Electron Acceleration in the Heliosphere

  • Rudolf A. Treumann
  • Toshio Terasawa
Conference paper
Part of the Space Sciences Series of ISSI book series (SSSI, volume 13)


We review the evidence for electron acceleration in the heliosphere putting emphasis on the acceleration processes. There are essentially four classes of such processes: shock acceleration, reconnection, wave particle interaction, and direct acceleration by electric fields. We believe that only shock and electric field acceleration can in principle accelerate electrons to very high energies. The shocks known in the heliosphere are coronal shocks, traveling interplanetary shocks, CME shocks related to solar type II radio bursts, planetary bow shocks, and the termination shock of the heliosphere. Even in shocks the acceleration of electrons requires the action of wave particle resonances of which beam driven whistlers are the most probable. Other mechanisms of acceleration make use of current driven instabilities which lead to electron and ion hole formation. In reconnection acceleration is in the current sheet itself where the particles perform Speiser orbits. Otherwise, acceleration takes place in the slow shocks which are generated in the reconnection process and emanate from the diffusion region in the Petschek reconnection model and its variants. Electric field acceleration is found in the auroral zones of the planetary magnetospheres and may also exist on the sun and other stars including neutron stars. The electric potentials are caused by field aligned currents and are concentrated in narrow double layers which physically are phase space holes in the ion and electron distributions. Many of them add up to a large scale electric field in which the electrons may be impulsively accelerated to high energies and heated to large temperatures.


Solar Wind Termination Shock Electron Acceleration Interplanetary Shock Auroral Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, K. A.: 1981, ‘Measurements of the Bow Shock Particles Upstream from the Earth’, j. Geophys. Res. 86, 4445.Google Scholar
  2. Anderson, K. A., Lin, R. P., Martel, F., Lin, C. S., Parks, G. K., and Rème, H.: 1979, ‘Thin Sheets of Energetic Electrons Upstream from Earth’s Bow Shock’, Geophys. Res. Lett. 6, 401.ADSCrossRefGoogle Scholar
  3. Aschwanden, M. J. and Treumann, R. A.: 1997, ‘Coronal and Interplanetary Particle Beams’, in G.Google Scholar
  4. Trottet (ed.), Coronal Physics from Radio and Space Observations,Springer, Berlin, p. 108. Balikhin, M. and Gedalin, M.: 1994, ‘Kinematic Mechanism of Electron Heating in Shocks: Theory Versus Obervations’, Geophys. Res. Lett. 21 841.Google Scholar
  5. Cargill, P. J. and Papadopoulos, K.: 1988, ‘A Mechanism for Strong Shock Electron Heating in Supernova Remnants’, Astrophys. 1. 329, L29.ADSCrossRefGoogle Scholar
  6. Chiu, Y. T. and Schulz, M.: 1978, ‘Self-consistent Particle and Parallel Electrostatic Field Distributions in the Magnetosphere-ionosphere Auroral Region’, J. Geophys. Res. 83, 629.ADSCrossRefGoogle Scholar
  7. Chupp, E.L.: 1990, ‘Transient Particle Acceleration Associated with Solar Flares’, Science 250, 229.ADSCrossRefGoogle Scholar
  8. Delory, G. T., Ergun, R. E., Carlson, C. W., Muschietti, L., Chaston, C. C., Peria, W., McFadden, J. P., and Strangeway, R.: 1998, ‘FAST Observations of Electron Distributions within AKR Source Regions’, Geophys. Res. Lett. 25, 2069.ADSCrossRefGoogle Scholar
  9. Dubouloz, N. and Scholer, M.: 1995, ‘Two-dimensional Simulations of Magnetic Pulsations Upstream of the Earth’s Bow Shock’, J. Geophys. Res. 100, 9461.ADSCrossRefGoogle Scholar
  10. Fitzenreiter, R. J.: 1995, ‘The Electron Foreshock’, Adv. Space Res. 15, 9.ADSCrossRefGoogle Scholar
  11. Gedalin, M., Gedalin, K., Balikhin, M., and Krassnosselskikh, V.: 1995, ‘Demagnetization of Electrons in the Electromagnetic Field Structure, Typical for Quasi-perpendicular Collisionless Shock Front’, J. Geophys. Res. 100, 9481.ADSCrossRefGoogle Scholar
  12. Gurnett, D. A.: 1974, ‘The Earth as a Radio Source: Terrestrial Kilometric Radiation’, J. Geophys. Res. 79, 4227.ADSCrossRefGoogle Scholar
  13. Gurnett, D. A. and Kurth, W. S.: 1996, ‘Radio Emission from the Outer Heliosphere’, Space Sci. Rev. 78, 53.ADSCrossRefGoogle Scholar
  14. Holman, G. D.: 2000, in R. Ramaty and N. Mandshavidze (eds.), ‘Particle Acceleration in Large-scale DC Electric Fields’, High Energy Solar Physics: Anticipating HESSI, ASP Conf. Series 206, p. 135.Google Scholar
  15. Hoshino, M., Aarons, J., Gallant, Y. A., and Langdon, A. B.: 1992, ‘Relativistic Magnetosonic Shock Waves in Sychrotron Sources: Shock Structure and Nonthermal Acceleration of Positrons’, Astrophys. J. 390, 454.ADSCrossRefGoogle Scholar
  16. Hoshino, M., Mukai, T., Nishida, A., Yamamoto, T., and Kokubun, S.: 2001, ‘Ion Dynamics in Magnetic Reconnection: Comparisons between Numerical Simulations and Geotail Observations’, J. Geophys. Res., (submitted).Google Scholar
  17. Koyama, K., Petre, R., Gotthelf, E. V., Hwang, U., Matsura, M., Ozaki, M., and Holt, S. S.: 1995, ‘Evidence for Shock Acceleration of High-energy Electrons in the Supernova Remnant SN 1006’, Nature 378, 255–258.ADSCrossRefGoogle Scholar
  18. Krimigis, S. M.: 1992, ‘Voyager Energetic Particle Observations at Interplanetary Shocks and Upstream of Planetary Bow Shocks - 1977–1990’, Space Sci. Rev. 59, 167.ADSCrossRefGoogle Scholar
  19. Levinson, A.: 1992, ‘Electron Injection in Collisionless Shocks’, Astrophys J. 401, 73.ADSCrossRefGoogle Scholar
  20. Lin, R. P.: 1997, in G. Trottet (ed.), ‘Observations of the 3D-Distributions of Thermal to Nearrelativistic Electrons in the Interplanetary Medium by the Wind Spacecraft’, in Coronal Physics from Radio and Space Observations,Springer-Verlag Berlin, p. 93.Google Scholar
  21. Litvinenko, Y. E.: 2000, in R. Ramaty and N. Mandshavidze (eds.), ‘Electron Acceleration by Strong DC Electric Fields in Impulsive Solar Flares’, High Energy Solar Physics: Anticipating HESSI, ASP Conf. Series 206, 167.Google Scholar
  22. Lopate, C.: 1992, ‘Electron Injection in Collisionless Shocks’, J. Geophys. Res. 94, 9995.ADSCrossRefGoogle Scholar
  23. Mace, R. L.: 1998, ‘Whistler Instability Enhanced by Superthermal Electrons within the Earth’s Bow Shock’, J. Geophys. Res. 103, 14, 643.Google Scholar
  24. Mason, G. M., von Steiger, R., Decker, R. B., Desai, M. I., Dwyer, J. R., Fisk, L. A., Gloeckler, G., Gosling, J. T., Hilchenbach, M., Kallenbach, R., Keppler, E., Klecker, B., Kunow, H., Mann, G., Richardson, I. G., Sanderson, T. R., Simnett, G. M., Wang, Y.-M., Wimmer-Schweingruber, R. F., Franz, M., and Mazur, J. E.: 1999, ‘Origin, Injection, and Acceleration of CIR Particles: Observations’, Space Sci. Rev. 89, 327.ADSCrossRefGoogle Scholar
  25. Orlowski, D. S., Russell, C. T., Krauss-Varban, D., Omidi, N., and Thomsen, M. F.: 1995, ‘Damping and Spectral Formation of Upstream Whistlers’, J. Geophys. Res. 100, 17, 117.Google Scholar
  26. Palmer, I. D.: 1982, ‘Transport Coefficients of Low-energy Cosmic Rays in Interplanetary Space’, Rev. Geophys. Space Phys. 20, 335.ADSCrossRefGoogle Scholar
  27. Papadopoulos, K.: 1988, ‘Electron Heating in Superhigh Mach Number Shocks’, Astrophys. Space Sci. 144, 535.ADSGoogle Scholar
  28. Potter, D. G.: 1981, ‘Acceleration of Electrons by Interplanetary Shocks’, J. Geophys. Res. 86, 11, 111.Google Scholar
  29. Pritchett, P. L.: 1986, ‘The Electron-cyclotron Maser Instability in Relativistic Plasmas’, Phys. Fluids 29, 2919.ADSCrossRefGoogle Scholar
  30. Pyle, K. R., Simpson, J. A., Barnes, A., and Mihalov, J. D.: 1984, ‘Shock Acceleration of Nuclei and Electrons in the Heliosphere beyond 24 AU’, Astrophys. J. 282, LI07.Google Scholar
  31. Rieger, E.: 1994, ‘Gamma Ray Precursors of Solar Flares’, Astroph. J. Suppl. 90, 645.ADSCrossRefGoogle Scholar
  32. Rieger, E. and Marschhäuser, H.: 1990, in R. M. Winglee and A. L. Kiplinger (eds.), ‘Electron Dom-Google Scholar
  33. inated Events during Solar Flares’, Max’91 Workshop No 3,University of Colorado, Boulder, CO, p. 68.Google Scholar
  34. Rieger, E. and Marschhäuser, H.: 2000, in R. Ramaty and N. Mandshavidze (eds.), ‘Spectral Evolution of an Intense Solar Gamma-ray Flare during Radio-silent Start’, High Energy Solar Physics: Anticipating HESSI, ASP Conf. Series 206, 407.Google Scholar
  35. Rieger, E., Gan, W. Q., and Marschhäuser, H.: 1998, ‘Gamma-ray Line versus Continuum Emission of Electron-dominated Episodes during Solar Flares’, Solar Phys. 183, 123.ADSCrossRefGoogle Scholar
  36. Roelof, E. C., Simnett, G. M., and Tappin, S. J.: 1996, ‘The Regular Structure of Shock-accelerated - 40–100 keV Electrons in the High-latitude Heliosphere’, Astron. Astrophys. 316, 481.ADSGoogle Scholar
  37. Roelof, E. C., Simnett, G. M., Sanderson, T. R., and Kunow, H.: 1999, ‘Global StructureGoogle Scholar
  38. Observations and Challenges to Theory’, Space Sci. Rev. 89 225.Google Scholar
  39. Scholer, M.: 1993, ‘Upstream Waves, Shocklets, Short Large-amplitude Magnetic Structures and theGoogle Scholar
  40. Cyclic Behavior of Oblique Quasi-parallel Collisionless Shocks’, J. Geophys. Res. 98 47.Google Scholar
  41. Sayle, K. A. and Simnett, G. M.: 1998, ‘High-latitude Ulysses Observations of CIR Accelerated Ions and Electrons’, Astron. Astrophys. 331, 405.ADSGoogle Scholar
  42. Shay, M. A. and Drake, J. F.: 1998, ‘The Role of Electron Dissipation on the Rate of Collisionless Magnetic Reconnection’, Geophys. Res. Lett. 25, 3759.ADSCrossRefGoogle Scholar
  43. Shay, M. A., Drake, J. F., Denton, R. E., and Biskamp, D.: 1998, ‘Structure of the Dissipation Region during Collisionless Magnetic Reconnection’, J. Geophys. Res. 103, 9165.ADSCrossRefGoogle Scholar
  44. Shay, M. A., Drake, J. F., Rogers, B. N., and Denton, R. E.: 1999, ‘The Scaling of Collisionless, Magnetic Reconnection for Large Systems’, Geophys. Res. Lett. 26, 2163.ADSCrossRefGoogle Scholar
  45. Shimada, N.: 1998, ‘Diffusive Shock Acceleration Process of Electrons in the Solar Wind’, Ph.D. Thesis, Faculty of Science, University of Tokyo.Google Scholar
  46. Shimada, N., Terasawa, T., Hoshino, M., Naito, T., Masui, H., Koi, T., Maezawa, K., and the GEOTAIL/LEP/MGF/HEP Teams: 1999, ‘Diffusive Shock Acceleration of Electrons at an Interplanetary Shock Observed on 21 Feb 1994’, Astrophys. Space Sci. 264, 481.ADSCrossRefGoogle Scholar
  47. Shimada, N. and Hoshino, M.: 2001, ‘Strong Electron Acceleration at high Mach Number Shock Waves: Simulation Study of Electron Dynamics’, Astrophys. J.,(in press).Google Scholar
  48. Simnett, G. M., Sayle, K. A., Roelof, E. C., and Tappin, S. J.: 1994, ‘Co-rotating Particle Enhancements out of the Ecliptic Plane’, Geophys. Res. Lett. 21, 1561.ADSCrossRefGoogle Scholar
  49. Sonnerup, B. U. O.: 1969, ‘Acceleration of Particles Reflected at a Shock Front’, J. Geophys. Res. 74, 1301.ADSCrossRefGoogle Scholar
  50. Treumann, R. A., Macek, W., and Izmodenov, V. I.: 1998, ‘Heliopause Radio Emission Scenario’, Astron. Astrophys. 336, L45.Google Scholar
  51. Wu, C.S.: 1984, ‘A Fast Fermi Process: Energetic Electrons Accelerated by a Nearly Perpendicular Bow Shock’, J. Geophys. Res. 89, 8857.ADSCrossRefGoogle Scholar
  52. Wu, C. S. and Lee, L. C.: 1979, ‘A Theory of the Terrestrial Kilometric Radiation’, Astrophys. J. 230, 621.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2001

Authors and Affiliations

  • Rudolf A. Treumann
    • 1
    • 2
  • Toshio Terasawa
    • 3
  1. 1.Max-Planck-Institute for extraterrestrial PhysicsCIPSGarchingGermany
  2. 2.International Space Science InstituteBernSwitzerland
  3. 3.Department of Earth and Planetary ScienceUniversity of TokyoTokyoJapan

Personalised recommendations