Skip to main content

Vibrio cholerae in recreational beach waters and tributaries of Southern California

  • Chapter
The Ecology and Etiology of Newly Emerging Marine Diseases

Part of the book series: Developments in Hydrobiology ((DIHY,volume 159))

Abstract

Vibrio cholerae is the causative agent of the severe dehydrating diarrheal disease cholera. This bacterium has been detected in many estuaries around the world and the United States. In this study we examine the abundance and distribution of V cholerae in recreational beach waters and tributaries of Southern California. Water samples were taken from 11 beach locations adjacent to freshwater runoff sources between February 8th and March Ist, 1999. Water samples were also taken from rivers, creeks and coastal wetlands along the Southern California coast between May 19th and June 28th, 1999. In addition to the detection of V cholerae, environmental parameters including temperature, salinity, coliphage counts, viable heterotrophic plate counts and total bacterial direct counts were also determined to understand the relationships between the presence of V. cholerae and environmental conditions. A direct colony hybridization method using an oligonucleotide probe specific for the 16S-23S intergenic spacer region of V. cholerae,detected V. cholerae in 3 of the 11 beach samples with the highest concentration (60.9 per liter) at the mouth of Malibu Lagoon. V. cholerae and coliphage were not correlated for beach samples, indicating that the presence of V cholerae is independent of sewage pollution. V cholerae were detected in all samples taken from rivers, creeks and wetlands of coastal Southern California where salinities were between l to 34 parts per thousand (ppt), but was not found at a freshwater sampling site in upper San Juan Creek. The highest density of V cholerae was found in San Diego Creek with a concentration of 4.25 x 105 CFU/L. The geographical distribution of V. cholerae was inversely correlated with salinity. High concentrations of V cholerae were more frequently detected in waters with lower (but above 0) salinity. The results of this study provide insight into the ecology of this aquatic species and are potentially important to the understanding of the epidemiology of cholera on a global scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beltran, P., G. Delgado, A. Navarro, F. Trujillo, R. K. Selander A. Croavioto, 1999. Genetic diversity and population structure of Vibrio cholerae. J. Clin. Microbiol. 37: 581–590.

    Google Scholar 

  • Bik, E. M., A. E. Bunschoten, R. D. Gouw F. R. Mooi, 1995. Genesis of the novel epidemic Vibrio cholerae 0139 strain: evidence for horizontal transfer of genes involved in polysaccharide synthesis. EMBO J. 14: 209–216.

    Google Scholar 

  • Bradford, H. B., 1984. An epidemilogical study of V. cholerae in Louisana. In Colwell, R. R. (ed.), Vibrios in the Environment. John Wiley Sons, Inc., New York: 59–72.

    Google Scholar 

  • Cholera Working Group, 1993. Large epidemic of cholera-like disease in Bangladesh caused by 0139 synonym Bengal. Lancet 342: 387–390.

    Google Scholar 

  • Chun. J., A. Hug R. R. Colwell, 1999. Analysis of I6S–23S rRNA intergenic spacer regions of Vibrio cholerae and Vibrio mimicur. Appl. environ. Micriobiol. 65: 2202–2208.

    Google Scholar 

  • Colwell, R. R., J. Kaper S. W. Joseph, 1977. Vibrio cholerae, Vibrio parahaemolvticus, and other vibrios: occurrence and distribution in Chesapeake Bay. Science 198: 394–396.

    Google Scholar 

  • Colwell, R. R.,W. M. Spira, 1992. The ecology of Vibrio cholerae. In Barua, D. W. B. Greenough (eds), Cholera. Plenum, New York: 107–127.

    Google Scholar 

  • Colwell, R. R., 1996. Global climate and infectious disease: the cholera paradigm. Science 274: 2025–2031.

    Article  PubMed  CAS  Google Scholar 

  • Dalsgaard, A., A. Forslund, H. F. Mortensen T. Shimada, 1998. Ribotypes of clinical Vibrio cholerae non-01 non-0139 strains in relation to 0-serotypes. Epidemiol. Infect. 121: 535–545.

    Google Scholar 

  • Dalsgaard, A. M., J. Albert. D. N. Taylor, T. Shimada, R. Meza, 0. Serichantalergs P. Echeverria, 1995. Characterization ofVibrio cholerae non-01 serogroups obtained from an outbreak of diarrhea in Lima, Peru. J. clin. Microbiol. 33: 2715–2722.

    Google Scholar 

  • Davey, G. R., J. K. Prendergast M. J. Eyles, 1982. Detection of Vibrio cholerae in oyster, water and sediment from George’s River. Food Techol. Aust. 34: 334–336.

    Google Scholar 

  • DePaola, A., M. W. Presnell, M. L. Motes, R. M. McPhearson, R. M. Twedt, R. E. Becker S. Zywmo, 1983. Non-01 Vibrio cholerae in shellfish, sediment and waters of the U.S. Gulf Coast. J. Food Prot. 46: 802–806.

    Google Scholar 

  • DePauola, A., M. W. Presnell, R. E. Becker, M. L. Motes, S. R. Zywmo, J. F. Musselman, J. Taylor L. Williams, 1984. Distribution of Vibrio cholerae in Apalachicola Bay (Florida) estuary. J. Food Prot. 47: 549–553.

    Google Scholar 

  • Drasar, B. S. B. D. Forrest,1996.Cholera and the ecology of Vi-brio cholerae In Drasar,B.S.B.D.Forrest (eds),Cholera and the ecology of Vibrio cholerae Chapman and Hall Ltd.,London, England,UK;New York,New York,USA:xxi+355.

    Google Scholar 

  • Faruque, S. M., M. J. Albert J. J. Mekalanos, 1998. Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae. Microbiol. Molecul. Biol. Rev. 62: 1301–1314.

    Google Scholar 

  • Grim, C. J., I. N. G. Rivera, N. Choopun, J. Chun, A. Huq,R. R. Colwell, 2000. Quantification of Vibrio cholerae from aquatic ecosystems using an oligonucleotide probe. Abstracts of the General Meeting of the American Society for Microbiology. 100: 547.

    Google Scholar 

  • Heidelberg, J., 1997. Seasonal abundance in the bacterioplankton and zooplankton-attached populations of Bacteria, y-subclass of the Proteobacteria, Vibrio/Photobacterium, Vibrio cholerae/Vibrio mimicus, Vibrio vulnificus, and Vibrio eincinnatiensis. Ph.D. dissertation, Univ. of Maryland.

    Google Scholar 

  • Hood, M. A., G. E. Ness, G. E. Rodrick N. J. Blake, 1983. Distribution of Vibrio cholerae in two Florida estuaries. Microb. Ecol. 9: 65–75.

    Google Scholar 

  • Jiang, S. C., J. M. Thurmond, S. L. Pichard J. H. Paul, 1992. Concentration of microbial populations from aquatic environments by Vortex Flow Filtration. Mar. ecol. Prog. Ser. 80: 101–107.

    Google Scholar 

  • Jiang, S. C., V. Louis, N. Choopun, A. Sharama, A. Huq R. R. Colwell, 2000. Genetic diversity of Vibrio cholerae in Chesapeake Bay determined by amplified fragment length polymorphism (AFLP). Appt. Environ. Microbiol. 66 (l): 140–147.

    Article  CAS  Google Scholar 

  • Jiang, S. C. J. H. Paul, 1998. Gene transfer by transduction in the marine environment. Appt. environ. Microbiol. 64: 2780–7.

    Google Scholar 

  • Kaper, J. H. L., R. R. Colwell S. W. Joseph, 1979. Ecology, serology, and enterotoxin production of Vibrio cholerae in Chesapeake Bay. Appl. environ. Microbial. 37: 91–103.

    Google Scholar 

  • Karaolis, D. K., R. Lan P. R. Reeves, 1995. The sixth and seventh cholera Pandemics are due to independent clones separ-

    Google Scholar 

  • ately derived from environmental, nontoxigenic, non-01 Vibrio cholerae J. Bacterial. 177: 3191–3198.

    Google Scholar 

  • Kaysner, C. A., C. Abeyta, Jr., M. M. Wekell, A. DePaola, Jr., R. F. Stott J. M. Leitch, 1987. Incidence of Vibrio cholerae from estuaries of the United States west coast. Appt. environ. Microbial. 53: 1344–1348.

    Google Scholar 

  • Kenyon. J. E., D. C. Gillies, D. R. Piexoto B. Austin, 1983. Vibrio cholerae (non-01) isolated from California coast waters. Appt. environ. Microbiol. 46: 1232–1233.

    Google Scholar 

  • Kenyon, J. E., D. R. Piexoto, B. Austin D. C. Gillies, 1984. Seasonal variation in the numbers of Vibrio cholerae (non-0I) isolated from California coastal waters. Appt. Environ. Microbiol. 47: 1243–1245.

    Google Scholar 

  • Lennette, E. H., A. Balows, W. J. Hausler H. J. Shadomy. 1985. Manual of Clinical Microbiology. 4th edn. American Society for Microbiology, Washington D.C.

    Google Scholar 

  • Mahon, B. E., E. D. Mintz, K. D. Greene, J. G. Wells R. V. Tauxe, 1996. Reported cholera in the United States. 1992–1994: a reflection of global changes in cholera epidemiology. JAMA 276: 307–312.

    CAS  Google Scholar 

  • Morris, J. G. R. E. Black, 1985. Cholera and other vibrios in the United States. New England J. Medicine 312: 343–350.

    Google Scholar 

  • Paul, J. H. B. Myers. 1982. Fluorometric determination of DNA in aquatic microorganisms by use of Hoechst 33258. Appt. environ. Microbial. 43: 1393–1399.

    Google Scholar 

  • Paul, J. H., J. B. Rose, S. C. Jiang, C. A. Kellogg L. Dickson. 1993. Distribution of viral abundance in the reef environment of Key Largo, Florida. Appt. environ. microbial. 59: 718–724.

    Google Scholar 

  • Popovic, T., C. Bopp, 0. Olsvik K. Wachsmuth, 1993. Epidemiological application of a standardized ribotype scheme for V. cholerae 01. J. Clin. Microbial. 31: 2474–2482.

    Google Scholar 

  • Tauxe, R., L.Seminario.R.Tapia M.Libel,1994.The Latin American epidemic.In Wachsmuth,I.K.P.A. Blacke 0.Olsvik (eds),Vibrio cholerae and cholera.Washington,DC:Am.Soc.Microbiol.

    Google Scholar 

  • Tison, D. L., M. Nishuchi, R. J. Seidler R. J. Siebeling, 1986. Isolation of non-01 Vibrio cholerae serovars from Oregon coastal environments. Appt. environ. Microbiol. 51: 444–445.

    Google Scholar 

  • Waldor, M. K. J. J. Mekalanos, 1996. Lysogenic conversion by a filamentous phage encoding cholera Toxin. Science 272: 19101914.

    Google Scholar 

  • World Health Organization, 1998. Weekly Epidemiological Record. 73: 201–208.

    Google Scholar 

  • Yamai, S., T. Okitsu, T. Shimada Y. Yatsube, 1997. Distribution of serogroups of Vibrio cholerae non-01 non-0139 with specific reference to their ability to produce cholera toxin, and addition of novel serogroups. J. Jap. Assoc. Infec. Diseases 71: 1037–1045.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jiang, S.C. (2001). Vibrio cholerae in recreational beach waters and tributaries of Southern California. In: Porter, J.W. (eds) The Ecology and Etiology of Newly Emerging Marine Diseases. Developments in Hydrobiology, vol 159. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3284-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3284-0_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5930-7

  • Online ISBN: 978-94-017-3284-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics