Skip to main content

Evolutionary adaptations by fish to ecotonal complexity in spatially variable landscapes — a perspective

  • Chapter
Book cover The Importance of Aquatic-Terrestrial Ecotones for Freshwater Fish

Part of the book series: Developments in Hydrobiology ((DIHY,volume 105))

Abstract

In most types of freshwater ecosystems fish diversity depends greatly on land/inland water ecotones. So, to maintain biodiversity of fish communities in inland waters, management and restoration of aquatic terrestrial ecotones will be an important tool. However, to provide a scientific background for such conservation activities, it will be desirable to test the importance of different types of ecotones in structuring and maintaining the genetic diversity of fish populations. The relevance of population genetics data to ecotone studies can only be understood in an ecological context as evolution is a function of environment. We suggest that as ecotone complexity increases opportunities for survival of individuals, improving trophic conditions and spatial habitat heterogeneity, so the population size and variation increase with increased genetic diversity and vulnerability to environment changes decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alves, M. J. & M. M. Coelho, in press. Genetic variation and population subdivision of the endangered Iberian cyprinid Chondrostoma lusitanicum. J. Fish Biol.

    Google Scholar 

  • Barker, J. S. F. & R. H. Thomas, 1987. A quantitative genetic perspective on adaptive evolution. In Genetic Constraints on Adaptive Evolution, Springer-Verlag, Berlin: 3–23.

    Book  Google Scholar 

  • Benke, A. C., T. C. Van Arsdall Jr., D. M. Gillespie & F. K. Parrish, 1984. Invertebrate productivity in a subtropical blackwater river. Ekol. Monogr. 54: 25–63.

    Article  Google Scholar 

  • Brown, B. L. & R. W. Chapman, 1991. Gene flow and mitochondrial DNA variation in the killifish, Fundulus heteroclitus. Evolution 45: 1147–1161.

    Article  Google Scholar 

  • Brown, J. S. & N. B. Pavlovic, 1992. Evolution in heterogeneous environments: effects of migration on habitat specialization. Evol. Ecol. 6: 360–382.

    Article  Google Scholar 

  • Brown, K. L., 1985. Demographic and genetic characteristics of dispersal in the mosquitofish, Garnbusia affinLs ( Pisces: Poeciliidae). Copeia: 597–612.

    Google Scholar 

  • Cockburn, A., 1991. An Introduction to Evolutionary Ecol- ogy. Blackwell Scientific Publications, Oxford, 370 pp.

    Google Scholar 

  • Danzmann, R. G., M. M. Ferguson, F. W. Allendorf & K. L. Knudsen, 1986. Heterozygosity and developmental rate in a strain of rainbow trout (Salmo gairdnen). Evolution 40: 86–93.

    Article  Google Scholar 

  • Feder, J. L., M. H. Smith, R. K. Chesser, M. W. Godt & K. Asbury, 1984. Biochemical genetics of mosquitofish. II. Demographic differentiation of populations in a thermally altered reservoir. Copeia: 108–119

    Google Scholar 

  • Frankel, O. H., E. Soule, 1981. Conservation and Evolu- tion. Cambridge University Press, Cambridge, 327 pp.

    Google Scholar 

  • Gillespie, J. H., 1991. The Causes of Molecular Evolution. Oxford Series in Ecology and Evolution. Oxford University Press, 336 pp.

    Google Scholar 

  • Gillespie, J. H. & C. H. Langley, 1974. A general model to account for enzyme variation in natural populations. Genetics 76: 837–884.

    PubMed  CAS  Google Scholar 

  • Hoelzel, A. R. & A. Dover, 1991. Molecular Genetic ecology. Oxford University Press, 75 pp.

    Google Scholar 

  • Kirpichnikov, V. S., 1992. Adaptive nature of intrapopulational biochemical polymorphism in fish. J. Fish Biol. 40: 1–16.

    Article  CAS  Google Scholar 

  • Leary, R. F., F. W. Allendorf & L. Knudsen, 1984. Superior developmental stability of heterozygotes at enzyme loci in salmonid fishes. Am. Nat. 124: 540–551.

    Article  Google Scholar 

  • Leary, R. F., F. W. Allendorf & L. Knudsen, 1985. Developmental instability as an indicator of reduced genetic variation in hatchery trout. Trans. Am. Fish. Soc. 114: 230–235.

    Article  Google Scholar 

  • Leary, R. F., F. W. Allendorf & L. Knudsen, 1987. Differences in inbreeding coefficients do not explain the association between heterozygosity at allozyme loci and developmental stability in rainbow trout. Evolution 41: 1413–1415.

    Article  Google Scholar 

  • McClenaghan Jr., L. R., M. H. Smith & M. W. Smith, 1985. Biochemical genetics of mosquitofish. IV. Changes of allele frequencies through time and space. Evolution 39: 451–460.

    Article  Google Scholar 

  • Meffe, G. K., 1986. Conservation genetics and the management of endangered fishes. Fisheries 11: 14–23.

    Article  Google Scholar 

  • Meffe, G. K., 1987. Conserving fish genomes: philosophies and practices. Envir. Biol. Fishes 18: 3–9.

    Article  Google Scholar 

  • Meffe, G. K., 1990. Genetic approaches to conservation of rare fishes: examples from North American desert species. J. Fish Biol, 37A: 105–112.

    Article  Google Scholar 

  • Meffe, G. K. & R. C. Vrijenhoek, 1988. Conservation genetics in the management of desert fishes. Conservation Biology 2: 157–169.

    Article  Google Scholar 

  • Mitton, J. B., 1978. Relationship between heterozygosity for enzyme loci and variation of morphological characters in natural populations. Nature 273: 661–662.

    Article  PubMed  CAS  Google Scholar 

  • Mitton, J. B. & W. M. Lewis Jr, 1989. Relationships between genetic variability and lifehistory features of bony fishes. Evolution 43: 1712–1723.

    Article  Google Scholar 

  • Mitton, J. B. & W. M. Lewis Jr, 1992. Response to Waples’s comment on heterozygosity and life-history variation in bony fishes. Evolution 46: 576–577.

    Article  Google Scholar 

  • Naiman, R. J., H. Decamps, J. Pastor & C. A. Johnston, 1988. The potential importance of boundaries to fluvial ecosystems. J. N. Am. Benthol. Soc. 7: 289–306.

    Article  Google Scholar 

  • Nevo, E., 1988. Genetic diversity in nature. Patterns and theory. In Max K. Hecht & B. Wallace (eds), Evol. Biol. 23. Plenum Press, New York: 217–246.

    Chapter  Google Scholar 

  • Nevo, E., A. Beiles & R. Ben-Shlomo, 1984. The evolutionary significance of genetic diversity: ecological, demographic and life history correlates. In G. S. Mani (ed.), Evolutionary Dynamics of Genetic Diversity. Liss, New York: 69–92.

    Google Scholar 

  • Petts, G. E., 1990. The role of ecotones in aquatic landscape management. In R. J. Naiman & H. Decamps (eds), The Ecology and Management of Aquatic-Terrestrial Ecotones. Man and the Biosphere Series, 4. The Parthenon Publishing Group, UNESCO: 227–261.

    Google Scholar 

  • Quattro, J. M. & R. C. Vrijenhoek, 1989. Fitness differences among remnant populations of the endangered sonoran topminnow. Science 245: 976–978.

    Article  PubMed  CAS  Google Scholar 

  • Risser, P. G., 1990. The ecological importance of land-water ecotones. In R. J. Naiman & H. Decamps (eds), The Ecology and Management of Aquatic-Terrestrial Ecotones. Man and the Biosphere Series, 4. The Parthenon Publishing Group, UNESCO: 7–21.

    Google Scholar 

  • Salo, J., R. Kalliola, I. Hakkinen, Y. Makinen, P. Niemela, M. Puhakka & P. D. Coley, 1986. River dynamics and the diversity of Amazon lowland forest. Nature 322: 254–258.

    Article  Google Scholar 

  • Schiemer, F. & M. Zalewski, 1992. The importance of riparian ecotones for density and productivity of riverine fish communities. Neth. J. Zool. 42: 323–335.

    Article  Google Scholar 

  • Scribner, K. T., M. H. Smith, R. A. Garrott & L. H. Carpenter, 1991. Temporal, spatial, and age-specific changes in genotypic compositions of mule deer. J. Mamm. 72: 126–137.

    Article  Google Scholar 

  • Sheldon, A. L., 1988. Conservation of stream fishes: patterns of diversity, rarity, and risk. Conservation Biology 2: 149–156.

    Article  Google Scholar 

  • Slatkin, M., 1987. Gene flow and the geographic structure of natural populations. Science 236: 787–792.

    Article  PubMed  CAS  Google Scholar 

  • Smith, M. W., M. H. Smith & R. K. Chesser, 1983. Biochemical genetics of mosquitofish. I. Environmental correlates, and temporal and spatial heterogeneity of allele frequencies within a river drainage. Copeia (1): 182–193.

    Google Scholar 

  • Thorpe, J. E., 1987. Smolting versus residency: developmental conflict in Salmonids. Am. Fish. Soc. Symp. 1: 244–252.

    Google Scholar 

  • Thorpe, J. E., J. F. Koonce, D. Borgeson, B. Henderson, A. Lamsa, P. S. Maitland, M. A. Ross, R. C. Simon & C. Walters, 1981. Assessing and managing man’s impact on fish genetic resources. Can. J. Fish. aquat Sci. 38: 1899–1907.

    Article  Google Scholar 

  • Taylor, E. B., 1991. A review of local adaptation in Salmonidae, with particular reference to Pacific and Atlantic salmon. Aquaculture 98: 185–207.

    Article  Google Scholar 

  • Vrijenhoek, R. C., E. Pfeiler & J. D. Wetherington, 1992. Balancing selection in a desert stream-dwelling fish, Poecihopsis monacha. Evolution 46: 1642–1657.

    Article  Google Scholar 

  • Waples, R. S., 1991a. Heterozygosity and life-history variation in bony fishes: an alternative view. Evolution 45: 1275–1280.

    Article  Google Scholar 

  • Waples, R. S., 1991b. Genetic interactions between hatchery and Salmonids: Lessons from the Pacific Northwest. Can. J. Fish. aquat Sci. 48: 124–133.

    Article  Google Scholar 

  • Zalewski, M., 1990. The ecotone concept in conservation and fisheries management of riverine ecosystems. Proc. UNESCO/MAB Int. Seminar: 80–94.

    Google Scholar 

  • Zalewski, M., P. Frankiewicz, M. Przybylski, J. Banbura & M. Nowak, 1990. Structure and dynamics of fish communities in temperate rivers in relation to the abiotic-biotic regulatory continuum concept. Pol. Arch. Hydrobiol. 37: 151–176.

    Google Scholar 

  • Zalewski, M., J. Thorpe & P. Gaudin, 1991. Fish and Land/ Inland Water Ecotones. UNESCO, MAB. Universities of Lodi, Stirling and Claude Bernard Lyon I, 102 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

F. Schiemer M. Zalewski J. E. Thorpe

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Coelho, M.M., Zalewski, M. (1995). Evolutionary adaptations by fish to ecotonal complexity in spatially variable landscapes — a perspective. In: Schiemer, F., Zalewski, M., Thorpe, J.E. (eds) The Importance of Aquatic-Terrestrial Ecotones for Freshwater Fish. Developments in Hydrobiology, vol 105. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3360-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3360-1_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4515-7

  • Online ISBN: 978-94-017-3360-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics