Skip to main content

The sediment budget as conceptual framework and management tool

  • Conference paper
The Interactions between Sediments and Water

Part of the book series: Developments in Hydrobiology ((DIHY,volume 169))

Abstract

A review of the sediment budget concept, a brief history, cognate mass balances and the significance of the storage term. Questions of temporal and spatial scales, errors and uncertainties and the nature of system response. Management implications include natural hazards, climatic change and land use disturbance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahams, A. D. and R. A. Marston, 1993. Drainage basin sediment budgets. Phys. Geog. 14: 221-224.

    Google Scholar 

  • Adams. J. 1980. Contemporary uplift and erosion of the Southern Alps, New Zealand. Geol. Soc. am. Bull. Part 191: 2-4.

    Google Scholar 

  • Ahnert, F., 1987. Process-response models of denudation at different spatial scales. Catena Supp. 10: 31 - 50.

    Google Scholar 

  • Arnaud, L. and M. Church, 1999. Detecting the effects of forestry on lake sedimentation. Report to Forest Renewal 13. C. Vancouver: Department of Geography. UBC.

    Google Scholar 

  • Ashmore. P., 1993. Contemporary erosion of the Canadian landscape. Progress in phys. Geog. 17: 190-204.

    Google Scholar 

  • Ballantyne, C. K., 2002. Paraglacial geomorphology. Quat. Sci. Rev. 21: 1935-2017.

    Google Scholar 

  • Berner, H. K. and R. A. Berner, 1996. Global Environment: Water, Air and Geochemical Cycles. Prentice-Hall, Upper Saddle River.

    Google Scholar 

  • Brunsden. D. and J. B. Thornes. 1979. Landscape sensitivity and change. Trans. Inst. Brit. Geographers 4: 464-484.

    Google Scholar 

  • Burt, T. P. and N. E. Haycock. 1992. Catchment planning and the nitrate issue: a U.K. perspective. Prog. phys. Geog. 16: 379-404.

    Google Scholar 

  • Caine, N., 1992. Spatial patterns of geochemical denudation in a Colorado alpine environment. In Dixon, J. C. and A. D. Abrahams (eds), Perglacial Geomorphology. Wiley, Chichester: 63 - 88.

    Google Scholar 

  • Church. M., 1996. Space, time and the mountain: how do we order what we see'! In Rhoads. B. L. and C. E. Thorn (eds), The Scientific Nature of Geomorphology. Wiley. Chichester: 147 - 170.

    Google Scholar 

  • Church, M. andJ. M. Ryder, 1972. Paraglacial sedimentation: consideration of fluvial processes conditioned by glaciation. Geol. Soc. Am. Bull. 83: 3059-3072.

    Google Scholar 

  • Church. M. and O. Slaymaker. 1989, Disequilibrium of Holocene sediment yield in glaciated British Columbia. Nature 337: 452 - 454.

    Article  Google Scholar 

  • Church, M., D. Ham, M. Hassan and O. Slaymaker, 1999. Fluvial clastic sediment yield in Canada: scaled analysis. Can. J. Earth Sci. 36: 1267-1280.

    Google Scholar 

  • Church. M.. R. Kellerhals and T. J. Day. 1989. Regional clastic sediment yield in 13.C. Can. J. Earth Sci. 26: 31-45.

    Google Scholar 

  • Church. M. R.. G. M. Hornberger and S. Sorooshian. 1990. Catchment hydrogeochemistry. Water Resources Res. 26: 2947.

    Article  Google Scholar 

  • Clague, J. J., 1986, The Quaternary stratigraphic record of 13.C.: evidence for episodic sedimentation and erosion controlled by glaciation. Can. J. Earth Sci. 23: 885-894.

    Google Scholar 

  • Cleaves. E. T.. A. E. Godfrey and O. P. Bricker. 1970, Geochemical balance of a small watershed and its geomorphic implication. Geol. Soc. am. Bull. 81: 3015-3032.

    Google Scholar 

  • Crabtree, R. W., 1986. Spatial distribution of solutional erosion. In Trudgill, S. T. (ed.), Solute Processes. Wiley, Chichester: 329362.

    Google Scholar 

  • De Boer, D. H. and I. A. Campbell, 1989. Spatial scale dependence of sediment dynamics in a semi-arid badland drainage basin. Catena 16: 277 - 290.

    Article  Google Scholar 

  • Dethier. D. P.. 1986. Weathering rates and the chemical flux from catchments in the Pacific Northwest. In Colman, S. E. and D. P. Dethier (eds), Rates of Chemical Weathering of Rocks and Minerals. Academic Press, Orlando: 503 - 530.

    Google Scholar 

  • Dietrich, W. E. and T. Dunne, 1978, Sediment budget for a small catchment in mountainous terrain. Zeils. Geomorphol. Supp. 29: 191-206.

    Google Scholar 

  • Dietrich, W. E.. T. Dunne. N. F. Humphrey and L. M. Reid. 1982. Construction of sediment budgets for drainage basins. In Swanson, F. J. et al. (eds), Sediment Budgets and Routing in Forested Drainage Basins. U.S.D.A. Forest Service, Portland. General Technical Report PNW-141: 5 - 22.

    Google Scholar 

  • Dunne, T., 1977. Evaluation of erosion conditions and trends. In Kunkle, S. H. and J. L. Thames (eds). Guidelines for Watershed Management. FAO Conservation Guide 1: 53 - 83.

    Google Scholar 

  • Dunne, T., 1978. Held studies of hillslope processes. In Kirkby, M. J. (ed.). Hillslope Hydrology. Wiley. London: 227 - 294.

    Google Scholar 

  • Dunne, T., 1994. Hydrogeomorphology: an introduction. Trans. Jap. Geomorphol. Union 15A: 1-4.

    Google Scholar 

  • Dunne, T., I,. A. K. Mertes, R. H. Meade, J. E. Richey and 13. R. Fortsberg, 1998. Exchanges of sediment between the flood plain and channel of the Amazon River. Geol. Soc. Am. Bull. 110: 450-467.

    Google Scholar 

  • Dunne, T., T. R. Moore and C. H. Taylor, 1975. Recognition and prediction of runoff producing zones in humid regions. Hydrol. Sci. 13ull. 20: 305 - 327.

    Google Scholar 

  • Evans, M. and M. Church, 2000. A method for error analysis of sediment yields derived from estimates of lacustrine sediment accumulation. Earth Surface Processes and Landforms 25: 1257 - 1267.

    Article  Google Scholar 

  • Foster, I. D. I,., J. A. Dearing and R. Grew, 1988. Lake catchments: an evaluation of the contribution to studies of sediment yield and delivery processes. Int. Ass. Hydrol. Sci. Publication 174: 413425.

    Google Scholar 

  • Freeze, R. A., 1974. Streamflow generation. Rev. Geophys. Space Phys. 12: 627-647.

    Google Scholar 

  • Gilbert. I. K., 1917. Hydraulic mining debris in the Siena Nevada. U.S. Geol. Survey Prof. Paper 105.

    Google Scholar 

  • Goodbred, S. I,. and S. A. Kuehl, 1999. Holocene and modern sediment budgets for the Ganges-Brahmaputra river system. Geology 27: 559 - 562.

    CAS  Google Scholar 

  • Guidry, M. W. and F. T. Mackenzie, 2000. Apatite weathering and the Phanerozoic phosphorus cycle. Geology 28: 401 - 404.

    Article  Google Scholar 

  • Hay. W. H., 1998. Detrital sediment fluxes from continents to oceans. In Albarede, F. et al. (eds). Geochemical Earth Reference Model. Elsevier, Amsterdam: 287-323.

    Google Scholar 

  • Hinderer, M., 2001. bate Quaternary denudation of the Alps, valley and lake fillings and modern river loads. Geodinamica Acta 14: 231 - 263.

    Google Scholar 

  • Hoover, M. I)., 1944. Effect of removal of forest vegetation upon water yields. Trans. am. Geophys. Union 6: 969-975.

    Google Scholar 

  • Houghton, R. A., J. L. Haclder and K. T. Lawrence, 1999. The U.S. carbon budget: contributions from land-use change. Science 285: 574 - 578.

    Article  PubMed  CAS  Google Scholar 

  • Howard, A. D., W. E. Dietrich and M. A. Seidl, 1994. Modeling fluvial erosion on regional to continental scales. J. Geophys. Res. 99: 13971-13986.

    Google Scholar 

  • Howell. D. G. and R. W. Murray. 1986. A budget for continental growth and denudation. Science 233: 446 - 449.

    Article  Google Scholar 

  • Ikeya, H., 1976. Introduction to Sabo Works. The Japan Sabo Association, Tokyo.

    Google Scholar 

  • Jackli, H., 1957. Gegenwartsgeologische bundnerischen Rheingehictes: ein beitrag zur exogenen dynamik alpiner gebirgslandschaften. Swiss Geotech. Commission. Geotech. Series 36. Kummerley and Frei. Bern.

    Google Scholar 

  • Janda, R. J., 1971. An evaluation of procedures used in computing chemical denudation rates. Geol. Soc. am. Bull. 82: 67-80.

    Google Scholar 

  • Kashiwaya, K., 1996. Geomorphic environment and sedimentary process in a catchment-lake system. Trans. Jap. Geomorphol. Union 17: 265-274.

    Google Scholar 

  • Kelsey. H. M., 1980. A sediment budget and an analysis of geomorphic processes in the Van Duzen River basin 1941-1975. Geol. Soc. Am. Bull. Part II 91: 1119-1216.

    Google Scholar 

  • Kelsey. H. M., R. Lamherson and M. A. Madej. 1987. Stochastic model for the long-term transport of stored sediment in a river channel. Water Resources Res. 23: 1738 - 1750.

    Article  Google Scholar 

  • Klemes, V., 1985. Sensitivity of water resources systems to climate variations. World Climate Programme Report 98. World Meteorological Organization. Geneva.

    Google Scholar 

  • Knox, J. C., 1989, bong and short term episodic storage and removal of sediment in watersheds of southwestern Wisconsin and northwestern Illinois. Int. Assoc. of Hydrol. Sci. Publication 184: 157-164.

    Google Scholar 

  • Lau, S. S. S. and S. N. bane, 2001. Continuity and change in environmental systems: the case of shallow lake ecosystems. frog. phys. Geog. 25: 178 - 202.

    Google Scholar 

  • Leopold, L. B., W. W. Emmett and R. M. Myrick. 1966. Channel and hillslope processes in a semi-arid area, New Mexico. U.S. Geol. Survey Prof. Paper 352-G.

    Google Scholar 

  • Lerman, A., 1979. Geochemical Processes: Water and Sediment Environments. Wiley Interscience, New York.

    Google Scholar 

  • Likens, G. E., P. H. I3ormann, R. S. Pierce, J. S. Eaton and N. M. Johnson. 1977. Biogeochemistry of a Forested Ecosystem. Springer Verlag. New York.

    Book  Google Scholar 

  • Mackenzie, F. T., A. Lerman and L. M. B. Ver, 1998. Role of the continental margins in the global carbon balance during the past three centuries. Geology 26: 423 - 426.

    Article  CAS  Google Scholar 

  • Major T. C. Pierson, R. L. Dinehart and J. E. Costa. 2000. Sediment yield following severe volcanic disturbance: a two decade perspective from Mt. St. Helens. Geology 28: 819-822.

    Google Scholar 

  • Marutani. T.. (i. J. Brierley, N. A. Trustrum and M. Page (eds) 2001. Source-to-Sink Sedimentary Cascades in Pacific Rim Geo-Systems. Ministry of Land, Infrastructure and Transport, Japan, Matsumoto.

    Google Scholar 

  • Meade, R. H., 1982. Sources, sinks and storage of river sediment in the Atlantic drainage of the U.S. J. Geol. 91: 1 - 21.

    Google Scholar 

  • Meybeck, M., 1982. Carbon, nitrogen and phosphorus transport by world rivers. am. J. Sci. 282: 401 - 450.

    Article  CAS  Google Scholar 

  • Meybeck, M., 1988. How to establish and use world budgets of riverine materials. In I,erman, A. and M. Meybeck (eds), Physical and Chemical Weathering in Geochemical Cycles. Kluwer Academic Publishers, Dordrecht: 247 - 272.

    Chapter  Google Scholar 

  • Nicholas, A. P.. R. J. Ashworth. M. J. Kirkby, M. Macklin and T. Murray, 1995, Sediment slugs: large scale fluctuations in fluvial sediment transport rates and storage volumes. Progress in phys. Geog. 19: 500-519.

    Google Scholar 

  • Oguchi, T., 1997. I ate Quaternary sediment budget in alluvial fan source basin systems in Japan. J. Quat. Sci. 12: 381-390.

    Google Scholar 

  • Okunishi, K., 1994. Concepts and method of hydrogeomorphology. Trans Jap. Geomorphol. Union 15A: 5-18.

    Google Scholar 

  • Oldfield. F.. 1976. Lakes and their drainage basins as units of sediment based ecological study. Prog. Geog. 1: 460-504.

    Google Scholar 

  • Ongley, E. D. 1976. Sediment and nutrient yields from Great Lakes tributary drainage. Geosci. Can. 3: 164-168.

    Google Scholar 

  • Owens, P. and O. Slaymaker, 1994. Post-glacial temporal variability of sediment accumulation in a small alpine lake. Int. Assoc. of Hydrol. Sci. Publication 224: 187-195.

    Google Scholar 

  • Owens, R. N.. D. E. Walling, Q. He. J. Shanahan and I. D. L. Foster. 1997. The use of caesium 137 measurements to establish a sediment budget for the Start River catchment, Devon. U.K. Hydrol. Sci. J. 42: 405-423.

    Google Scholar 

  • Paces, T., 1986. Rates of weathering and erosion derived from mass balance in small drainage basins. In Colman, R. (ed.), Rates of Chemical Weathering of Rocks and Minerals. Academic Press, Orlando: 531 - 550.

    Google Scholar 

  • Parker. R. S., 1988, Uncertainties in defining the suspended sediment budget for large drainage basins. Int. Ass. Hydrol. Sci. Publication 174: 523-532.

    Google Scholar 

  • Pearce, A. J. and A. Watson, 1983, Medium term effects of two land-sliding episodes on channel storage of sediment. Earth Surface Processes and I andforns 8: 29 - 40.

    Article  Google Scholar 

  • Rabouille, C.. F. T. Mackenzie and L. M. Ver. 2001. Influence of the human perturbation on carbon, nitrogen and oxygen biogeochemical cycles in the global coastal ocean. Geochim. Cosmochim. Acta 65: 3615-3641.

    Google Scholar 

  • Rapp, A., 1960. Recent development of mountain slopes in Karkevagge and surroundings, northern Scandinavia. Geog. Annal. 42A: 71-200.

    Google Scholar 

  • Reid, T. M. and T. Dunne, 1996. Rapid Evaluation of Sediment Budgets. Catena Verlag. Reiskirchen.

    Google Scholar 

  • Reneau, S. L. and W. E. Dietrich, 1991. Erosion rates in the southern Oregon Coast Range: evidence for an equilibrium between hill-slope erosion and sediment yield. Earth Surface Processes and I,andforms16: 307 322.

    Google Scholar 

  • Roberts, R. G. and M. Church, 1986. The sediment budget in severely disturbed watersheds, Queen Charlotte Ranges, British Columbia. Can. J. For. Res. 16: 1092-1106.

    Google Scholar 

  • Ryder. J. M.. 1971. The stratigraphy and morphology of paraglacial alluvial fans in south-central British Columbia. Can. J. Earth Sci. 8: 279-298.

    Google Scholar 

  • Schick, A. P. and J. I,ekach, 1993. An evaluation of two ten-year sediment budgets, Nahal Yael, Israel. Phys. Geog. 14: 225-238.

    Google Scholar 

  • Schindler, D. W., 1999. The mysterious missing sink. Nature 398: 105 - 107.

    Article  CAS  Google Scholar 

  • Schulze. E. D. and D. Schimel, 2001. Uncertainties of global biogeochemical predictions. In Schulze. E. D. et al. (eds), Global Biogeochemical Cycles in the Climate System. Academic Press, San Diego: 3 - 14.

    Chapter  Google Scholar 

  • Schumm, S. A.. 1977. The Fluvial System. Wiley. New York.

    Google Scholar 

  • Schumm, S. A.. 1985. Explanation and extrapolation in geomor-phology: seven reasons for geologic uncertainty. Trans. Jap. Geomorphol. Union 6: 1-18.

    Google Scholar 

  • Schumm, S. A. and R. W. Lichty, 1965. Time, space and causality in geomorphology. Am. J. Sci. 263: 110-119.

    Google Scholar 

  • Schumm, S. A. and D. K. Rea, 1995. Sediment yield from disturbed earth systems. Geology 23: 391 - 394.

    Article  Google Scholar 

  • Slaymaker, O.. 1972. Patterns of present sub-aerial erosion and landforms in mid-Wales. Trans. Inst. Brit. Geographers 55: 47-68.

    Google Scholar 

  • Slaymaker, O., 1987. Sediment and solute yields in British Columbia and Yukon: their geomorphic significance reexamined. In Gardiner, V. (ed.), International Geomorphology '86. Wiley, Chichester: 925 - 945.

    Google Scholar 

  • Slaymaker, O., 1993. The sediment budget of the Lillooet River basin, B.C. Phys. Geog. 14: 304-320.

    Google Scholar 

  • Slaymaker, O.. 1997. A pluralist, problem-focussed geomorphology. In Stoddart, D. R. (ed.). Process and Form in Geomorphology. Routledge, London and New York: 328 - 339.

    Google Scholar 

  • Slaymaker, O. and B. Menounos, 2000. The geomorphic information content of lake sediments in glacially conditioned terrain. Int. Assoc. of Hydrol. Sci. Publication 261: 311-324.

    Google Scholar 

  • Slaymaker, O., C. Souch, B. Menounos and G. Filippelli, 2003, Advances in Holocene mountain geomorphology inspired by sediment budget methodology. Geomorphology.

    Google Scholar 

  • Sloan, J., J. R. Miller and N. Lancaster, 2001. Response and recovery of the Eel River, California, and its tributaries to floods in 1955. 1964 and 1997. Geomorphology 36: 129 - 154.

    Google Scholar 

  • Smil, V., 1996. Cycles of Life: Civilization and the Biosphere. Scientific American Library, New York.

    Google Scholar 

  • Smith, L. C. and D. E. Alsdorf, 1998. Control on sediment and organic carbon delivery to the Arctic Ocean revealed with space-borne synthetic aperture radar: Ob River, Siberia. Geology 26: 395398.

    Google Scholar 

  • Smith. S. V.. W. H. Renwick R. W. Buddemeier and C. J. Crossland, 2001. Budgets of soil erosion and deposition for seiments and sedimentary organic carbon across the conterminous U.S. Global Bio-geo-chemical Cycles 15: 697 - 707.

    Article  Google Scholar 

  • Souch, C. and O. Slaymaker, 1986. Temporal variability of sediment yield using accumulations in small ponds. Phys. Geog. 7: 140153.

    Google Scholar 

  • Swanson, F. J.. R. J. Janda, T. Dunne and D. N. Swanston (eds), 1982. Sediment Budgets and Routing in Forested Drainage Basins. U.S.D.A. Forest Service, Portland. General Technical Report PNW-141.

    Google Scholar 

  • Trimble, S. W., 1983. A sediment budget for Coon Creek basin in the Driftless area, Wisconsin. 1883-1977. Am. J. Sci. 283: 454474.

    Google Scholar 

  • Trimble. S. W., 1995. Catchment sediment budgets and change. In Gurncll, A. and G. Pelts (eds), Changing River Channels. Wiley, Chichester: 201 - 215.

    Google Scholar 

  • Trimble, S. W. and R Crosson, 2000. U.S. soil erosion rates: myth and reality. Science 289: 248 - 250.

    Article  PubMed  CAS  Google Scholar 

  • Trustrum. N. A., B. Gomez, M. J. Page. L. M. Reid and D. M. Hicks, 1999. Sediment production, storage and output. Reits. Geomorphol. Supplement Band 115: 71-86.

    Google Scholar 

  • Walling. D. E.. 1983. The sediment delivery problem. J. Hydrol. 69: 209 - 237.

    Article  Google Scholar 

  • Walling, I. E. and B. W. Webb, 1983. The dissolved load of rivers: a global overview. Int. Ass. Hydrol. Sci. Publication 141: 3-20.

    Google Scholar 

  • Wathen, S. J.. T. B. Hoey and A. Werriuy, 1997. Quantitative determination of the activity of within-reach sediment storage in a small gravel bed river using transit time and response time. Geomorphology 20: 113 - 134.

    Article  Google Scholar 

  • Yurelich, R. F. and G. L. Batchelder. 1988. Hydro-geo-chemical cycling and chemical denudation in the Fort River watershed, central Massachusetts: an appraisal of mass balance studies. Water Resour. Res. 24: 105-114.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Slaymaker, O. (2003). The sediment budget as conceptual framework and management tool. In: Kronvang, B. (eds) The Interactions between Sediments and Water. Developments in Hydrobiology, vol 169. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3366-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3366-3_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6299-4

  • Online ISBN: 978-94-017-3366-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics