Physiologically based pharmacokinetic model for the renal clearance of iodopyracet and the interaction with probenecid in the dog. Biopharm. Drug Dispos., 10: 137 — 152.

    Google Scholar 

  • Sauerhoff, M. W., Braun, W. H., Blau, G. E. and Gehring, P. J. (1977). The fate of 2,4dichlorophenoxyacetic acid (2,4-D) following oral administration to man. Toxicology, 8, 3 — 11.

    Google Scholar 

  • Shuster, V. L. and Seldin, D. W. (1992). Renal clearance. In: The Kidney: Physiology and Pathophysiology (D.W. Seldin and G. Giebisch, Eds.), pp. 943 — 973, Raven Press, New York.

    Google Scholar 

  • Smith, F. A., Nolan, R. J., Hermann, E. A., and Ramsey, J. C. (1980). Pharmacokinetics of 2,4-dichlorophenoxyacetic acid (2,4-D) in Fischer 344 rats. Technical Report of The Dow Chemical Company.

    Google Scholar 

  • Timchalk, (1994). 2,4-Dichlorophenoxyacetic acid (2,4-D): pharmacokinetics in the dog. Summary methods and data, Report to Industry Task Force II on 2,4-D.

    Google Scholar 

  • Timchalk, C. and Nolan, R. J. (1997). Pharmacokinetics of triclopyr (3,5,6-trichloro-2pyridyloxyacetic acid) in the beagle dog and rhesus monkey: perspective on the reduced capacity of dogs to excrete this organic acid relative to rat, monkey and human. Toxicol. Appl. Pharmacol., 144, 268 — 278.

    Google Scholar 

  • Timchalk, C., Dryzga, M. D., and Kastl, P. E. (1990). Pharmacokinetics and metabolism of triclopyr (3,5,6-trichloro-2-pyridinyloxyacetic acid) in Fischer 344 rats. Toxicology, 62: 71–87.

    Article  PubMed  CAS  Google Scholar 

  • Timchalk, C., Finco, D. R. and Quast, J. F. (1997). Evaluation of renal function in rhesus monkeys and comparison to beagle dogs following oral administration of the organic acid triclopyr (3,5,6-trichloro-2-pyridinyloxyacetic acid). Fund. Appl. Toxicol., 36: 47 — 53.

    Google Scholar 

  • Weiner, J. M. (1973). Transport of weak acids and bases. In Handbook of physiology, Section 8: renal physiology, pp. 521 — 554. American Physiology Society, Washington, DC, Williams and Wilkins Co., Baltimore, MD.

    Google Scholar 

  • Worthing, C. R. (1987). The Pesticide Manual, 8th ed., p824. British Crop Protection Council

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Timchalk, C., Nolan, R., Billington, R., Eisenbrandt, D.L. (2002). Inter-Species Pharmacokinetic Comparison of Organic Acid Herbicides. Is the Dog a Relevant Species for Evaluation of Human Health Risk?. In: KrĂĽse, J., Verhaar, H.J.M., de Raat, W.K. (eds) The Practical Applicability of Toxicokinetic Models in the Risk Assessment of Chemicals. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3437-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3437-0_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6147-8

  • Online ISBN: 978-94-017-3437-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics