Particle Acceleration and Nonthermal Phenomena in Superbubbles

  • Andrei M. Bykov
Conference paper
Part of the Space Sciences Series of ISSI book series (SSSI, volume 13)


Models of nonthermal particle acceleration in the vicinity of active star forming regions are reviewed. We discuss a collective effect of both stellar winds of massive stars and core collapsed supernovae as particle acceleration agents. Collective supernova explosions with great energy release in the form of multiple interacting shock waves inside the superbubbles are argued as a favourable site of nonthermal particle acceleration. The acceleration mechanism provides efficient creation of a nonthermal nuclei population with a hard low-energy spectrum, containing a substantial part of the kinetic energy released by the winds of young massive stars and supernovae. We discuss a model of temporal evolution of particle distribution function accounting for the nonlinear effect of the reaction of the accelerated particles on the shock turbulence inside the superbubble. The model illustrates that both the low-energy metal-rich nonthermal component and the standard galactic cosmic rays could be efficiently produced by superbubbles at different evolution stages.


Massive Star Stellar Wind Hubble Space Telescope Large Magellanic Cloud Nonthermal Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Axford, W. I.: 1992, in G. P. Zank and T. K. Gaisser (eds.), ‘Particle Acceleration on Galactic Scales’, Particle Acceleration in Cosmic Plasmas, AIP Conf. Proc. 264, 45–56.Google Scholar
  2. Blair, W. P. et al.: 2000, ‘Hubble Space Telescope Observations of Oxygen-Rich Supernova Remnants in the Magellanic Clouds II’, Astrophys. J. 537, 667–689.Google Scholar
  3. Blitz, L.: 1993, in E. H. Levy and J. I. Lunine (eds.), ‘Giant Molecular Clouds’, Protostar and Planets III, University Arizona Press, Tucson, pp. 125–161.Google Scholar
  4. Bykov, A. M.: 1988, ‘A Model for the Generation of Interstellar Turbulence’, Soy. Astron. Lett. 14, 60–63.ADSGoogle Scholar
  5. Bykov, A. M.: 1995, ‘Nucleosynthesis from Nonthermal Particles’, Space Sci. Rev. 74, 397–406.ADSCrossRefGoogle Scholar
  6. Bykov, A. M.: 1999, in R. Ramaty et al. (eds.), Nonthermal Particles in Star Forming Regions’, Li Google Scholar
  7. Be, B, Cosmic Rays and Related X- and Gamma-Rays, ASP Conf. Series 171, 146–153.Google Scholar
  8. Bykov, A. M. and Fleishman, G. D.: 1992, ‘On Non-thermal Particle Generation in Superbubbles’, Monthly Not. Roy. Astron. Soc. 255, 269–275.ADSGoogle Scholar
  9. Bykov, A. M. and Toptygin, I. N.: 1987, ‘Effect of Shocks on Interstellar Turbulence and Cosmic-Ray Dynamics’, Astrophys. Space Sci. 138, 341–354.ADSCrossRefGoogle Scholar
  10. Bykov, A. M. and Toptygin, I. N.: 1993, ‘Kinetics of Particle in the Strongly Turbulent Plasmas’, Physics Uspekhi 36, 1020–1052.ADSCrossRefGoogle Scholar
  11. Bykov, A. M, Gustov, M. Yu., and Petrenko, M. V.: 1999, in R. Diehl and D. Hartman (eds.), ‘Energetic-Nuclei Acceleration and Interactions in the Early Galaxy’, Astronomy with Radioactivities, MPE Report 274, 241–248.Google Scholar
  12. Cassé, M., Lehoucq, R., and Vangioni-Flam, E.: 1995, ‘Production and Evolution of Light Elements in Active Star-Forming Regions’, Nature 373, 318–321.ADSCrossRefGoogle Scholar
  13. Cassé, M. and Paul, J.: 1982, ‘On the Stellar Origin of the 22Ne Excess in Cosmic Rays’, Astrophys. J. 258, 860–863.ADSCrossRefGoogle Scholar
  14. Chen, C. H., Chu, Y. H., Gruendl, R. A., and Points, S. D.: 2000, ‘Hubble Space Telescope Wide Field Planetary Camera 2 Imaging of Shocks in Superbubbles’, Astron. J. 119, 1317–1324.ADSCrossRefGoogle Scholar
  15. Duncan, D. et al.: 1997, ‘The Evolution of Galactic Boron and the Production Site of the Light Elements’, Astrophys. J. 488, 338–349.Google Scholar
  16. Ellison, D. C., Drury, L. O’C., and Meyer, J. R: 1997, ‘Galactic Cosmic Rays from Supernova Remnants–II’, Astrophys. J. 487, 197–217.ADSCrossRefGoogle Scholar
  17. Fields, B. D., Olive, K. A., Vangioni-Flam, E., and Cassé, M.: 2000, ‘Testing Spallation Processes With Beryllium and Boron’, Astrophys. J. 540, 930–945.ADSCrossRefGoogle Scholar
  18. Heiles, C.: 1998, ‘Whence the Local Bubble’, Astrophys. J. 498, 698–703.CrossRefGoogle Scholar
  19. Higdon, J. C., Lingenfelter, R. E., and Ramaty, R.: 1998, ‘Cosmic Ray Acceleration from Supernova Ejecta in Superbubbles’, Astrophys. J. 509, L33 - L36.ADSCrossRefGoogle Scholar
  20. Korpi, M. J., Brandenburg, A., Shukurov, A., and Tuominen, I.: 1999, ‘Evolution of a Superbubble in a Turbulent, Multi-phased and Magnetized ISM’, Astron. Astrophys 350, 230–239.ADSGoogle Scholar
  21. McCray, R. and Kafatos, M.: 1987, ‘Supershells and Propagating Star Formation’, Astrophys. J. 317, 190–196.ADSCrossRefGoogle Scholar
  22. Maeder, A., Meynet, G.: 1993, ‘Isotopic Anomalies in Cosmic Rays and the Metallicity Gradient in the Galaxy’, Astron. Astrophys. 278, 406–414.ADSGoogle Scholar
  23. Meyer, J. R, Drury, L. O’C., and Ellison, D. C.: 1997, ‘Galactic Cosmic Rays from Supernova Remnants–I’, Astrophys. J. 487, 182–196.ADSCrossRefGoogle Scholar
  24. Parizot, E.: 1998, ‘The Orion Gamma-ray Emission and the Orion-Eridanus Bubble’, Astron. Astrophys. 331, 726–736.ADSGoogle Scholar
  25. Parizot, E.: 2000, ‘Superbubbles and the Galactic Evolution of Li, Be, B’, Astron. Astrophys. (in press).Google Scholar
  26. Parizot, E. and Drury, L.: 1999, ‘Superbubbles as the Source of 6Li, Be and B in the Early Galaxy’, Astron. Astrophys. 349, 673–684.ADSGoogle Scholar
  27. Ramaty, R. and Lingenfelter, R. E.: 1999, in R. Ramaty et al. (eds.), ‘Spallogenic Light Elements and Cosmic Ray Origin’, Li, Be, B, Cosmic Rays and Related X- and Gamma-Rays, ASP Conf. Series 171, 104–117.Google Scholar
  28. Ramaty, R., Kozlovsky, B., and Lingenfelter, R. E.: 1996, ‘Light Isotopes, Extinct Radioisotopes and Gamma-Ray Lines from Low-Energy Cosmic-Ray Interactions’, Astrophys. J. 456, 525–540.ADSCrossRefGoogle Scholar
  29. Ramaty, R., Kozlovsky, B., Lingenfelter, R. E., and Reeves, H.: 1997, ‘Light Elements and CosmicGoogle Scholar
  30. Rays in the Early Galaxy’, Astrophys. J. 488 730–748.Google Scholar
  31. Ramaty, R., Scully, S. T., Lingenfelter, R. E., and Kozlovsky, B.: 2000, ‘Light-Element Evolution and Cosmic-Ray Energetics’, Astrophys. J. 534, 747–756.ADSCrossRefGoogle Scholar
  32. Seo, E. S. and Ptuskin, V. S.: 1994, ‘Stochastic Reacceleration of Cosmic Rays in the Interstellar Medium’, Astrophys. J. 431, 705–714.ADSCrossRefGoogle Scholar
  33. Tomisaka, K.: 1998, ‘Superbubbles in Magnetized Interstellar Media’, Monthly Notices Roy. Astron. Soc. 298, 797–810.ADSCrossRefGoogle Scholar
  34. Vangioni-Flam, E. and Cassé, M.: 2000, ‘LiBeB Production and Associated Astrophysical Sites’, astro-ph/0001474.Google Scholar
  35. Vangioni-Flam, E., Ramaty, R., Olive, K., and Cassé, M.: 1998, ‘Testing the Primary Origin of Be and B in the Early Galaxy’, Astron. Astrophys. 337, 714–720.ADSGoogle Scholar
  36. Wiedenbeck, M. E. et al.: 1999, ‘Constraints on the Time Delay between Nucleosynthesis and Cosmic-Ray Acceleration’, Astrophys. J. 523 L61—L64.Google Scholar
  37. Woosley, S. E. and Weaver, T. A.: 1995, ‘The Evolution and Explosion of Massive Stars II’, Astrophys. J. Suppl. 101, 181–235.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Andrei M. Bykov
    • 1
  1. 1.A.F. Ioffe Institute for Physics and TechnologySt. PetersburgRussia

Personalised recommendations