Skip to main content

Studies on mitochondrial-cytoplasmic interactions in isolated hepatocytes

  • Chapter
The Hepatocyte Review

Abstract

The original reason for attempting to prepare suspensions of intact isolated hepatocytes was to produce a preparation that would facilitate the study of hepatic metabolism. Forty years on, the great majority of metabolic pathways have been delineated and interest in metabolism has waned. Nevertheless, the manner in which flux is regulated still appears to be a fruitful area for study. In this chapter we review the results of metabolic experiments carried out in our laboratory during the thirty years that intact hepatocyte suspensions have been available for experimental work. Much of our effort during that time has been directed towards the study of mitochondrial-cytoplasmic interactions, in particular the intercompartmental transfer of reducing equivalents. We have endeavoured to elucidate the factors that determine the direction of flow, and have concluded that the relationships we observe cannot be explained solely on the basis of molecular diffusion and random collision. Instead, we put forward the hypothesis that the critical regulatory processes that determine the rate and direction of intercompartmental reducing-equivalent transfer in living cells are dependent on flow through organized systems, which is controlled by energy-dependent mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Microenvironments and Metabolic Compartmentation. Srere PA and Estabrook RW, Eds. New York: Academic Press, 1978.

    Google Scholar 

  2. Organized Multienzyme Systems. Welch GR, Ed. New York: Academic Press, 1985.

    Google Scholar 

  3. The organisation of cell metabolism. Welch GR and Clegg JS, Eds. New York: Plenum Press, 1986.

    Google Scholar 

  4. Ovadi J. Cell Architecture and Metabolic Chanelling. New York: Springer-Verlag, 1995.

    Google Scholar 

  5. Channelling in Intermediary Metabolism. Agius L and Sherratt HAS, Eds. London: Portland Press, 1997.

    Google Scholar 

  6. Sacktor B and Dick A. Pathways of Hr transport in the oxidation of extramitochondrial reduced diphosphopyridine nucleotide in flight muscle. J Biol Chem 1962; 237: 32593263.

    Google Scholar 

  7. Borst P. In: Karlson P, Ed. Funktionelle and Morphologische Organisation der Zelle. Berlin: Springer-Verlag, 1963: 137–158.

    Google Scholar 

  8. Berry MN and Kun E. Rate-limiting steps of gluconeogenesis in liver cells as determined with the aid of fluoro-dicarboxylic acids. Eur J Biochem 1972; 27: 395–400.

    Article  PubMed  CAS  Google Scholar 

  9. Meijer AJ and Williamson JR. Transfer of reducing equivalents across the mitochondrial membrane. I. Hydrogen transfer mechanisms involved in the reduction of pyruvate to lactate in isolated liver cells. Biochim Biophys Acta 1974; 333: 1–11.

    Article  PubMed  CAS  Google Scholar 

  10. Frerman FE. Acyl-CoA dehydrogenases, electron transfer flavoprotein and electron transfer flavoprotein dehydrogenase. Biochem Soc Trans 1988; 16: 416–418.

    PubMed  CAS  Google Scholar 

  11. Freake HC and Oppenheimer JH. Thermogenesis and thyroid function. Annu Rev Nutr 1995; 15: 263–291.

    Article  PubMed  CAS  Google Scholar 

  12. Berry MN. Energy-dependent reduction of pyruvate to lactate by intact isolated parenchymal cells from rat liver. Biochem Biophys Res Commun 1971; 44: 1449–1456.

    Article  PubMed  CAS  Google Scholar 

  13. Berry MN, Kun E and Werner HV. Regulatory role of reducing-equivalent transfer from substrate to oxygen in the hepatic metabolism of glycerol and sorbitol. Eur J Biochem 1973; 33: 407–417.

    Article  PubMed  CAS  Google Scholar 

  14. Berry MN. The function of energy-dependent redox reactions in cell metabolism. FEBS Lett 1980; 117 (Suppl): K106 - K120.

    Article  PubMed  Google Scholar 

  15. Berry MN, Gregory RB, Grivell AR et al. Linear relationships between mitochondrial forces and cytoplasmic flows argue for the organized energy-coupled nature of cellular metabolism. FEBS Lett 1987; 224: 201–207.

    Article  PubMed  CAS  Google Scholar 

  16. Berry MN, Phillips JW and Grivell AR. Interactions between mitochondria and cytoplasm in isolated hepatocytes. Curr Top Cell Regul 1992; 33: 309–328.

    PubMed  CAS  Google Scholar 

  17. Berry MN, Phillips JW, Gregory RB, Grivell AR and Wallace PG. Operation and energy dependence of the reducing-equivalent shuttles during lactate metabolism by isolated hepatocytes. Biochim Biophys Acta 1992; 1136: 223–230.

    Article  PubMed  CAS  Google Scholar 

  18. Berry MN, Gregory RB, Grivell AR, Phillips JW and Schön A. The capacity of reducing-equivalent shuttles limits aerobic glycolysis during ethanol oxidation. Eur J Biochem 1994; 225: 557–564.

    Article  PubMed  CAS  Google Scholar 

  19. Berry MN, Gregory RB, Grivell AR et al. Intracellular mitochondrial membrane potential as an indicator of hepatocyte energy metabolism: further evidence for thermodynamic control of metabolism. Biochim Biophys Acta 1988; 936: 294–306.

    Article  PubMed  CAS  Google Scholar 

  20. Mitchell P. Vectorial chemistry and the molecular mechanics of chemiosmotic coupling: power transmission by proticity. Biochem Soc Trans 1976; 4: 399–430.

    PubMed  CAS  Google Scholar 

  21. Kell DB. The protonmotive force as an intermediate in electron transport-linked phosphorylation: problems and prospects. Curr Top Cell Regul 1992; 33: 279–289.

    PubMed  CAS  Google Scholar 

  22. Rydstrom J. Energy-linked nicotinamide nucleotide transhydrogenases. Biochim Biophys Acta 1977; 463: 155–184.

    Article  PubMed  CAS  Google Scholar 

  23. Klingenberg M. The Respiratory Chain. In: Singer TP, Ed. Biological Oxidations. New York: Interscience Publishers, 1968: 3–54.

    Google Scholar 

  24. Chance B, Hollunger G. The interaction of energy and electron transfer reactions in mitochondria. VI. The efficiency of the reaction. J Biol Chem 1961; 236: 1577–1584.

    PubMed  CAS  Google Scholar 

  25. Berry MN, Clark DG, Grivell AR and Wallace PG. The calorigenic nature of hepatic ketogenesis: An explanation for the stimulation of respiration induced by fatty acid substrates. Eur J Biochem 1983; 131: 205–214.

    Article  PubMed  CAS  Google Scholar 

  26. Srivastava DK, Bernhard SA, Langridge R and McClarin JA. Molecular basis for the transfer of nicotinamide adenine dinucleotide among dehydrogenases. Biochemistry 1985; 24: 629–635.

    Article  PubMed  CAS  Google Scholar 

  27. Sies H. Nicotinamide nucleotide compartmentation. In: Sies H, Ed. Metabolic compartmentation. London: Academic Press, 1982: 205–231.

    Google Scholar 

  28. Grivell AR, Berry MN. The effects of phosphate-and substrate-free incubation conditions on glycolysis in Ehrlich ascites tumour cells. Biochim Biophys Acta 1996; 1291: 83–88.

    Article  PubMed  Google Scholar 

  29. Threlfall CJ and Heath DF. Compartmentation between glycolysis and gluconeogenesis in rat liver. Biochem J 1968; 110: 303–312.

    PubMed  CAS  Google Scholar 

  30. Söling HD and Kleineke J. Species dependent regulation of hepatic gluconeogenesis in higher animals. In: Hanson RW and Mehlman MA, Eds. Gluconeogenesis. Its regulation in mammalian species. New York: John Wiley and Sons, 1976: 369–462.

    Google Scholar 

  31. Teller JK, Fahien LA and Valdivia E. Interactions among mitochondrial aspartate aminotransferase, malate dehydrogenase, and the inner mitochondrial membrane from heart, hepatoma, and liver. J Biol Chem 1990; 265: 19486–19494.

    PubMed  CAS  Google Scholar 

  32. Ushiroyama T, Fukushima T, Styre JD and Spivey HO. Substrate channeling of NADH in mitochondrial redox processes. Curr Top Cell Regul 1992; 33: 291–307.

    PubMed  CAS  Google Scholar 

  33. Szent-Györgyi A. The study of energy levels in biochemistry. Nature 1941; 148: 157159.

    Google Scholar 

  34. Karpefors M, Adelroth P, Aagaard A, Sigurdson H, Svensson Ek M and Brzezinski P. Electron-proton interactions in terminal oxidases. Biochim Biophys Acta 1998; 1365: 159–169.

    Article  PubMed  CAS  Google Scholar 

  35. Krab K and Wikstrom M. Principles of coupling between electron transfer and proton translocation with special reference to proton-translocation mechanisms in cytochrome oxidase. Biochim Biophys Acta 1987; 895: 25–39.

    Article  PubMed  CAS  Google Scholar 

  36. Wilson MT and Bickar D. Cytochrome oxidase as a proton pump. J Bioenerg Biomembr 1991; 23: 755–771.

    Article  PubMed  CAS  Google Scholar 

  37. Nicholls P and Butko P. Protons, pumps, and potentials: control of cytochrome oxidase. J Bioenerg Biomembr 1993; 25: 137–143.

    Article  PubMed  CAS  Google Scholar 

  38. Calhoun MW, Thomas JW and Gennis RB. The cytochrome oxidase superfamily of redox-driven proton pumps. Trends Biochem Sci 1994; 19: 325–330.

    Article  PubMed  CAS  Google Scholar 

  39. Cope FW. Solid state physical mechanisms of biological energy transduction. Ann N Y Acad Sci 1974; 227: 636–640.

    Article  PubMed  CAS  Google Scholar 

  40. Soboll S. Thyroid hormone action on mitochondrial energy transfer. Biochim Biophys Acta 1993; 1144: 1–16.

    Article  PubMed  CAS  Google Scholar 

  41. Ismail-Beigi F and Edelman IS. The mechanism of the calorigenic action of thyroid hormone. Stimulation of Na+ + K+-activated adenosinetriphosphatase activity. J Gen Physiol 1971; 57: 710–722.

    Article  PubMed  CAS  Google Scholar 

  42. Sestoft L. Metabolic aspects of the calorigenic effect of thyroid hormone in mammals. Clin Endocrinol 1980; 13: 489–506.

    Article  CAS  Google Scholar 

  43. Brand MD, Steverding D, Kadenbach B, Stevenson PM and Hafner RP. The mechanism of the increase in mitochondrial proton permeability induced by thyroid hormones. Eur J Biochem 1992; 206: 775–781.

    Article  PubMed  CAS  Google Scholar 

  44. Lee Y-P and Lardy HA. Influence of thyroid hormones on L-a-glycerophosphate dehydrogenases in various organs of the rat. J Biol Chem 1965; 240: 1427–1436.

    PubMed  CAS  Google Scholar 

  45. Oppenheimer JH, Schwartz HL, Lane JT and Thompson MP. Functional relationship of thyroid hormone-induced lipogenesis, lipolysis, and thermogenesis in the rat. J Clin Invest 1991; 87: 125–132.

    Article  PubMed  CAS  Google Scholar 

  46. Berry MN, Werner HV and Kun E. Regulatory function of intercompartmental metabolite and reducing-equivalent translocation in hepatic gluconeogenesis: role of thyroid hormone. In: Lundquist F and Tygstrup N, Eds. Regulation of hepatic metabolism (A. Benzon symposium 6 ). Copenhagen: Munksgaard, 1974: 501–519.

    Google Scholar 

  47. Bartels PD and Sestoft L. Thyroid hormone-induced changes in gluconeogenesis and ketogenesis in perfused rat liver. Biochim Biophys Acta 1980; 633: 56–67.

    Article  PubMed  CAS  Google Scholar 

  48. Freake HC, Schwartz HL and Oppenheimer JH. The regulation of lipogenesis by thyroid hormone and its contribution to thermogenesis. Endocrinology 1989; 125: 2868–2874.

    Article  PubMed  CAS  Google Scholar 

  49. Gregory RB, Phillips JW and Berry MN. Reducing-equivalent transfer to the mitochondria during gluconeogenesis and ureogenesis in hepatocytes from rats of different thyroid status. Biochim Biophys Acta 1992; 1137: 34–38.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Michael N. Berry Anthony M. Edwards

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Phillips, J.W., Grivell, M.B., Grivell, A.R., Berry, M.N. (2000). Studies on mitochondrial-cytoplasmic interactions in isolated hepatocytes. In: Berry, M.N., Edwards, A.M. (eds) The Hepatocyte Review. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3345-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3345-8_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5402-9

  • Online ISBN: 978-94-017-3345-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics