White Dwarf Constraints on Exotic Physics

  • Marek Biesiada
  • Beata Malec


Nonstandard theories of fundamental interactions typically predict the existence of new kinds of weakly interacting particles. These can escape freely from stellar interiors and act as additional source of cooling. Considerable agreement of a variety of astrophysical observations with standard physics can serve as a source of constraints on non-standard ideas. In this paper we consider G117-B15A pulsating white dwarf for which the secular rate, at which the period of its fundamental mode increases, has been accurately measured. This star has been claimed the most stable oscillator ever recorded in the optical band. Because an additional channel of energy loss would speed up the cooling rate, one is able to use this stability to derive a bound on axion mass and on theories with large extra dimensions. We also point to the possibility of using similar arguments to constrain supersymmetric paticles.


Dark Matter White Dwarf Globular Cluster Luminosity Function Large Extra Dimension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arkani-Hamed, N., Dimopoulos, S. and Dvali, G.: 1998, Phys. Lett. B 429, 263.ADSCrossRefGoogle Scholar
  2. Barger, V., Han, T., Kao, C., Zhang and R.J.: 1999, Phys. Lett. B 461, 34.ADSCrossRefGoogle Scholar
  3. Bergstrom, L.: 2000, Rep. Prog. Phys 63, 793.ADSCrossRefGoogle Scholar
  4. Biesiada, M. and Malec, B.: 2002, Phys. Rev. D 65, 043008.Google Scholar
  5. Burrows, A., Ressell, M.T. and Turner, M.S.: 1990, Phys. Rev. D 42, 3297.ADSCrossRefGoogle Scholar
  6. Carlsson, E.D.: 1995, Phys. Lett. B 245.Google Scholar
  7. Córsico, A.H., Benvenuto, O.G., Althaus, L.G., Isern, J. and Garcia-Berro, E.: 2001, New Astron. 6, 197.ADSCrossRefGoogle Scholar
  8. Cullen, S. and Perelstein, M.: 1999, Phys. Rev. Lett 83, 268.ADSCrossRefGoogle Scholar
  9. degl’Innocenti, S., Dziembowski, W., Fiorentini, G. and Ricci, B.: 1997, Astr. Phys 7, 77.Google Scholar
  10. Dine, M., Fischler, W. and Srednicki, M.: 1981, Phys. Lett. B 104, 199.ADSCrossRefGoogle Scholar
  11. Han, T., Lykken, J.D. and Zhang, R.-J.: 1999, Phys. Rev. D 59, 105006.Google Scholar
  12. Isern, J., Hernanz, M. and Garcia-Berro, E.: 1992, ApJ 392, L23.ADSCrossRefGoogle Scholar
  13. Jungman, G., Kamionkowski, M. and Griest K.: 1996, Phys. Rep 267, 195.ADSCrossRefGoogle Scholar
  14. Kepler, S.O., Mukadam, A., Winget, D.E., Nather, R.E., Metcalfe, T.S., Reed, M.D., Kawaler, S.D. and Bradley, P.A.: 2000, ApJ 34, L185.ADSCrossRefGoogle Scholar
  15. Lopes, I.P., Silk, J. and Hansen, S.H.: 2001, astro-ph/0111530.Google Scholar
  16. McGraw, J.T. and Robinson, E.L.: 1976, ApJ 205, L155.ADSCrossRefGoogle Scholar
  17. Mestel, L.: 1952, MNRAS 112, 583.ADSGoogle Scholar
  18. Raffelt, G.G.: 1999, Annu. Rev. Nucl. Part. Sci 49, 163.ADSCrossRefGoogle Scholar
  19. Salaris, M., Dominguez, I., Garcia-Berro, E., Hernanz, M., Isern, J. and Mochkovitch, R.: 1997, ApJ 486, 413.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Marek Biesiada
    • 1
  • Beata Malec
    • 1
  1. 1.Department of Astrophysics and CosmologyUniversity of SilesiaKatowicePoland

Personalised recommendations