The Life Table pp 209-244 | Cite as

The measurement of mortality by cause and of morbidity

  • Josianne Duchêne
Part of the European Studies of Population book series (ESPO, volume 11)


In many developed countries where mortality levels have been declining sharply it is increasingly important to study mortality differentials taking causes of death into account. In a low mortality country, the situations favouring survival to one cause and unfavourable to another cause have no chance to appear as significant variable because of compensation. Moreover, will the increase in survival be accompanied by an increase in survival free of disease?


Life Table Theoretical Population Biology Instantaneous Risk Multistate Life Table Morbid Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aalen, O., O. Borgan, N. Keiding and J. Thormann (1979), Interaction between life history events. Non parametric analysis for prospective and retrospective data in the presence of censoring. Research Report 79/2 of the Statistical Research Unit, Danish Medical Research Council, Danish Social Science Research Council, 33 p.Google Scholar
  2. Berkson, J. and L. Elveback (1960), Competing exponential risks, with particular reference to the study of smoking and lung cancer. Journal of the American Statistical Association, vol. 55, pp. 415–428.CrossRefGoogle Scholar
  3. Birnbaum, Z.W. (1979), On the Mathematics of Competing Risks. U.S. Department of Health, Education and Welfare, Vital and Health Statistics, series 2, n° 77, 58 p.Google Scholar
  4. Calot, G. and G. Caselli (1991), Détermination d’une table de mortalité: la conversion des taux en quotients. Population, vol. 46, n° 6, pp. 1441–1490.Google Scholar
  5. Chiang, C.L. (1961a), A stochastic study of the life table and its applications: III. The follow-up study with the consideration of competing risks. Biometrics, vol. 17, pp. 57–78.CrossRefGoogle Scholar
  6. Chiang, C.L. (1961b), On the probability of death from specific causes in the presence of competing risks. Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, vol. IV, Berkeley: University of California Press, pp. 169–180.Google Scholar
  7. Chiang, C.L. (1968), Introduction to Stochastic Processes in Biostatistics. New York: J. Wiley and Sons, 313 p.Google Scholar
  8. Chiang, C.L. (1984), The life table and its applications. Malabar: E. Krieger Publishing Company, 313 p.Google Scholar
  9. Coppini, M.A. (1981), Views from a bridge: observations of an actuary on the problem of competing risks. Dakar: I.U.S.S.P., Seminar on Data Collection in Mortality Studies, 16 p.Google Scholar
  10. Courgeau, D. (1977), Interférence entre phénomènes démographiques. Population, vol. 32, n° spécial, pp. 8194.Google Scholar
  11. Damiani, P. (1976a), Méthodes de calcul d’une table de mortalité non accidentelle. Bulletin de l’Institut des Actuaires Français, n° 294, pp. 29–52.Google Scholar
  12. Damiani, P. (1976b), Incidence des variations de la mortalité pour une cause donnée sur la mortalité générale. Journal de la Société de Statistique de Paris, tome 117, n° 2, pp. 122–131.Google Scholar
  13. David, H.A. (1970), On Chiang’s proportionality assumption in the theory of competing risks. Biometrics, vol. 26, pp. 336–339.CrossRefGoogle Scholar
  14. Duchene, J. (1983), Dépendances entre processus morbides et mesures de la mortalité par cause. In: Morbidité et mortalité aux figes adultes dans les pays développés, Chaire Quetelet’82. Louvain-la-Neuve: Cabay, pp. 81–108.Google Scholar
  15. Duchêne, J. (1987), Une méthodologie pour l’étude conjointe de la morbidité et de la mortalité par cancer. Application à la Suède 1961–80. Working Paper no 136 de l’Institut de Démographie. Louvain-la-Neuve: UCL, Ciaco éditeur.Google Scholar
  16. Duchene, J. (1991), Decrement-increment tables and the measurement of morbidity and mortality. Cancer incidence, prevalence, lethality and survival in the Nordic Countries. Working Paper no 159 de l’Institut de Démographie. Louvain-la-Neuve: UCL, Editions Academia.Google Scholar
  17. Duchêne, J. and S. Wijewickrema (1973), Note sur les hypothèses d’indépendance et de continuité en démographie. Une approche probabiliste. Population et Famille, n° 30, pp. 93–111.Google Scholar
  18. Duchêne, J. and G. Wunsch (1988), From the demographer’s cauldron: single decrement life tables and the span of life. Genus, 44 (3–4), pp. 1–17.Google Scholar
  19. Elveback, L. (1958), Estimation of survivorship in chronic disease: the `actuarial method’. Journal of the American Statistical Association, vol. 53, pp. 420–440.Google Scholar
  20. Fix, E. and J. Neyman (1951), A simple stochastic model of recovery, relapse, death and loss of patients. Human Biology, vol. 23, pp. 205–241.Google Scholar
  21. Gail, M. (1975), A review and critique of some models used in the analysis of competing risks. Biometrics, vol. 31, pp. 209–222.CrossRefGoogle Scholar
  22. Haberman, S. (1983), Decrement tables and the measurement of morbidity: I. Journal of the Institute of Actuaries, 110, pp. 361–381.CrossRefGoogle Scholar
  23. Haberman, S. (1984), Decrement tables and the measurement of morbidity: II. Journal of the Institute of Actuaries, 111, pp. 73–86.CrossRefGoogle Scholar
  24. Hakulinen, T. and M. Rahiala (1977), An example on the risk dependence and additivity of intensities in the theory of competing risks. Biometrics, vol. 33, pp. 557–559.CrossRefGoogle Scholar
  25. Henry, L. (1959), D’un problème fondamental de l’analyse démographique. Population, vol. 14, n° 1, pp. 932.Google Scholar
  26. Henry, L. (1966), Analyse et mesure des phénomènes démographiques par cohortes. Population, vol. 21, n° 3, pp. 465–482.Google Scholar
  27. Henry, L. (1972), Démographie. Analyse et modèles. Paris: Larousse, 341 p.Google Scholar
  28. Hoel, D.G. (1972), A representation of mortality data by competing risks. Biometrics, vol. 29, pp. 475–488.CrossRefGoogle Scholar
  29. Hoem, J.M. (1976), The statistical theory of demographic rates. A review of current developments. Scandinavian Journal of Statistics, vol. 3, pp. 169–185.Google Scholar
  30. Hoem, J.M. (1978), Demographic incidence rates. Theoretical Population Biology, vol. 14, pp. 329–337. Hoem, J.M. and U. Funck Jensen (1982), Multistate life table methodology: a probabilistic critique. In:Google Scholar
  31. Land K.C. and A. Rogers (eds), Multidimensional Mathematical Demography,New York: Academic Press, pp. 155–264.Google Scholar
  32. Holford, T.R. (1976), Life tables with concomitant information. Biometrics, vol. 32, pp. 587–597.CrossRefGoogle Scholar
  33. Kaplan, E.L. and P. Meier (1958), Nonparametric estimation from incomplete observations. Journal of the American Statistical Association, vol. 53, pp. 457–481.CrossRefGoogle Scholar
  34. Keyfitz, N. (1968), Introduction to the Mathematics of Population. Reading Ma: Addison-Wesley, 450 p.Google Scholar
  35. Keyfitz, N. (1970), Finding probabilities from observed rates or how to make a life table. The American statistician, vol. 14, pp. 411–418.Google Scholar
  36. Keyfitz, N. (1977a), Applied mathematical Demography. New York: J. Wiley and Sons, pp. 34–76.Google Scholar
  37. Keyfitz, N. (1977b), What difference would it make if cancer were eradicated? An examination of the Taeuber paradox. Demography, vol. 14, pp. 411–418.CrossRefGoogle Scholar
  38. Keyfitz, N. and J. Frauenthal (1975), An improved life table method. Biometrics, vol. 31, pp. 889–899. Kimball, A.W. (1969), Models for the estimation of competing risks from grouped data. Biometrics, vol. 25, pp. 329–337.Google Scholar
  39. Lagakos, S.W. (1976), A stochastic model for censored survival data in the presence of an auxiliary variable. Biometrics, vol. 32, pp. 551–559.CrossRefGoogle Scholar
  40. Larra, F. et al. (1984), Manuel de cancérologie. Paris: Dois.Google Scholar
  41. Le Bras, H. and M. Artzrouni (1980), Interférence, indifférence, indépendance. Population, vol. 35, no 6, pp. 1121–1143.Google Scholar
  42. Littel, A.S. (1952), Estimation of the T-year survival rate from follow-up studies over a limited period of time. Human Biology, vol. 24, pp. 87–116.Google Scholar
  43. Manton, K.G. (1980), Sex and race specific mortality differentials in multiple cause of death data, The Gerontologist, vol. 20, n° 4, pp. 480–493.Google Scholar
  44. Manton, K.G., C.H. Patrick and E. Stallard (1980), Mortality model based on delays in progression of chronic diseases: alternative to cause elimination model. Public Health Reports, 95 (6), pp. 580–588.Google Scholar
  45. Manton, K.G. and S.S. Poss (1979), Effects of dependency among causes of death for cause elimination life table strategies. Demography, vol. 16, pp. 313–327.CrossRefGoogle Scholar
  46. Manton, K.G. and E. Stallard (1980), A stochastic compartment model representation of chronic disease dependence: techniques for evaluating parameters of partially unobserved age in homogeneous stochastic processes. Theoretical Population Biology, vol. 18, pp. 57–75.CrossRefGoogle Scholar
  47. Manton, K.G. and E. Stallard (1984), Recent trends in mortality analysis. Orlando: Academic Press.Google Scholar
  48. Manton, K.G., E. Stallard and J.W. Vaupel (1981), Methods for comparing the mortality experience of heterogeneous populations. Demography, vol. 18, pp. 389–410.CrossRefGoogle Scholar
  49. Manton, K.G., H.D. Tolley and S.S. Poss (1976), Life table techniques for multiple-cause mortality. Demography, vol. 13, pp. 541–564.CrossRefGoogle Scholar
  50. Mattson, B. (1984), Cancer Registration in Sweden. Studies on Completeness and Validity of Incidence and Mortality Registers. Stockholm: Department of Oncology and Cancer Epidemiology, Radiumhemmet, Karolinska Hospital, 33 p. + papers I-V.Google Scholar
  51. Mattson, B. and L.E. Rutqvist (1984), Intercurrent causes of death among cancer patients. A study from Stockholm Cancer registry. Reprinted in Mattson B. (1984), V.1-V.12.Google Scholar
  52. Mode, C.J. (1976), A large sample investigation of a multiple decrement life table estimator. Mathematical Biosciences, vol. 32, pp. 111–123.CrossRefGoogle Scholar
  53. Mode, C.J., R.C. Avery, G.S. Littman and R.G. Potter Jr. (1977), Methodological issues underlying multiple decrement life table analysis. Demography, vol. 14, pp. 87–96.CrossRefGoogle Scholar
  54. Moescheberger, M.L. and H.A. David (1971), Life tests under competing causes of failure and the theory of competing risks. Biometrics, vol. 27, pp. 909–933.CrossRefGoogle Scholar
  55. Oechsli, F.W.M. (1979), A general method for constructing increment-decrement life tables that agree with the data. Theoretical Population Biology, vol. 16, pp. 13–24.CrossRefGoogle Scholar
  56. Pike, M.C. (1970), A note on Kimball’s paper `Model for the estimation of competing risks from grouped data’. Biometrics, vol. 26, pp. 579–581.CrossRefGoogle Scholar
  57. Pollard, A.H. (1980), The interaction between morbidity and mortality. Journal of the Institute of Actuaries,107(3), pp. 233–302 + summary of the discussion, pp. 303–313.Google Scholar
  58. Pollard, J.H. (1991), Morbidity and mortality: differentials and their trends. European Journal of Population, 6 (3), pp. 205–225.CrossRefGoogle Scholar
  59. Pressat, R. (1974), Les tables de mortalité en l’absence de certaines causes de décès. Canadian Studies in Population, vol. 1, pp. 61–72.Google Scholar
  60. Pressat, R. (1983), L’analyse démographique. 4th edition, Paris: Presses Universitaires de France, 295 p. Preston, S.H., N. Keyfitz and R. Schoen (1972), Causes of Death. Life Tables for National Populations. New York: Seminar Press, pp. 9–24.Google Scholar
  61. Schatzkin, A. (1980), How long can we live? American Journal of Public Health, 70(11), pp. 1199–1200. Schatzkin, A. and E. Slud (1989), Competing risks bias arising from an omitted risk factor. American Journal of Epidemiology, vol. 129 n° 4, pp. 850–856.Google Scholar
  62. Schoen, R. (1975), Constructing increment-decrement life tables. Demography, 12 (2), pp. 313–324.CrossRefGoogle Scholar
  63. Schwartz, D. and P. Lazar (1961), Taux de mortalité pour une cause donnée de décès en tenant compte des autres causes de décès ou de disparition. Revue de l’Institut International de Statistique, vol. 29, pp. 44–56.CrossRefGoogle Scholar
  64. Schweder, T. (1970), Composable Markov processes. Journal of Applied Probability, vol. 7, pp. 400–410.CrossRefGoogle Scholar
  65. Seal, H.L. (1997), Studies in the history of probability and statistics. XXV. Multiple decrements or competing risks. Biometrika, vol. 64, n° 3, pp. 429–439.Google Scholar
  66. Tolley, H.D., D. Burdick, K.G. Manton and E. Stallard (1978), A compartment model approach to the estimation of tumor incidence and growth: Investigation of a model of cancer latency. Biometrics, vol. 34, pp. 377–389.CrossRefGoogle Scholar
  67. Tolley, H.D., K.G. Manton and S.S. Poss (1978), A linear models application of competing risks to multiple cause of death. Biometrics, vol. 34, pp. 581–592.CrossRefGoogle Scholar
  68. Tsiatis, A. (1975), A non-identifiability aspect of the problem of competing risks. Proceedings of the National Academy of Sciences of the U.S.A., vol. 72, pp. 20–22.CrossRefGoogle Scholar
  69. Tubiana, M. (1985), Le cancer. Que sais-je? n° 11, Paris: Presses Universitaires de France.Google Scholar
  70. Vaupel, J.W., K.G. Manton and E. Stallard (1979), The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography, vol. 16, pp. 439–454.CrossRefGoogle Scholar
  71. Wong, O. (1977), A competing risk model based on the life table procedure in epidemiological studies. International Journal of Epidemiology, vol. 6, pp. 153–160.CrossRefGoogle Scholar
  72. Wunsch, G. (1972), Quotients bruts et nets d’éventualité dans le cas de phénomènes démographiques multiples. Une approche élémentaire. Genus, vol. 28, pp. 1–16.Google Scholar
  73. Wunsch, G. (1980), Le calcul des années vécues. Problème de cohérence dans l’établissement des tables de mortalité. Population et famille, n° 50–51, pp. 107–111.Google Scholar
  74. Wunsch, G. and D.A. Canedo (1978), La transformation des taux en quotients aux premiers âges de la vie. Genus, vol. 34 (3–4), pp. 133–141.Google Scholar
  75. Wunsch, G. and M. Termote (1978), Introduction to Demographic Analysis. Principles and Methods. New York: Plenum Press, 274 p.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • Josianne Duchêne

There are no affiliations available

Personalised recommendations