Advertisement

The Confrontation Between General Relativity and Experiment

  • Clifford M. Will
Chapter

Abstract

We review the experimental evidence for Einstein’s general relativity. Tests of the Einstein Equivalence Principle support the postulates of curved spacetime and bound variations of fundamental constants in space and time, while solar-system experiments strongly confirm weak-field general relativity. The Binary Pulsar provides tests of gravitational-wave damping and of strong-field general relativity. Future experiments, such as the Gravity Probe B Gyroscope Experiment, a satellite test of the Equivalence principle, and tests of gravity at short distance to look for extra spatial dimensions could further constrain alternatives to general relativity. Laser interferometric gravitational-wave observatories on Earth and in space may provide new tests of scalar-tensor gravity and graviton-mass theories via the properties of gravitational waves.

Keywords

Neutron Star Gravitational Wave Gravitational Radiation Binary Pulsar Innermost Stable Circular Orbit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baessler, S. et al.: 1999, Phys. Rev. Lett 83, 3585.ADSCrossRefGoogle Scholar
  2. Barish, B.C. and Weiss, R.: 1999, Phys. Today 52, 44 (October).Google Scholar
  3. Cutler, C. et al.: 1993, Phys. Rev. Lett 70, 2984.ADSCrossRefGoogle Scholar
  4. Damour, T. and Dyson, F.: 1996, Nucl. Phys. B 480, 37–54.ADSCrossRefGoogle Scholar
  5. Haugan, M.P. and Will, C.M.: 1987, Phys. Today 40, 69 (May).Google Scholar
  6. Hoyle, C.D. et al.: 2001, Phys. Rev. Lett 86, 1418.ADSCrossRefGoogle Scholar
  7. Long, J.C., Chan H.W. and Price, J.C.: 1999, Nucl. Phys. B 539, 23–34.ADSCrossRefGoogle Scholar
  8. Miller, M.C.: 2002, Astrophys. J,in press (astro-ph/0206404).Google Scholar
  9. Salomon, C. et al.: 1999, in: M. Inguscio and E. Arimondo (eds.), Proceedings of the International Conference on Atomic Physics 2000,World Scientific, Singapore, in press.Google Scholar
  10. Scharre, P.D. and Will, C.M.: 2002, Phys. Rev. D 65, 04 2002.Google Scholar
  11. Talmadge, C. et al.: 1988, Phys. Rev. Lett 61, 1159.ADSCrossRefGoogle Scholar
  12. Thorne, K.S.: 1987, in: S.W. Hawking and W. Israel (eds.), 300 Years of Gravitation, Cambridge University Press, Cambridge, p. 330.Google Scholar
  13. Visser, M.: 1998, Gen. Rel. Gray 30, 1717.MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. Will, C.M.: 1993, Theory and Experiment in Gravitational Physics, Cambridge University Press, Cambridge.zbMATHCrossRefGoogle Scholar
  15. Will, C.M.: 1994, Phys. Rev. D 50, 6058.ADSCrossRefGoogle Scholar
  16. Will, C.M.: 1998, Phys. Rev. D 57, 2061.ADSCrossRefGoogle Scholar
  17. Will, C.M.: 1999, Phys. Today 52, 38 (October).Google Scholar
  18. Will, C.M.: 2001, Living Reviews in Relativity 4, 2001–4, (http://www.livingrevicws.org/Articles/Volume4/2001–4will).

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Clifford M. Will
    • 1
  1. 1.Department of Physics and McDonnell Center for the Space SciencesWashington UniversitySt. LouisUSA

Personalised recommendations