Skip to main content

Strong Determinism vs. Computability

  • Chapter
The Foundational Debate

Part of the book series: Vienna Circle Institute Yearbook [1995] ((VCIY,volume 3))

Abstract

Penrose [40] (see also [41]) has discussed a new point of view concerning the nature of physics that might underline conscious thought processes. He has argued that it might be the case that some physical laws are not computable, i.e. they cannot be properly simulated by computer; such laws can most probably arise on the “no-man’s-land” between classical and quantum physics. Furthermore, conscious thinking is a non-algorithmic activity. He is opposing both strong AI (according to which the brain’s action, and, consequently, conscious perceptions and intelligence, are manifestations of computer computations, Minsky [35, 36]), and Searle’s [47] contrary viewpoint (although computation does not in itself evoke consciousness, a computer might nevertheless simulate the action of a brain mainly due to the fact that the human brain is a physical system behaving according to (computable) mathematical “laws”).

Those who most ignore, least escape.

David Hawkins

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Bamberg, S. Sternberg. A Course in Mathematics for Students in Physics, Cambridge University Press, Cambridge, vol. 2, 1990.

    Google Scholar 

  2. J. Barrow. Theories of Everything—The Quest for Ultimate Explanation, Fawcett Columbine, New York, 1992.

    Google Scholar 

  3. D. Bohm. A suggested interpretation of the quantum theory in terms of“hidden” variables I & II, Phys. Rev. 85(1952), 166–93; reprinted in J. A. Wheeler and W. H. Zurek (eds.). Quantum Theory and Measurement, Princeton University Press, Princeton, 1983, 369–396.

    Google Scholar 

  4. R. Boscovich. Theoria Philosophiae Naturalis, Vienna, 1758.

    Google Scholar 

  5. D. S. Bridges. Computability —A Mathematical Sketchbook, Springer-Verl ag, Berlin, 1994.

    Google Scholar 

  6. D. S. Bridges. Constructive mathematics and unbounded operators—a reply to Hellman, J. Phil. Logic. (in press)

    Google Scholar 

  7. C. Calude. Theories of Computational Complexity, North-Holland, Amsterdam, 1988.

    Google Scholar 

  8. C. Calude. Information and Randomness. An Algorithmic Perspective, Springer-Verlag, Berlin, 1994.

    Google Scholar 

  9. C. Calude, H. Jürgensen, M. Zimand. Is independence an exception?, Appl. Math. Comput. 1994 [to appear]

    Google Scholar 

  10. C. Calude, A. Salomaa. Algorithmically coding the universe, in G. Rozenberg,A. Salomaa (eds.). Developments in Language Theory, World Scientific, Singapore, 1994, 472–492.

    Google Scholar 

  11. B. F. Caviness. On canonical forms and simplifications, J. Assoc. Comput. Mach. 17 (1970), 385–396.

    Article  Google Scholar 

  12. G. J. Chaitin. Algorithmic Information Theory, Cambridge University Press, Cambridge, 1987. (third printing 1990 )

    Google Scholar 

  13. G. J. Chaitin. Information, Randomness and Incompleteness, Papers on Algorithmic Information Theory, World Scientific, Singapore, 1987. (2nd ed., 1990 )

    Google Scholar 

  14. G. J. Chaitin. The Limits of Mathematics IV, IBM Research Report RC 19671, e-print chao-dyn/9407009, July 1994, 231 pp.

    Google Scholar 

  15. G. J. Chaitin. E-mail to C. Calude, 21 December, 1994.

    Google Scholar 

  16. P. J. Cohen. Set Theory and the Continuum Hypothesis, Benjamin, New York, 1966.

    Google Scholar 

  17. K. De Leuuw, E. F. Moore, C. E. Shannon, N. Shapiro. Computability by probabilistic machines, in C. E. Shannon,J. McCarthy (eds.).Automata Studies, Princeton University Press, Princeton, 1956, 183–212.

    Google Scholar 

  18. N. C. A. da Costa, F. A. Doria. Undecidability and incompleteness in classical mechanics, Internat. J. Theoret. Physics 30 (1991), 1041–1073.

    Article  Google Scholar 

  19. R. Courant, D. Hilbert. Methods of Mathematical Physics, Wiley, New York, vol. 1, 1953, vol. 2, 1962.

    Google Scholar 

  20. A. Einstein. Grundzüge der Relativitätstheorie, Vieweg, Braunschweig, 1973.

    Google Scholar 

  21. H. Everett. “Relative state” formulation of quantum mechanics, Reviews of Modern Physics 29(1957), 454–462; reprinted in J. A. Wheeler and W. H. Zurek (eds.). Quantum Theory and Measurement, Princeton University Press, Princeton, 1983, 315–323.

    Google Scholar 

  22. P. C. Fischer. Theory of provable recursive functions, Trans. Amer. Math. Soc. 117 (1965), 494–520.

    Article  Google Scholar 

  23. J. Ford. How random is a coin toss? Physics Today 40 (1983), 40–47.

    Article  Google Scholar 

  24. Ph. Frank. Das Kausalgesetz und seine Grenzen, Springer, Vienna, 1932.

    Google Scholar 

  25. K O. Friedrichs. Mathematical Methods of ElectromagneticTheory,New York University Institute, 1974.

    Google Scholar 

  26. G. Kreisel. A notion of mechanistic theory, Synthese 29 (1974), 11–26.

    Article  Google Scholar 

  27. R. O. Gandy. Limitations to mathematical knowledge, in D. van Dalen, D. Lascar, and J. Smiley (eds.). Logic Colloquium ‘82,North Holland, Amsterdam, 1982, 129146.

    Google Scholar 

  28. R. O. Gandy. Church’s Thesis and principles for mechanics, in J. Barwise, H. J. Kreisler and K. Kunen (eds.). The Kleene Symposium, North Holland, Amsterdam, 1980, 123–148.

    Chapter  Google Scholar 

  29. J. Gill. Computational complexity of probabilistic Turing machines, SIAM J. Comput. 6 (1976), 675–695.

    Article  Google Scholar 

  30. E. M. Gold. Language identification in the limit, Information and Control 10 (1967), 447–474.

    Article  Google Scholar 

  31. D. Gordon. Complexity classes of provable recursive functions,Journal of Computer and System Sciences 18 (1979), 294–303.

    Article  Google Scholar 

  32. K. Gödel. Ober formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme. Monatshefte f. Math. u. Phys. 38 (1931), 173–198.

    Article  Google Scholar 

  33. K Gödel. The Consistency of the Continuum Hypothesis, Princeton University Press, Princeton, 1940.

    Google Scholar 

  34. Yu. V. Matijaseviö. Hilbert’s’ Tenth Problem, MIT Press, Cambridge, Massachusetts, 1993.

    Google Scholar 

  35. M. L. Minsky. Matter, minds, and models, in M. L. Minsky (ed.). Semantic Information Processing, MIT Press, Cambridge, Mass., 425–432.

    Google Scholar 

  36. M. L. Minsky. The Society of Mind, Simon & Schuster, New York, 1988.

    Google Scholar 

  37. E. F. Moore. Gedanken-experiments on sequential machines, in in C. E. Shannon, J. McCarthy (eds.). Automata Studies, Princeton University Press, Princeton, 1956, 129–153.

    Google Scholar 

  38. D. Mundici. Irreversibility, uncertainty, relativity and computer limitations, Il Nuovo Cimento 61 (1981), 297–305.

    Article  Google Scholar 

  39. P. Odifreddi. Classical Recursion Theory, North-Holland, Amsterdam, 1989.

    Google Scholar 

  40. R. Penrose. The Emperor’s New Mind. Concerning Computers, Minds, and the Laws of Physics,Vintage, London, 1990. (First published by Oxford University Press, Oxford, 1989.)

    Google Scholar 

  41. R. Penrose. Précis of The Emperor’s New Mind. Concerning Computers, Minds, and the Laws of Physics (together with responses by critics and a reply by the author), Behavioural and Brain Sciences 13 (1990), 643–705.

    Article  Google Scholar 

  42. K R. Popper. Indeterminism in quantum physics and in classical physics, The British Journal for the Philosophy of Science 1(1950), 117–133,173–195.

    Google Scholar 

  43. M. Pour-El, I. Richards. Computability in Analysis and Physics, Springer-Verlag, Berlin, 1989.

    Google Scholar 

  44. D. Richardson. Some unsolvable problems involving elementary functions of a real variable, J. Symbolic Logic 33 (1968), 514–520.

    Article  Google Scholar 

  45. H. Rogers. Theory of Recursive Functions and Effective Computability, MacGrawHill, New York, 1967.

    Google Scholar 

  46. R. Rucker. Infinity and the Mind, Bantam Books, New York, 1983.

    Google Scholar 

  47. J. Searle. Minds, Brains and Science, Harvard University Press, Cambridge, Mass., 1984.

    Google Scholar 

  48. R. Shaw. Strange attractors, chaotic behavior, and information flow, Z. Naturforsch. 36a (1981), 80–112.

    Google Scholar 

  49. K Svozil. Randomness & Undecidability in Physics, World Scientific, Singapore, 1993.

    Google Scholar 

  50. K Svozil. On Self-reference and Self-description,Paper presented at the First World Congress of Transdisciplinarity, UNESCO National Committee, Study Group on Transdisciplinarity at UNESCO, and the Universidade Intemacional of Lisbon, 3–6 November 1994.

    Google Scholar 

  51. K Svozil. Quantum Computation and Complexity Theory,Lecture Notes, University of Technology, Vienna, Wintersemester 1994/95, 51 pp.

    Google Scholar 

  52. D. tefiínescu. Mathematical Models in Physics,University of Bucharest Press, 1984. (in Romanian)

    Google Scholar 

  53. A. Tarski. A Decision Method for Elementary Algebra and Geometry, University of California Press, Berkeley, 1951.

    Google Scholar 

  54. A. M. Turing. Collected Works: Mechanicallntelligence, in D. C. Ince (ed.), Elsevier, Amsterdam, 1992.

    Google Scholar 

  55. J. von Neumann. Theory of Self-Reproducing Automata, edited and completed by Arthur W. Burks, University of Illinois Press, Urbana, 1966.

    Google Scholar 

  56. St. Wagon. The Banach-Tarski Paradox,Cambridge University Press, Cambridge, 1986. (2nd printing)

    Google Scholar 

  57. P. S. Wang. The undecidability of the existence of zeros of real elementary functions, J. Assoc. Comput. Mach. 21 (1974), 586–589.

    Article  Google Scholar 

  58. H. F. Weinberger. A First Course in Partial Differential Equations, John Wiley & Sons, New York, 1965.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Calude, C., Campbell, D.I., Svozil, K., Ştefănescu, D. (1995). Strong Determinism vs. Computability. In: Depauli-Schimanovich, W., Köhler, E., Stadler, F. (eds) The Foundational Debate. Vienna Circle Institute Yearbook [1995], vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3327-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3327-4_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4617-8

  • Online ISBN: 978-94-017-3327-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics