The Life Table pp 1-12 | Cite as
Introduction
- 2 Citations
- 199 Downloads
Abstract
“To be or not to be?” mankind has probably raised this question since the first men and women confronted life and death on earth. Will Saturn bring me old age? Though the answer depends upon the gods, the evil spirits, or disease, according to the times, Man has nevertheless sought his future in the leaves of the tea-cup, the palm of one’s hand, the crystal ball, or ... the life table. The history of the life table has been briefly sketched by D. Smith and N. Keyfitz (1977). Though the origins of the “mortality tabl” (as the French say) date back to the classic studies of Graunt, Halley, and Euler, a third century A.D. table of annuities, attributed to Ulpian, bears witness to the interest of the Romans for life annuities and therefore for compiling life experiences. Indeed, life tables are a subject of interest not only for demographers but also for actuaries and epidemiologists. The study of the extinction of a group of “lives” forms an important domain of insurance theory, and the construction of the life table is described in all actuarial books dealing with life insurance; for a recent example, see F.E. De Vylder (1997). Even if nowadays non-life insurance problems dominate actuarial theory, life contingencies still form the backbone of the insurance business. Life tables are also considered in epidemiology; see e.g. the textbook by J. Estève et al. (1993). Epidemiologists are however more interested in measuring the incidence and prevalence of diseases, and determining possible risk factors of morbidity and mortality, than in evaluating the mortality of the general population. As a corollary, epidemiology draws its data more from special surveys and registers, such as longitudinal heart studies or cancer registries, than from general population statistics such as vital registration and census.
Keywords
Life Table Cohort Effect Vital Registration Compete Risk Model Insurance TheoryPreview
Unable to display preview. Download preview PDF.
References
- Andersen, B. (1990). Methodological Errors in Medical Research. Blackwell, London.Google Scholar
- Anderson, S., A. Auquier, W.W. Hauck, D. Oakes, W. Vandaele, H.I. Weisberg (1980). Statistical Methods for Comparative Studies. Wiley, New York.Google Scholar
- Blossfeld, H.P., G. Rohwer (1995). Techniques of Event History Modeling. New Approaches to Causal Analysis. Lawrence Erlbaum, Mahwah.Google Scholar
- Collett, D. (1994). Modelling Survival Data in Medical Research. Chapman & Hall, London. De Vylder, F.E. ( 1997 ), Life Insurance Theory. Boston: Kluwer.Google Scholar
- Elwood, J.M. (1988). Causal Relationships in Medicine. Oxford University Press, Oxford.Google Scholar
- Estève, J., E. Benhammou and L. Raymond (1993), Méthodes statistiques en épidémiologie descriptive. Paris: INSERM.Google Scholar
- Gourbin, C. (1998), La mortalité foetale: définitions et niveaux. In: Morbidité, mortalité: problèmes de mesure, facteurs d’évolution, essai de prospective. Paris: Presses Universitaires de France, pp. 91–107.Google Scholar
- Halley, E. (1693). An Estimate of the Degrees of the Mortality of Mankind, Philosophical Transactions XVII, in D. Smith and N. Keyfitz, Mathematical Demography, Springer, Berlin, 1977, 21–26.CrossRefGoogle Scholar
- Hobcraft J., J. Menken, and S. Preston (1982). Age, Period, and Cohort Effects in Demography: a Review. Population Index, 48 (1), 4–43.CrossRefGoogle Scholar
- Keyfitz, N. (1968). Introduction to the Mathematics of Population, Addison-Wesley, Reading. Leridon, H. and L. Toulemon ( 1997 ), Démographie. Paris: Economica.Google Scholar
- Ni Bhrolchain, M. (1993). Histoire passée, indices synthétiques de fécondité du moment. Population, 48 (2), 427–431.Google Scholar
- Nusselder, W. (1998), Compression or Expansion of Morbidity? Rotterdam: Erasmus University.Google Scholar
- Ryder, N.B. (1965). The Cohort as a Concept in the Study of Social Change. American Sociological Review, 30 (6), 843–861.CrossRefGoogle Scholar
- Smith, D. and N. Keyfitz (1977), Mathematical Demography. Berlin: Springer.CrossRefGoogle Scholar
- Wunsch, G., J. Duchéne, E. Thiltgès, and M. Salhi (1996), Socio-economic differences in mortality: a life course approach. European Journal of Population, 12 (2), pp. 167–185.CrossRefGoogle Scholar