Advertisement

Spallogenic Light Elements and Cosmic-Ray Origin

  • R. Ramaty
  • R. E. Lingenfelter
  • B. Kozlovsky
Conference paper
Part of the Space Sciences Series of ISSI book series (SSSI, volume 13)

Abstract

We discuss the new information that the light elements, particularly Be, have brought to cosmic-ray studies, specifically to the issue of the origin of the seed material of the cosmic rays. The primary nature of the Be evolution strongly suggests that supernova ejecta are the sources of this material. We discuss the superbubble models that emerged as the most likely site for the acceleration of supernova ejecta, and we review the arguments that support the model in which the present epoch cosmic rays have the same origin as those that produce the light elements throughout the evolutionary history of the Galaxy. These arguments include the facts that the bulk of the Galactic supernovae are confined within the interiors of superbubbles, where their ejecta could dominate the metallicity, and that high velocity grains, which condense out of the cooling and expanding ejecta, serve as the injection source for shock acceleration, via sputtering of grain material and scattering of volatile gas atoms. We also review the evolutionary calculations that show that a secondary origin for the evolution of Be as a function of the O abundance is energetically untenable, and unnecessary if cosmic-ray transport is properly taken into account.

Keywords

Light Element Shock Acceleration Core Collapse Supernova Supernova Shock Supernova Ejecta 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Axford, W. I.: 1981, ‘Acceleration of Cosmic Rays by Shock Waves’, I7th Int. Cosmic Ray Conf., Paris 12, 155–203.Google Scholar
  2. Biersak, J. P.: 1987, ‘Computer Simulation of Sputtering’, Nucl. Instr. Methods Phys. Res. B27, 2136.Google Scholar
  3. Bloemen, H. et al.: 1994, ‘COMPTEL Observations of the Orion Complex: Evidence for Cosmic-Ray Induced Gamma-Ray Lines’, Astron. Astrophys. 281 L5–L8.ADSGoogle Scholar
  4. Bloemen, H. et al.: 1999, ‘The Revised COMPTEL Orion Results’, Astrophy. J. 521 L137–L140.ADSCrossRefGoogle Scholar
  5. Boesgaard, A. N., King, J. R., Deliyannis, C. P., and Vogt, S. S.: 1999a, ‘Oxygen in Unevolved Metal-Poor Stars from Keck Ultraviolet HIRES Spectra’, Astron. J. 117, 492–507.ADSCrossRefGoogle Scholar
  6. Boesgaard, A., Deliyannis, C., King, J., Ryan, S., Vogt, S., and Beers, T: 1999b, ‘Beryllium Abundances in Halo Stars from Keck/HIRES Observations’, Astron. J. 117, 1549–1562.ADSCrossRefGoogle Scholar
  7. Bykov, A. and Bloemen, H.: 1994, ‘Gamma-Ray Spectroscopy of the Interstellar Medium in the Orion Complex’, Astron. Astrophys. 283, L1 - L4.ADSGoogle Scholar
  8. Bykov, A. M. and Fleishman, G. D.: 1992, ‘On Non-Thermal Particle Generation in Superbubbles’, Monthly Notices Roy. Astron. Soc. 255, 269–279.ADSGoogle Scholar
  9. Cassé, M. and Goret, P.: 1978, ‘Ionization Models of Cosmic Ray Sources’, Astrophys. J. 221, 703–712.ADSCrossRefGoogle Scholar
  10. Cassé, M., Lehoucq, R., and Vangioni-Flam, E.: 1995, ‘Production and Evolution of Light Elements in Active Star-Forming Regions’, Nature 373, 318–319.ADSCrossRefGoogle Scholar
  11. Cassé, M. and Soutoul, A.: 1975, ‘Time Delay Between Explosive Nucleosynthesis and Cosmic Ray Acceleration’, Astrophys. J. 200, L75 - L76.ADSCrossRefGoogle Scholar
  12. Cesarsky, C. J. and Bibring, J.-P.: 1981, ‘Cosmic-Ray Injection into Shock Waves’, in G. Setti, G. Spada and A. W. Wolfendale (eds.), Origin of Cosmic Rays, D. Reidel Publ. Co., Dordrecht, Holland, pp. 361–362.CrossRefGoogle Scholar
  13. Chu, Y. H. and Mac Low, M.-M.: 1990, ‘X-Rays from Superbubbles in the Large Magellanic Cloud’, Astrophys. J. 365, 510–521.ADSCrossRefGoogle Scholar
  14. Draine, B. T. and Salpeter, E. E. 1979, ‘On the Physics of Dust Grains in Hot Gas’, Astrophys. J. 231, 77–94.ADSCrossRefGoogle Scholar
  15. Eckstein, W.: 1991, Computer Simulation of Ion-Solid Interactions, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  16. Eckstein, W. and Biersak, J. P.: 1985, ‘Reflection of Low Energy Hydrogen from Solids’, Appl. Phys. A38, 123–129.CrossRefGoogle Scholar
  17. Ellison, D. C., Drury, L.O’C., and Meyer, J.-P.: 1997, ‘Galactic Cosmic Rays from Supernova Remnants. II. Shock Acceleration of Gas and Dust’, Astrophys. J. 487, 197–217.ADSCrossRefGoogle Scholar
  18. Engelmann, J. J. et al.: 1990, ‘Charge Composition and Energy Spectra of Cosmic-Ray Nuclei for Elements from Be to Ni. Results from HEA0–3-C2’, Astron. Astrophys. 233, 96–111.ADSGoogle Scholar
  19. Epstein, R. I.: 1980, ‘The Acceleration of Interstellar Grains and the Composition of the Cosmic Rays’, Monthly Notices Roy Astron. Soc. 193, 723–729.ADSGoogle Scholar
  20. Fields, B. D. and Olive, K. A.: 1999, ‘The Revival of Galactic Cosmic-Ray Nucleosynthesis?’, Astrophys. J. 516, 797–810.ADSCrossRefGoogle Scholar
  21. Fields, B. D., Olive, K. A., Vangioni-Flam, E., and Cassé, M.: 1999, ‘Testing Spallation Processes with Beryllium and Boron’, astro-ph/9911320.Google Scholar
  22. Fulbright, J. P. and Kraft, R. P.: 1999, ‘Oxygen Abundances in Two Metal-Poor Subgiants from the Analysis of the 6300 A Forbidden O I Line’, Astron. J. 118, 527–538.ADSCrossRefGoogle Scholar
  23. Ginzburg, V. L. and Syrovatskii, S. I.: 1961, ‘Present Status of the Question of the Origin of the Cosmic Rays’, Soviet Phys. Uspekhi 3, 504–541.MathSciNetADSCrossRefGoogle Scholar
  24. Higdon, H. C., Lingenfelter, R. E., and Ramaty, R.: 1998, ‘Cosmic-Ray Acceleration from Supernova Ejecta in Superbubbles’, Astrophys. J. 509, L33 - L36.ADSCrossRefGoogle Scholar
  25. Israelian, G., Garcia Lopez, R. J., and Rebolo, R.: 1998, ‘Oxygen Abundances in Unevolved Metal-Poor Stars from Near-Ultraviolet OH Lines’, Astrophys. J. 507, 805–817.ADSCrossRefGoogle Scholar
  26. Jedamzik, K.: 2000, ‘Lithium-6: A Probe of the Early Universe’, Phys. Rev. Lett. 84, 3248–3251.ADSCrossRefGoogle Scholar
  27. Lingenfelter, R. E. and Ramaty, R.: 1999, ‘The Source of the Cosmic Rays: 3. Supernova Grain Composition’, 26th Int. Cosmic Ray Conf., Salt Lake City, 4, 148–151.Google Scholar
  28. Lingenfelter, R. E., Higdon, J. C., and Ramaty, R.: 2000, in R. A. Mewaldt et al. (eds.), ‘Cosmic Ray Acceleration in Superbubbles and the Composition of Cosmic Rays’, Acceleration and Transport of Energetic Particles Observed in the Heliosphere, AIP Conference Proceedings 528,in press.Google Scholar
  29. Mac Low, M.-M., and McCray, R.: 1988, ‘Superbubbles in Disk Galaxies’, Astrophys. J. 324, 776–785.ADSCrossRefGoogle Scholar
  30. Meyer, J-P., Drury, L. O’C., and Ellison, D. C.: 1997, ‘Galactic Cosmic Rays from Supernova Remnants. I. A Cosmic Ray Composition Controlled by Volatility and Mass-to-Charge Ratio’, Astrophys. J. 487, 182–196.ADSCrossRefGoogle Scholar
  31. Mishenina, T. V., Korotin, S. A., Klochkova, V. G, and Panchuk, V.E.: 2000, ‘Oxygen Abundance in Halo Stars from OI Triplet’, Astron. Astrophys. 358, 978–986.ADSGoogle Scholar
  32. Naya, J. E. et al.: 1996, ‘Detection of High Velocity 26A1 Towards the Galactic Centre’, Nature 384 44–46.ADSCrossRefGoogle Scholar
  33. Pagel, B. E. J.: 1991, ‘Beryllium and the Big Bang’, Nature 354, 267–268.ADSCrossRefGoogle Scholar
  34. Parizot, E.: 2000, ‘Superbubbles and the Galactic Evolution if Li, Be and B’, Astron. Astrophys. 362, 786–798.ADSGoogle Scholar
  35. Parizot, E. and Drury, L.: 1999, ‘Superbubbles as the Source of 6Li, Be and B in the Early Galaxy’, Astron. Astrophys. 349, 673–684.ADSGoogle Scholar
  36. Parizot, E. and Drury, L.: 2000, ‘The Superbubble Model for LiBeB Production and Galactic Evolution’, in L. de Silva, R. de Medeiros, and M. Spite (eds.), The Light Elements and their Evolution, IAU Symp. 198.Google Scholar
  37. Parizot, E., Cassé, M., and Vangioni-Flam, E.: 1997, ‘Wolf-Rayet Stars and OB Associations as Gamma-Ray Line Sources’, Astron. Astrophys. 328, 107–120.ADSGoogle Scholar
  38. Ramaty, R.: 1996, ‘Interstellar Gamma-Ray Lines from Low Energy Cosmic-Ray Interactions’ Astron. Astrophys. Suppl. Ser. 120, C373 - C380.ADSCrossRefGoogle Scholar
  39. Ramaty, R., Kozlovsky, B., and Lingenfelter, R. E.: 1996, ‘Light Isotopes, Extinct Radioisotopes and Gamma-Ray Lines from Low-Energy Cosmic-Ray Interactions’, Astrophys. J. 456, 525–540.ADSCrossRefGoogle Scholar
  40. Ramaty, R., Kozlovsky, B., and Lingenfelter, R. E.: 1998, ‘Cosmic Rays, Nuclear Gamma Rays and the Origin of the Light Elements’, Physics Today 51 (4), 30–35.CrossRefGoogle Scholar
  41. Ramaty, R., Kozlovsky, B., Lingenfelter, R., and Reeves, H.: 1997, ‘Light Elements and Cosmic Rays in the Early Galaxy’, Astrophys. J. 488, 730–748.ADSCrossRefGoogle Scholar
  42. Ramaty, R., Lingenfelter, R. E., and Kozlovsky, B.: 2000b, in L. de Silva, R. de Medeiros, and M. Spite (eds.), ‘LiBeB Evolution: Three Models’, The Light Elements and their Evolution, !AU Symp. 198,(in press).Google Scholar
  43. Ramaty, R., Scully, S., Lingenfelter, R., and Kozlovsky, B.: 2000a, ‘Light Element Evolution and Cosmic Ray Energetics’, Astrophys. J. 534, 747–756.ADSCrossRefGoogle Scholar
  44. Reeves, H., Fowler, W. A., and Hoyle, F.: 1970, ‘Galactic Cosmic-Ray Origin of Li, Be and B in Stars’, Nature 226, 727–729.ADSCrossRefGoogle Scholar
  45. Savage, B. and Sembach, K.: 1996, ‘Interstellar Abundances from Absorption-Line Observations with the Hubble Space Telescope’, Annu. Rev. Astron. Astrophys. 34, 279–330.ADSCrossRefGoogle Scholar
  46. Shapiro, M. M.: 1962, ‘Supernovae as Cosmic Ray Sources’, Science 135, 175–193.ADSCrossRefGoogle Scholar
  47. Takeda, Y., Takada-Hidai, M., Sato, S., Sargent, W. L. W., Lu, L. Barlow, T. A., and Jugaku, J.: 2000, ‘Oxygen Abundance Determination in Very Metal-Deficient Giants: Permitted O I Lines Versus Forbidden [OI] Lines’, astro-ph/007007.Google Scholar
  48. Tomisaka, K.: 1992, ‘The Evolution of a Magnetized Superbubble’, Publ. Astron. Soc. Japan 44, 177–191.ADSGoogle Scholar
  49. Vangioni-Flam, E. and Cassé, M.: 2000, in L. de Silva, R. de Medeiros, and M. Spite (eds.), The Light Elements and their Evolution, !AU Symp. 198,(in press).Google Scholar
  50. Vangioni-Flam E., Cassé, M., Audouze, J., and Oberto, Y.: 1990, ‘The Evolution of 9Be’, Astrophys. J. 364, 568–572.ADSCrossRefGoogle Scholar
  51. Vangioni-Flam, E., Cassé, M., Fields, B., and Olive, K.: 1996, ‘LiBeB Production by Nuclei and Neutrinos’, Astrophys. J. 468, 199–206.ADSCrossRefGoogle Scholar
  52. Vangioni-Flam, E., Cassé, M., and Ramaty, R.: 1997, in C. Winkler, T.J.-L Courvoisier, and P. Durouchoux (eds.), ‘Light Element Production by Low Energy Nuclei from Massive Stars’, The Transparent Universe, Proceedings 2nd INTEGRAL Workshop, St. Malô, France,ESA SP-382, 123–126.Google Scholar
  53. Westin, J., Sneden, C., Gustafsson, B., and Cowan, J. J.: 2000, ‘The r-Process-Enriched LowMetallicity Giant HD 115444’, Astrophys. J. 530, 783–799.ADSCrossRefGoogle Scholar
  54. Wiedenbeck, M. E. et al.: 1999, ‘Constraints on the Time Delay between Nucleosynthesis and Cosmic-Ray Acceleration from Observations of 59Ni and 59Co’, Astrophys. J. 523 L61–L64.ADSCrossRefGoogle Scholar
  55. Woosley, S. E. and Weaver, T. A.: 1995, ‘The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis’, Astrophys. J. Suppl. 101, 181–235.ADSCrossRefGoogle Scholar
  56. Yorke, H.: 1986, ‘The Dynamical Evolution of H II Regions — Recent Theoretical Developments’, Annu. Rev. Astron. Astrophys. 24, 49–87.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • R. Ramaty
    • 1
  • R. E. Lingenfelter
    • 2
  • B. Kozlovsky
    • 3
  1. 1.Goddard Space Flight CenterGreenbeltUSA
  2. 2.University of California San DiegoLa JollaUSA
  3. 3.School of Physics and AstronomyTel Aviv UniversityIsrael

Personalised recommendations