Skip to main content

Electron Acceleration in the Heliosphere

  • Conference paper
The Astrophysics of Galactic Cosmic Rays

Part of the book series: Space Sciences Series of ISSI ((SSSI,volume 13))

  • 212 Accesses

Abstract

We review the evidence for electron acceleration in the heliosphere putting emphasis on the acceleration processes. There are essentially four classes of such processes: shock acceleration, reconnection, wave particle interaction, and direct acceleration by electric fields. We believe that only shock and electric field acceleration can in principle accelerate electrons to very high energies. The shocks known in the heliosphere are coronal shocks, traveling interplanetary shocks, CME shocks related to solar type II radio bursts, planetary bow shocks, and the termination shock of the heliosphere. Even in shocks the acceleration of electrons requires the action of wave particle resonances of which beam driven whistlers are the most probable. Other mechanisms of acceleration make use of current driven instabilities which lead to electron and ion hole formation. In reconnection acceleration is in the current sheet itself where the particles perform Speiser orbits. Otherwise, acceleration takes place in the slow shocks which are generated in the reconnection process and emanate from the diffusion region in the Petschek reconnection model and its variants. Electric field acceleration is found in the auroral zones of the planetary magnetospheres and may also exist on the sun and other stars including neutron stars. The electric potentials are caused by field aligned currents and are concentrated in narrow double layers which physically are phase space holes in the ion and electron distributions. Many of them add up to a large scale electric field in which the electrons may be impulsively accelerated to high energies and heated to large temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, K. A.: 1981, ‘Measurements of the Bow Shock Particles Upstream from the Earth’, j. Geophys. Res. 86, 4445.

    Google Scholar 

  • Anderson, K. A., Lin, R. P., Martel, F., Lin, C. S., Parks, G. K., and Rème, H.: 1979, ‘Thin Sheets of Energetic Electrons Upstream from Earth’s Bow Shock’, Geophys. Res. Lett. 6, 401.

    Article  ADS  Google Scholar 

  • Aschwanden, M. J. and Treumann, R. A.: 1997, ‘Coronal and Interplanetary Particle Beams’, in G.

    Google Scholar 

  • Trottet (ed.), Coronal Physics from Radio and Space Observations,Springer, Berlin, p. 108. Balikhin, M. and Gedalin, M.: 1994, ‘Kinematic Mechanism of Electron Heating in Shocks: Theory Versus Obervations’, Geophys. Res. Lett. 21 841.

    Google Scholar 

  • Cargill, P. J. and Papadopoulos, K.: 1988, ‘A Mechanism for Strong Shock Electron Heating in Supernova Remnants’, Astrophys. 1. 329, L29.

    Article  ADS  Google Scholar 

  • Chiu, Y. T. and Schulz, M.: 1978, ‘Self-consistent Particle and Parallel Electrostatic Field Distributions in the Magnetosphere-ionosphere Auroral Region’, J. Geophys. Res. 83, 629.

    Article  ADS  Google Scholar 

  • Chupp, E.L.: 1990, ‘Transient Particle Acceleration Associated with Solar Flares’, Science 250, 229.

    Article  ADS  Google Scholar 

  • Delory, G. T., Ergun, R. E., Carlson, C. W., Muschietti, L., Chaston, C. C., Peria, W., McFadden, J. P., and Strangeway, R.: 1998, ‘FAST Observations of Electron Distributions within AKR Source Regions’, Geophys. Res. Lett. 25, 2069.

    Article  ADS  Google Scholar 

  • Dubouloz, N. and Scholer, M.: 1995, ‘Two-dimensional Simulations of Magnetic Pulsations Upstream of the Earth’s Bow Shock’, J. Geophys. Res. 100, 9461.

    Article  ADS  Google Scholar 

  • Fitzenreiter, R. J.: 1995, ‘The Electron Foreshock’, Adv. Space Res. 15, 9.

    Article  ADS  Google Scholar 

  • Gedalin, M., Gedalin, K., Balikhin, M., and Krassnosselskikh, V.: 1995, ‘Demagnetization of Electrons in the Electromagnetic Field Structure, Typical for Quasi-perpendicular Collisionless Shock Front’, J. Geophys. Res. 100, 9481.

    Article  ADS  Google Scholar 

  • Gurnett, D. A.: 1974, ‘The Earth as a Radio Source: Terrestrial Kilometric Radiation’, J. Geophys. Res. 79, 4227.

    Article  ADS  Google Scholar 

  • Gurnett, D. A. and Kurth, W. S.: 1996, ‘Radio Emission from the Outer Heliosphere’, Space Sci. Rev. 78, 53.

    Article  ADS  Google Scholar 

  • Holman, G. D.: 2000, in R. Ramaty and N. Mandshavidze (eds.), ‘Particle Acceleration in Large-scale DC Electric Fields’, High Energy Solar Physics: Anticipating HESSI, ASP Conf. Series 206, p. 135.

    Google Scholar 

  • Hoshino, M., Aarons, J., Gallant, Y. A., and Langdon, A. B.: 1992, ‘Relativistic Magnetosonic Shock Waves in Sychrotron Sources: Shock Structure and Nonthermal Acceleration of Positrons’, Astrophys. J. 390, 454.

    Article  ADS  Google Scholar 

  • Hoshino, M., Mukai, T., Nishida, A., Yamamoto, T., and Kokubun, S.: 2001, ‘Ion Dynamics in Magnetic Reconnection: Comparisons between Numerical Simulations and Geotail Observations’, J. Geophys. Res., (submitted).

    Google Scholar 

  • Koyama, K., Petre, R., Gotthelf, E. V., Hwang, U., Matsura, M., Ozaki, M., and Holt, S. S.: 1995, ‘Evidence for Shock Acceleration of High-energy Electrons in the Supernova Remnant SN 1006’, Nature 378, 255–258.

    Article  ADS  Google Scholar 

  • Krimigis, S. M.: 1992, ‘Voyager Energetic Particle Observations at Interplanetary Shocks and Upstream of Planetary Bow Shocks - 1977–1990’, Space Sci. Rev. 59, 167.

    Article  ADS  Google Scholar 

  • Levinson, A.: 1992, ‘Electron Injection in Collisionless Shocks’, Astrophys J. 401, 73.

    Article  ADS  Google Scholar 

  • Lin, R. P.: 1997, in G. Trottet (ed.), ‘Observations of the 3D-Distributions of Thermal to Nearrelativistic Electrons in the Interplanetary Medium by the Wind Spacecraft’, in Coronal Physics from Radio and Space Observations,Springer-Verlag Berlin, p. 93.

    Google Scholar 

  • Litvinenko, Y. E.: 2000, in R. Ramaty and N. Mandshavidze (eds.), ‘Electron Acceleration by Strong DC Electric Fields in Impulsive Solar Flares’, High Energy Solar Physics: Anticipating HESSI, ASP Conf. Series 206, 167.

    Google Scholar 

  • Lopate, C.: 1992, ‘Electron Injection in Collisionless Shocks’, J. Geophys. Res. 94, 9995.

    Article  ADS  Google Scholar 

  • Mace, R. L.: 1998, ‘Whistler Instability Enhanced by Superthermal Electrons within the Earth’s Bow Shock’, J. Geophys. Res. 103, 14, 643.

    Google Scholar 

  • Mason, G. M., von Steiger, R., Decker, R. B., Desai, M. I., Dwyer, J. R., Fisk, L. A., Gloeckler, G., Gosling, J. T., Hilchenbach, M., Kallenbach, R., Keppler, E., Klecker, B., Kunow, H., Mann, G., Richardson, I. G., Sanderson, T. R., Simnett, G. M., Wang, Y.-M., Wimmer-Schweingruber, R. F., Franz, M., and Mazur, J. E.: 1999, ‘Origin, Injection, and Acceleration of CIR Particles: Observations’, Space Sci. Rev. 89, 327.

    Article  ADS  Google Scholar 

  • Orlowski, D. S., Russell, C. T., Krauss-Varban, D., Omidi, N., and Thomsen, M. F.: 1995, ‘Damping and Spectral Formation of Upstream Whistlers’, J. Geophys. Res. 100, 17, 117.

    Google Scholar 

  • Palmer, I. D.: 1982, ‘Transport Coefficients of Low-energy Cosmic Rays in Interplanetary Space’, Rev. Geophys. Space Phys. 20, 335.

    Article  ADS  Google Scholar 

  • Papadopoulos, K.: 1988, ‘Electron Heating in Superhigh Mach Number Shocks’, Astrophys. Space Sci. 144, 535.

    ADS  Google Scholar 

  • Potter, D. G.: 1981, ‘Acceleration of Electrons by Interplanetary Shocks’, J. Geophys. Res. 86, 11, 111.

    Google Scholar 

  • Pritchett, P. L.: 1986, ‘The Electron-cyclotron Maser Instability in Relativistic Plasmas’, Phys. Fluids 29, 2919.

    Article  ADS  Google Scholar 

  • Pyle, K. R., Simpson, J. A., Barnes, A., and Mihalov, J. D.: 1984, ‘Shock Acceleration of Nuclei and Electrons in the Heliosphere beyond 24 AU’, Astrophys. J. 282, LI07.

    Google Scholar 

  • Rieger, E.: 1994, ‘Gamma Ray Precursors of Solar Flares’, Astroph. J. Suppl. 90, 645.

    Article  ADS  Google Scholar 

  • Rieger, E. and Marschhäuser, H.: 1990, in R. M. Winglee and A. L. Kiplinger (eds.), ‘Electron Dom-

    Google Scholar 

  • inated Events during Solar Flares’, Max’91 Workshop No 3,University of Colorado, Boulder, CO, p. 68.

    Google Scholar 

  • Rieger, E. and Marschhäuser, H.: 2000, in R. Ramaty and N. Mandshavidze (eds.), ‘Spectral Evolution of an Intense Solar Gamma-ray Flare during Radio-silent Start’, High Energy Solar Physics: Anticipating HESSI, ASP Conf. Series 206, 407.

    Google Scholar 

  • Rieger, E., Gan, W. Q., and Marschhäuser, H.: 1998, ‘Gamma-ray Line versus Continuum Emission of Electron-dominated Episodes during Solar Flares’, Solar Phys. 183, 123.

    Article  ADS  Google Scholar 

  • Roelof, E. C., Simnett, G. M., and Tappin, S. J.: 1996, ‘The Regular Structure of Shock-accelerated - 40–100 keV Electrons in the High-latitude Heliosphere’, Astron. Astrophys. 316, 481.

    ADS  Google Scholar 

  • Roelof, E. C., Simnett, G. M., Sanderson, T. R., and Kunow, H.: 1999, ‘Global Structure

    Google Scholar 

  • Observations and Challenges to Theory’, Space Sci. Rev. 89 225.

    Google Scholar 

  • Scholer, M.: 1993, ‘Upstream Waves, Shocklets, Short Large-amplitude Magnetic Structures and the

    Google Scholar 

  • Cyclic Behavior of Oblique Quasi-parallel Collisionless Shocks’, J. Geophys. Res. 98 47.

    Google Scholar 

  • Sayle, K. A. and Simnett, G. M.: 1998, ‘High-latitude Ulysses Observations of CIR Accelerated Ions and Electrons’, Astron. Astrophys. 331, 405.

    ADS  Google Scholar 

  • Shay, M. A. and Drake, J. F.: 1998, ‘The Role of Electron Dissipation on the Rate of Collisionless Magnetic Reconnection’, Geophys. Res. Lett. 25, 3759.

    Article  ADS  Google Scholar 

  • Shay, M. A., Drake, J. F., Denton, R. E., and Biskamp, D.: 1998, ‘Structure of the Dissipation Region during Collisionless Magnetic Reconnection’, J. Geophys. Res. 103, 9165.

    Article  ADS  Google Scholar 

  • Shay, M. A., Drake, J. F., Rogers, B. N., and Denton, R. E.: 1999, ‘The Scaling of Collisionless, Magnetic Reconnection for Large Systems’, Geophys. Res. Lett. 26, 2163.

    Article  ADS  Google Scholar 

  • Shimada, N.: 1998, ‘Diffusive Shock Acceleration Process of Electrons in the Solar Wind’, Ph.D. Thesis, Faculty of Science, University of Tokyo.

    Google Scholar 

  • Shimada, N., Terasawa, T., Hoshino, M., Naito, T., Masui, H., Koi, T., Maezawa, K., and the GEOTAIL/LEP/MGF/HEP Teams: 1999, ‘Diffusive Shock Acceleration of Electrons at an Interplanetary Shock Observed on 21 Feb 1994’, Astrophys. Space Sci. 264, 481.

    Article  ADS  Google Scholar 

  • Shimada, N. and Hoshino, M.: 2001, ‘Strong Electron Acceleration at high Mach Number Shock Waves: Simulation Study of Electron Dynamics’, Astrophys. J.,(in press).

    Google Scholar 

  • Simnett, G. M., Sayle, K. A., Roelof, E. C., and Tappin, S. J.: 1994, ‘Co-rotating Particle Enhancements out of the Ecliptic Plane’, Geophys. Res. Lett. 21, 1561.

    Article  ADS  Google Scholar 

  • Sonnerup, B. U. O.: 1969, ‘Acceleration of Particles Reflected at a Shock Front’, J. Geophys. Res. 74, 1301.

    Article  ADS  Google Scholar 

  • Treumann, R. A., Macek, W., and Izmodenov, V. I.: 1998, ‘Heliopause Radio Emission Scenario’, Astron. Astrophys. 336, L45.

    Google Scholar 

  • Wu, C.S.: 1984, ‘A Fast Fermi Process: Energetic Electrons Accelerated by a Nearly Perpendicular Bow Shock’, J. Geophys. Res. 89, 8857.

    Article  ADS  Google Scholar 

  • Wu, C. S. and Lee, L. C.: 1979, ‘A Theory of the Terrestrial Kilometric Radiation’, Astrophys. J. 230, 621.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Treumann, R.A., Terasawa, T. (2001). Electron Acceleration in the Heliosphere. In: Diehl, R., Parizot, E., Kallenbach, R., Von Steiger, R. (eds) The Astrophysics of Galactic Cosmic Rays. Space Sciences Series of ISSI, vol 13. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3239-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3239-0_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5862-1

  • Online ISBN: 978-94-017-3239-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics