Advertisement

The Origin of Primary Cosmic Rays: Constraints from ACE Elemental and Isotopic Composition Observations

  • M. E. Wiedenbeck
  • N. E. Yanasak
  • A. C. Cummings
  • A. J. Davis
  • J. S. George
  • R. A. Leske
  • R. A. Mewaldt
  • E. C. Stone
  • P. L. Hink
  • M. H. Israel
  • M. Lijowski
  • E. R. Christian
  • T. T. Von Rosenvinge
Conference paper
  • 123 Downloads
Part of the Space Sciences Series of ISSI book series (SSSI, volume 13)

Abstract

Cosmic-ray isotope observations from NASA’s Advanced Composition Explorer (ACE) mission have been used to investigate the composition of cosmic-ray source material. Source abundances relative to 56Fe are reported for eleven isotopes of Ca, Fe, Co, and Ni, including the very rare isotopes 48Ca and 64Ni. Although the source abundances range over a factor ~ 104, most of the ratios to 56Fe are consistent with solar-system values to within ~ 20%. However, there are some notable differences, the most significant being an excess of ~ (70 ± 30)% relative to the solar system for the cosmic-ray source ratio 58Fe/56Fe. The possible association of such an excess with a contribution to the cosmic-ray source from Wolf—Rayet star ejecta is discussed.

Keywords

Advance Composition Explorer Galactic Chemical Evolution Secondary Correction Galactic Chemical Evolution Model Advance Composition Explorer Observation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anders, E. and Grevesse, N.: 1989, ‘Abundances of the Elements: Meteoritic and Solar’, Geochim. Cosmochim. Acta, 53, 197–214.Google Scholar
  2. Binns, W. R. et al.: 2000, in R. A. Mewaldt et al. (eds.), ‘Galactic Cosmic Ray Neon Isotopic Abundances Measured on ACE’, Acceleration and Transport of Energetic Particles Observed in the Heliosphere: ACE 2000 Symposium, AIP Conf. Proc. 528, 413–426.Google Scholar
  3. Connell, J. J. and Simpson, J. A.: 1997a, ‘Isotopic Abundances of Fe and Ni in Galactic Cosmic-Ray Sources’, Astrophys. J. 475, L61 - L64.ADSCrossRefGoogle Scholar
  4. Connell, J. J. and Simpson, J. A.: 1997b, ‘High Resolution Measurements of the Isotopic Composition of Galactic Cosmic Ray C, N, O, Ne, Mg, and Si from the ULYSSES HET’, Proc. 25th Int. Cosmic Ray Conf., Durban 3, 381–384.Google Scholar
  5. Davis, A. J., et al.: 2000, in R. A. Mewaldt et al. (eds.), ‘On the Low Energy Decrease in Galactic Cosmic Ray Secondary Primary Ratios’, Acceleration and Transport of Energetic Particles Observed in the Heliosphere: ACE 2000 Symposium, AIP Conf. Proc. 528, 421–424.Google Scholar
  6. DuVernois, M. A. and Thayer, M. R.: 1996, ‘The Elemental Composition of the Galactic Cosmic-Ray Source: ULYSSES High-Energy Telescope Results’, Astrophys. J. 465, 982–984.ADSCrossRefGoogle Scholar
  7. DuVernois, M. A., Garcia-Munoz, M., Pyle, K. R., Simpson, J. A., and Thayer, M. R.: 1996, ‘The Isotopic Composition of Galactic Cosmic-Ray Elements from Carbon to Silicon: the Combined Release and Radiation Effects Satellite Investigation’, Astrophys. J. 466, 457–472.Google Scholar
  8. Fisk, L. A.: 1971, ‘Solar Modulation of Galactic Cosmic Rays, 2’, J. Geophys. Res. 76, 221–225.ADSCrossRefGoogle Scholar
  9. Freier, P., Lofgren, E. J., Ney, E. P., Oppenheimer, F., Bradt, H. L., and Peters, B.: 1948, B.: 1948, ‘Evidence for Heavy Nuclei in the Primary Cosmic Radiation’, Phys. Rev. 74, 213–217 (1948).ADSCrossRefGoogle Scholar
  10. Freier, R. S.: 1989, in C. J. Waddington (ed.), ‘1948 Revisited’, Cosmic Abundances of Matter, ALP Conf. Proc. 183, 377–385.Google Scholar
  11. Lijowski et al.: 1999, ‘Measurements of the Elemental Composition of Galactic Cosmic Ray Nuclei with 6 Z 28 from the Cosmic Ray Isotope Spectrometer on ACE’, Proc. 26th Int. Cosmic Ray Conf., Salt Lake City 3, 5–9.Google Scholar
  12. Lingenfelter, R. E., Higdon, J. C., and Ramaty, R.: 2000, ‘Cosmic Ray Acceleration in Superbubbles and the Composition of Cosmic Rays’, in R. A. Mewaldt et al. (eds.), Acceleration and Transport of Energetic Particles Observed in the Heliosphere: ACE 2000 Symposium, AIP Conf. Proc. 528, 375–382.Google Scholar
  13. Maeder, A. and Meynet, G.: 1993, ‘Isotopic Anomalies in Cosmic Rays and the Metallicity Gradient in the Galaxy’, Astron. Astrophys. 278, 406–414.ADSGoogle Scholar
  14. Mewaldt, R. A.: 1998, in C. J. Waddington (ed.), ‘The Abundances of Isotopes in the Cosmic Radiation’, in Cosmic Abundances of Matter, AIP Conf. Proc. 183 124–146.Google Scholar
  15. Meyer, J.-P., Drury, L. O’C., and Ellison, D. C.: 1997, ‘Galactic Cosmic Rays from Supernova Remnants. I. A Cosmic-Ray Composition Controlled by Volatility and Mass-to-Charge Ratio’, Astrophys. J. 487, 182–196.Google Scholar
  16. Niebur, S. M., et al.: 2000, ‘Secondary Electron-Capture-Decay Isotopes and Implications for the Propagation of Galactic Cosmic Rays’, in R. A. Mewaldt et al. (eds.), Acceleration and Transport of Energetic Particles Observed in the Heliosphere: ACE 2000 Symposium, AIP Conf. Proc. 528, 406–409.Google Scholar
  17. Prantzos, N., Arnould, M., Arcoragi, J. P., and Cassé, M.: 1985, ‘Neutron-Rich Nuclei in Cosmic Rays and Wolf-Rayet Stars’, Proc. 19th Int. Cosmic Ray Conf, La Jolla 3, 167–170.Google Scholar
  18. Silberberg, R., Tsao, C. H., and Barghouty, A. F.: 1998, ‘Updated Partial Cross Sections of Proton-Nucleus Reactions’, Astrophys. J. 501, 911–919.ADSCrossRefGoogle Scholar
  19. Stone, E. C. et al.: 1998, ‘The Cosmic-Ray Isotope Spectrometer for the Advanced Composition Explorer’, Space Sci. Rev. 86, 285–356.ADSCrossRefGoogle Scholar
  20. Timmes, F. X., Woosley, S. E., and Weaver, T. A.: 1995, ‘Galactic Chemical Evolution: Hydrogen through Zinc’, Astrophys. J. Suppl. 98, 617–658.ADSCrossRefGoogle Scholar
  21. Tsujimoto, T., Nomoto, K., Yoshii, Y., Hashimoto, M., Yanagida, S., and Thielemann, F.-K.: 1995, ‘Relative Frequencies of Type la and Type II Supernovae in the Chemical Evolution of the Galaxy, LMC and SMC’, Monthly Notices Roy. Astron. Soc. 277, 945–958.ADSGoogle Scholar
  22. Webber, W. R.: 1998, ‘What are the Limitations for ACE Galactic Cosmic-Ray Isotope Studies?’ Space Sci. Rev. 86, 239–256.ADSCrossRefGoogle Scholar
  23. Wiedenbeck, M. E., et al.: 1999, ‘Constraints on the Time Delay between Nucleosynthesis and Cosmic-Ray Acceleration from Observations of 59Ni and 59Co’, Astrophys. J. 523, L61—L64.Google Scholar
  24. Wiedenbeck, M. E., et al.: 2000, ‘Constraints on Cosmic-Ray Acceleration and Transport from Isotope Observations’, in R. A. Mewaldt et al. (eds.), Acceleration and Transport of Energetic Particles Observed in the Heliosphere: ACE 2000 Symposium, A P Conf. Proc. 528, 363–370.Google Scholar
  25. Woosley, S. E. and Weaver, T. A.: 1995, ‘The Evolution and Explosion of Massive Stars. II. Explosive Hydrodynamics and Nucleosynthesis’, Astrophys. J. Suppl. 101, 181–235.ADSCrossRefGoogle Scholar
  26. Yanasak, N. E. et al.: 2000, ‘Measurement of the Secondary Radionuclides 10Be 26AI 36C1, 54Mn, and 14C and Implications for the Galactic Cosmic Ray Age’, Astrophys. J. (submitted).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • M. E. Wiedenbeck
    • 1
  • N. E. Yanasak
    • 1
  • A. C. Cummings
    • 2
  • A. J. Davis
    • 2
  • J. S. George
    • 2
  • R. A. Leske
    • 2
  • R. A. Mewaldt
    • 2
  • E. C. Stone
    • 3
  • P. L. Hink
    • 3
  • M. H. Israel
    • 3
  • M. Lijowski
    • 3
  • E. R. Christian
    • 4
  • T. T. Von Rosenvinge
    • 4
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  2. 2.California Institute of TechnologyPasadenaUSA
  3. 3.Washington UniversitySt. LouisUSA
  4. 4.NASA/Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations