Skip to main content

The practical importance of the interactions between fish, zooplankton and macrophytes in shallow lake restoration

  • Conference paper
The Ecological Bases for Lake and Reservoir Management

Part of the book series: Developments in Hydrobiology ((DIHY,volume 136))

Abstract

Zooplankton, using macrophytes as refuges from predation by zooplanktivorous fish, are believed to be important in maintaining the macrophyte-dominated state in shallow lakes. Their grazing upon phytoplankton is also believed to be instrumental in preserving water transparency in the establishment phase of macrophytes which follows an attempt to restore a shallow lake from the effects of eutrophication. This paper interprets the results of fish, zooplankton and macrophyte interactions from an intensive 3-year study in the Norfolk Broads of eastern England. In the presence of even a low density of 0+ fish (0.2 m−2), Daphnia spp. which typically dominate the cladoceran community in spring, and through grazing are responsible for producing clear water, are typically reduced to very low levels. This decline may become protracted, but not eliminated, by the presence of macrophytes, implying a refuge effect. The efficacy of any refuge effect appears to increase with an increasing proportion of the water column occupied by macrophytes (PVI). As macrophytes develop, the grazing role is taken over by Ceriodaphnia spp. and Simocephalus spp., and may be at a sufficient rate to maintain clear water at least within macrophyte stands and possibly in intervening open water areas through diel migration of the zooplankton. A macrophyte PVI of 30–40% may provide an adequate refuge for these species through the mechanism of predation-free space, although this depends on fish density and community structure. At high densities (1 m−2) of a suite of fish species, including efficient foragers in open water (roach, Rutilus rutilus) and within macrophytes (perch, Perca fluviatilis), any refuge effect is nullified. In stable macrophyte-dominated lakes, the shift in fish community structure towards a higher proportion of piscivorous compared to zooplanktivorous fish may have a role in promoting the refuge effect through changing the distribution of zooplanktivorous fish. Predation upon zooplankton may also be reduced through the provision of alternative prey in the form of macrophyte-associated macroinvertebrates for an alternative fish stock dominated by perch, rudd (Scardinins erythrophthalmus) and tench (Tinca tinca).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bean, C. W. & I.J. Winfield, 1995. Habitat use and activity patterns of roach (Rutilas radius (L.)), rudd (Scardinius erythrophthalmus (L.)), perch (Perm fluviatilis L.) and pike (Esox Lucius L.) in the laboratory: the role of predation threat and structural complexity. Ecol. Freshwat. Fish 4: 37–46.

    Google Scholar 

  • Broads Authority, 1994. The Broads Plan - No Easy Answers. Broads Authority Consultation Document, Broads Authority, Norwich, U.K.

    Google Scholar 

  • Canfield, D. E. Jr., J. V. Shireman, D. E. Colle, W. T. Haller, C. E. Watkins & M. J. Maceina, 1984. Prediction of chlorophyll a concentrations in Florida lakes: importance of aquatic macrophytes. Canadian Journal of Fisheries amp Aquatic Sciences 41: 497–501.

    Article  CAS  Google Scholar 

  • Carpenter, S. R., J. F. Kitchell, J. R. Hodgson, P. A. Cochran, J. J. Elser, M. M. Elser, D. M. Lodge, D. Kretchmer, X. He, & C. N. von Ende, 1987. Regulation of lake primly productivity by food web structure. Ecology 68: 1863–1876.

    Article  Google Scholar 

  • Carpenter, S. R. & D. M. Lodge, 1986. Effects of submersed macrophytes on ecosystem processes. Aquat. Bot. 26: 341–370.

    Google Scholar 

  • Copp, G. H. & M. Pendz, 1988. Ecology of fish spawning and nursery zones in the flood plain, using a new sampling approach. Hydrobiologia 169: 209–224.

    Article  Google Scholar 

  • Cryer, M. & C. R. Townsend, 1988. Spatial distribution of zooplankton in a shallow eulrophic lake, with a discussion of its relation to fish predation. J. Plankt. Res. 10: 487–501.

    Google Scholar 

  • Cryer, M., G. Peirson & C. R. Townsend, 1986. Reciprocal interactions between roach, Rutilus rutilus, and zooplankton in a small lake: Prey dynamics and fish growth and recruitment. Limnol. Oceanog. 31: 1022–1038.

    Google Scholar 

  • Davies, J., 1985. Evidence for a diurnal horizontal migration in Daphnia hyalina lacustris Sars. Hydrobiologia 120: 103–105.

    Article  Google Scholar 

  • de Meester L., S. Maas, K. Dierckens amp H. J. Dumont, 1993. Habitat selection of patchiness in Scapholeberis: horizontal distribution and migration of S. mucronata in a small pond. J. Plankt. Res. 15: 1129–1139.

    Google Scholar 

  • de Nie, A. W., 1987. The Decrease in Aquatic Vegetation in Europe and its Consequences for Fish Populations. EIFAC Occasional Paper 19. FAO, Rome: 88 pp.

    Google Scholar 

  • Dorgelo, J. & M. Heykoop, 1985. Avoidance of macrophytes by Daphnia longispina. Verha. Int. Ver. Limnol. 22: 3369–3372.

    Google Scholar 

  • Eklov, P., 1992. Group foraging versus solitary foraging efficiency in piscivorous predators: the perch Perca fluviatilis, and pike Esox lucius, patterns. Anim. Behay. 44: 313–326.

    Google Scholar 

  • Engel, S., 1988. The role and interactions of submerged macrophytes in a shallow Wisconsin lake. J. Freshwat. Ecol. 4: 229–241.

    Google Scholar 

  • Finlayson, C. M. (ed.), 1992. Integrated Management and Conservation of Wetlands in Agricultural and Forested Landscapes. Proceedings of the International Waterfowl and Wetlands Reserarch Bureau workshop, Trebon, Czechoslovakia, 25–31 March 1992. IWRB Special Publication 22: 104 pp.

    Google Scholar 

  • Furnass, T. 1., 1979. Laboratory experiments on prey selection by perch fry (Perca fluviatilis). Freshwat. Biol. 9: 33–43.

    Google Scholar 

  • Gamier, J. & S. Mourelatos, 1991. Contribution of grazing in phytoplankton overall losses in a shallow French lake. Freshwat. Biol. 25: 515–523.

    Google Scholar 

  • Gliwicz, Z. M., 1990. Why do cladocerans fail to control algal blooms? Hydrobiologia 200/201 ( Dev. Hydrobiol. 61 ): 83–97.

    Google Scholar 

  • Hall, D. J. & E. E. Werner, 1977. Seasonal distribution and abundance of fishes in the littoral zone of a Michigan lake. Trans. Am. Fish. Soc. 106: 545–555.

    Google Scholar 

  • Irvine, K., B. Moss, & H. Balls, 1989. The loss of submerged plants with eutrophication II. Relationships between fish and zooplank

    Google Scholar 

  • ton in a set of experimental ponds, and conclusions. Freshwat. Biol. 22: 89–107.

    Google Scholar 

  • Jacobsen, L., M. R. Perrow, F. Landkildehus, M. Hjprne, T. L. Lauridsen, & S. Berg, 1997. Interactions between piscivores, zooplanktivores and zooplankton in submerged macrophytes: preliminary observations from enclosure and pond experiments. Hydrobiologia 342/343 ( Dev. Hydrobiol. 119 ): 197–205.

    Google Scholar 

  • Jcppesen, E., J. P. Jensen, P. Kristensen, M. SOndergaard, E. Mortensen, O. Sortkja r & K. Olrik, 1990. Fish manipulation as a lake restoration tool in shallow, eutrophie, temperate lakes 2: threshold levels, long-term stability and conclusions. Hydrobiologia 200/201 ( Dev. Hydrobiol. 61 ): 219–227.

    Google Scholar 

  • Jeppesen, E.. T. L. Lauridsen, T. Kairesalo amp M. R. Perrow, 1998. Impact of submerged macrophytes on fish-zooplankton interactions in lakes. In Jeppesen, E.. SOndergaard, Mo., Spndergaard, Ma. & Christoffersen, K. (eds), The Structuring Role of Submerged Macrophytes in Lakes. Ecological Studies Series, Springer-Verlag, New York: 171–189.

    Google Scholar 

  • Krull, J. H., 1970. Aquatic plant-macroinvertebrate associations and waterfowl. J. Wildlife Manage. 34: 707–718.

    Article  Google Scholar 

  • Lammens, E. H., Boesewinkel, P. J. de Bruyn, H. Hoogveld & E. Van Donk, 1992. P-load, phytoplankton, zooplankton and fish stock in Loosdrecht Lake and Tjeukemecr: confounding effect of predation and food availability. Hydrobiologia 233: 87–95.

    Article  Google Scholar 

  • Lauridsen, T. L. & 1. Buenk, 1996. Dicl changes in the horizontal distribution of zooplankton in the littoral zone of two shallow lowland lakes Arch. Hydrobiol. 137: 161–176.

    Google Scholar 

  • Lauridsen, T. L. & D. M. Lodge, 1996. Avoidance by Daphnia magna of fish and macrophytes: chemical cues and predator-mediated use of macrophyte habitat. Limnol. Oceanogr. 22: 805–810.

    Google Scholar 

  • Lauridsen, T. L., E. Jeppesen, amp M. SOndergaard, 1994. Colonization and succession of submerged macrophytes in shallow Lake Vtcng during the first five years following fish manipulation. Hydrobiologia 275/276 ( Dev. Hydrobiol. 94 ): 233–242.

    Google Scholar 

  • Lauridsen, T. L., L. J. Pedersen, E. Jeppesen & M. SOndergaard, 1996. The importance of macrophyte bed size for composition and horizontal migration of cladocerans in a shallow lake. J. Plankt. Res. 18: 2283–2294.

    Google Scholar 

  • Lehtovaara, A. & J. Sarvala, 1984. Seasonal dynamics of total biomass and species composition of zooplankton in the littoral of an oligotrophic lake. Verh. Int. Ver. Limnol. 22: 885–891.

    Google Scholar 

  • Moss, B. 1983. The Norfolk Broadland: experiments in the restoration of a complex wetland. Biol. Rev. 58: 521–561.

    Google Scholar 

  • Mourelatos, S. & G. Lacroix, 1990. In situ filtering rates of Cladocera: effect of body length, temperature, and food concentration. Limnol. Oceanogr. 35: 1101–1111.

    Google Scholar 

  • Meijer, M.-L., E. Jeppesen, E. van Donk, B. Moss, M. Scheffer, E. H. Lammens, E. van Nes, J. A. van Berkum, G. L. de Jong, B. A, Faafeng. & J. P. Jensen, 1994. Long-term responses to fish-stock reduction in small shallow lakes: interpretation of five-year results of four biomanipulation cases in The Netherlands and Denmark. Hydrobiologia 275/276 ( Dev. Hydrobiol. 94 ): 457–466.

    Google Scholar 

  • National Research Council, 1992. Restoration of Aquatic Ecosystems - Science, Technology and Public Policy. National Academy Press, Washington D.C, U.S.A.: 552 pp.

    Google Scholar 

  • Ozimek, T., R. D. Gulati amp E. van Donk, 1990. Can macrophytes be useful in biomanipulation of lakes? The Lake Zwemlust example. Hydrobiologia 200/201 ( Dev. Hydrobiol. 61 ): 399–407.

    Google Scholar 

  • Pennak, R. W., 1973. Some evidence for aquatic macrophytes as repellents for a limnetic species of Daphnia. Int. Rev. ges. Hydrobiol. 58: 569–576.

    Google Scholar 

  • Perrow, M. R., 1990. Biomanipulation in Broadland. In K. T. O’Grady, Butterworth, A. J. B., Spillett, P. B. & Domaniewski, J. C. J. (eds), Fisheries in the Year 2000. Proceedings of the 21st anniversary conference of the Institute of Fisheries Management: 335–337.

    Google Scholar 

  • Perrow, M. R., B. Moss, & J. H. Stansfield, 1994. Trophic interactions in a shallow lake following a reduction in nutrient loading: a long term study. Hydrobiologia 275/276 ( Dev. Hydrobiol. 94 ): 43–52.

    Google Scholar 

  • Perrow, M. R., A. J. D. Jowitt, & L. Zambrano Gonzalez, 1996a. Sampling fish communities in shallow lowland lakes: point-sample electrofishing versus electrofishing within stop-nets. Fisheries Manage. Ecol. 3: 303–313.

    Google Scholar 

  • Perrow, M. R., A. J. D. Jowitt, & S. R. Johnson, 1996b. Factors affecting the habitat selection of tench (Tinca tinca (L.)) in a shallow eutrophic lake. J. Fish Biol. 48: 859–870.

    Google Scholar 

  • Perrow, M. R., M.-L. Meijer, P. Dawidowicz & H. Coops, 1997. Biomanipulation in shallow lakes: state of the art. Hydrobiologia 342/343 ( Dev. Hydrobiol. 119 ): 355–65.

    Google Scholar 

  • Perrow, M. R. & A. J. D. Jowitt, in press. The influence of macrophytes on the structure and function of fish communities. Broads Authority/Environment Agency, EC LIFE project 92–3/UK/03I.

    Google Scholar 

  • Perrow, M. R.. J. H. Stansfield, A. J. D. Jowitt & L. D. Tench, in press. Macrophytes as a refuge for grazing zooplankton from fish predation. Broads Authority/Environment Agency, EC LIFE project 92–3/UK/031.

    Google Scholar 

  • Persson, L., 1986. Effects of reduced interspecific competition on resource utilization in perch (Percaluviatilis). Ecology 67: 355–364.

    Article  Google Scholar 

  • Persson, L. 1993. Predator-mediated competition in prey refuges: the importance of habitat dependent prey resources. Oikos 68: 12–22.

    Article  Google Scholar 

  • Persson, L. & P. Eklov, 1995. Prey refuges affecting interactions between piscivorous perch and juvenile perch and roach. Ecology 76: 70–81.

    Article  Google Scholar 

  • Phillips, G. L., M. R. Perrow & J. H. Stansfield, 1996. Manipulating the fish-zooplankton interaction in shallow lakes: a tool for restoration. In S. P. R. Grcenstreet & Tasker, M. L. (eds). Aquatic Predators and their Prey. Blackwell Scientific Publications Ltd., Oxford, England: 174–183.

    Google Scholar 

  • Phillips, G., A. Bramwell, J. Pitt, J. Stansfield & M. Perrow, 1999. Practical application of 25 years’ research into the management of shallow lakes. Hydrobiologia 395/396 ( Dev. Hydrobiol. 136 ): 61–76.

    Google Scholar 

  • Sas, H., 1989. Lake restoration by reduction of nutrient loading: expectations, experiences, extrapolations. Academia Verlag: 497 pp.

    Google Scholar 

  • Savino, J. & R. A. Stein, 1982. Predator-prey interaction between largemouth bass and bluegills as influenced by simulated, submersed vegetation. Trans. am. Fish. Soc. 111: 255–266.

    Google Scholar 

  • Scheffer, M., S. H. Hosper, M.-L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends Ecol. Evol. 8: 275–279.

    Google Scholar 

  • Schriver, P., J. BOgestrand, E. Jeppesen, & M. SOndergaard, 1995. Impact of submerged macrophytes on fish-zooplanktonphytoplankton interactions: large-scale enclosure experiments in a shallow lake. Freshwat. Biol. 33: 255–270.

    Google Scholar 

  • Shapiro, J., 1990. Biomanipulation: the next phase-making it stable. Hydrobiologia 200/201 ( Dev. Hydrobiol. 61 ): 13–27.

    Google Scholar 

  • Stansfield, J. H., M. R. Perrow, L. D. Tench, A. J. Jowitt, & A. A. Taylor, 1997. Submerged macrophytes as refuges for grazing Cladocera against fish predation: observations on seasonal changes in relation to macrophyte cover and predation pressure. Hydrobiologia 342/343 ( Dev. Hydrobiol. 119 ): 229–240.

    Google Scholar 

  • Thompson, J. M., A. J. Ferguson, & C. S. Reynolds, 1982. Natural filtration rates of zooplankton in a closed system: the derivation of a community grazing index. J. Plankt. Res. 4: 545–560.

    Google Scholar 

  • Timms, R. M. & B. Moss, 1984. Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing, in the presence of zooplanktivorous fish, in a shallow wetland system. Limnol. Oceanogr. 29: 472–486.

    Google Scholar 

  • Townsend, C. R. & M. R. Perrow, 1989. Eutrophication may produce population cycles in roach, Rutilus rutilus, by two contrasting mechanisms. J. Fish Biol. 34: 161–164.

    Article  Google Scholar 

  • Townsend, C. R. & A. J. Risebrow, 1982. The influence of light level on the functional response of a zooplanktivorous fish. Oecologia 53: 293–295.

    Article  Google Scholar 

  • Turner, A. M. & G. G. Mittelbach, 1992. Effects of grazer community composition and fish on algal dynamics. Can. J. Fish. aquat. Sci. 49: 1908–1915.

    Google Scholar 

  • van Donk, E. & R. D. Gulati, 1995. Transition of a lake to turbid state six years after biomanipulation: mechanisms and pathways. Wat. Sci. Technol. 32: 197–206.

    Google Scholar 

  • van Donk, E., R. D. Gulati, A. ledema, & J. T. Meulemans, 1993. Macrophyte-related shifts in the nitrogen and phosphorus contents of the different trophic levels in a hiomanipulated shallow lake. Hydrobiologia 251: 19–26.

    Article  CAS  Google Scholar 

  • Vanni, M. J., 1986. Competition in zooplankton communities: suppression of small species by Daphnia pulex. Limnol. Oceanogr. 31: 1039–1056.

    Google Scholar 

  • Venugopal, M. N. & I. J. Winfield, 1993. The distribution of juvenile fishes in a hypereutrophic pond: Can macrophytes potentially offer a refuge for zooplankton? J. Freshwat. Ecol. 8: 389–396.

    Google Scholar 

  • Walls, M., M. Rajasilta, J. Sarvala, & J. Salo, 1990. Diel changes in horizontal microdistribution of littoral Cladocera. Limnologica 20: 253–258.

    Google Scholar 

  • Werner, E. E., J. F. Gilliam, D. J. Hall, & G. G. Mittelbach, 1983. An experimental test of the effects of predation risk on habitat use in fish. Ecology 64: 1540–1548.

    Article  Google Scholar 

  • Winfield, I. J., 1986. The influence of simulated aquatic macrophytes on the zooplankton consumption rate of juvenile roach, Rutilus rutilus, rudd, Scardinius erythrophthalmus, and perch, Perca fiuviatilis. J. Fish Biol. 29: 37–48.

    Article  Google Scholar 

  • Wium-Anderson, S., U. Anthoni, C. Christophcrsen, & G. Houen, 1982. Allelopathic effects on phytoplankton by substances isolated from aquatic macrophytes ( Charales ). Oikos 39: 187–190.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Perrow, M.R., Jowitt, A.J.D., Stansfield, J.H., Phillips, G.L. (1999). The practical importance of the interactions between fish, zooplankton and macrophytes in shallow lake restoration. In: Harper, D.M., Brierley, B., Ferguson, A.J.D., Phillips, G. (eds) The Ecological Bases for Lake and Reservoir Management. Developments in Hydrobiology, vol 136. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3282-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3282-6_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5251-3

  • Online ISBN: 978-94-017-3282-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics