Skip to main content

Peritoneal dialysis solutions and systems

  • Chapter

Abstract

This chapter is divided in three sections in order to review all components of the CAPD system: (a) the container or bag and its related problems (A.F.), (b) the solution in the bag and its modern developments (M.F.), (c) the connection between the bag and the peritoneal catheter that permits the fluid to come in contact with the peritoneal membrane (L.C.).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Oreopoulos DG, Robson M, Izatt S, Clayton S, de Veber GA. A simple and safe technique for continuous ambulatory peritoneal dialysis (CAPD). Trans ASAIO 1978; 24: 484.

    CAS  Google Scholar 

  2. Klatte F. Verfahren zur Hestellung einer auf Hornersatz, Filme, Kunsträden, Lacke and dergleichen verarbeitbaren plastischen Masse. Deutches Reich Patent 231877, 1913.

    Google Scholar 

  3. Blass CR. PVC as a biomedical polymer—plasticizer and stabilizer toxicity. Med Device Technol 199; 23: 32.

    Google Scholar 

  4. Jaeger RJ, Rubin JR. Plasticizers from plastic devices: extraction, metabolism and accumulation by biomedical systems. Science 1970; 170: 460.

    PubMed  CAS  Google Scholar 

  5. Janknegt R, Oldenhof AGJ, Steenhoek A. Is hetomhullen van infuuszzakken zinvol? (effectiveness of wrapping PVC infusion bags). Ziekenhuisfarmacie 1988; 4: 44.

    Google Scholar 

  6. D’Arcy PF. Drug interactions with medical plastic. Drug Intel ’ Clin Pharm 1983; 17: 726.

    Google Scholar 

  7. Kowaluc EA, Roberts MS, Blackburn HD. Interaction between drugs and polyvinylchloride infusion bags. Am J Hosp Pharm 1978; 35: 541.

    Google Scholar 

  8. Jongejan GAM, Smit JCA, Heiling EAM, Hekster YA. De wisselwerking tussen geneesmiddelen en kunststoffen voor medish gebruik (Interaction of drugs with polymer for medical purposes). Pharm Weekbl 1989; 124: 440.

    Google Scholar 

  9. Aubuchon JP, Estep TN, Davey RJ. The effect of plasticizers di-2-ethylexylphthalate on the survival of stored RBC’s. Blood 1988; 71: 448.

    PubMed  CAS  Google Scholar 

  10. Rock G, Tocchi M, Ganz PR, Tackaberry ES. Incorporation of plasticizers into red cells during storage. Transfusion 1984; 4: 24.

    Google Scholar 

  11. Arbin A, Ostelius J, Callmer K, Sroka J, Hanninen K, Axels-son S. Migration of chemicals from soft PVC bags into intravenous solutions. Act Pharm Suec 1983; 3: 20.

    Google Scholar 

  12. Lemm W, Buknerl ES. Was ist medicinisches no-DOP-PVC? Kardiotechnik 1986; 9: 39.

    Google Scholar 

  13. Guess WL, Jacob J, Autian J. A study of polyvinylchloride blood bag assembles. 1. Alteration or contamination of ACD solutions. Drug Intel 1967; 1: 120.

    Google Scholar 

  14. Shibiko SI, Blumenthal H. Toxicology of phthalic acid esters used in food packing materials. Envirom Health Perspect 1973; 3: 171.

    Google Scholar 

  15. Wendland F. Geologische and Okologische Aspekte des Verhaltens von PVC in Deponien. Julich: Kernforschungsanlage Julichh, 1986 (Interner Bericht KFASTE-1B-8/88)

    Google Scholar 

  16. Giam C, Chan H, Neff G. Phthalate ester plasticizers: a new class of marine pollutant Science 1978; 199: 419.

    CAS  Google Scholar 

  17. EPA, USA. Exposure and risk assessment for phthalate esters. National Technical Information Services. US Dept Commerce, Springfield VA 22161, 1981.

    Google Scholar 

  18. Johnson BT, Lulves W. Biodegradation of di-n-butyl phthalate and di-2-ethylexyl phthalate in fresh water hydrosoil. J Fish Res Board Canada 1975; 32: 333.

    CAS  Google Scholar 

  19. Sein AA, Sluijmers JJ, Verhagen EJH. Onderzooek emissies afvalverbrandingsinstailaties. Eindrapport. (Study into emission by incinerators. Final report). Bilthoven: Rijksinstituut voor Volksgezondheid en Milieuhygiene, 1989.

    Google Scholar 

  20. De Leer EWB, Verbeek A. Environmental aspects of waste incineration - possibility for improvement. Toegepaste Wetensch TNO Mag 1990; 7: 6.

    Google Scholar 

  21. Reimann DO. PVC als Abfallprodukt. Mull Abfall 1988; 6: 256.

    Google Scholar 

  22. Viola PL, Bigotti A, Caputo A. Oncologie response of rat skin, lung and bones to vinylchloride. Cancer Res 1971; 1: 31.

    Google Scholar 

  23. Creek JL Jr, Johnson MN. Angiosarcoma of liver in the manufacture of polyvinylchloride. J Occup Med 1974; 16: 150.

    Google Scholar 

  24. Nicholson WJ, Henneberger PK, Seidman H. Occupational hazards in the VC-PVC industry. Prog Clin Biol Res 1984; 141: 155.

    PubMed  CAS  Google Scholar 

  25. Baser ME, Tockman MS, Kennedy TP. Pulmonary function and respiratory symptoms in polyvinyl chloride fabrication workers. Am Rev Resp Dis 1985; 131: 203.

    PubMed  CAS  Google Scholar 

  26. Benfenati E, Natangelo M, Davoli E, Fanelli R. Migration of polyvinylchloride into PVC-bottled drinking water assessed by gas chromatography-mass spectrometry. Food Chem Toxicol 1991; 29: 131.

    PubMed  CAS  Google Scholar 

  27. Van Duuren BL. On the possible mechanism of carcinogenic action of vinyl chloride. Ann NY Acad Sci 1975; 246: 258.

    PubMed  Google Scholar 

  28. Estep TN, Pedersen RA, Miller TJ, Stupar KR. Characterization of erythrocyte quality during the refrigerated storage of whole blood containing DEHP. Blood 1984; 64: 1270.

    PubMed  CAS  Google Scholar 

  29. Warner WL, Nelson EJ. Container for platelet storage. US patent 4230497, 1981.

    Google Scholar 

  30. Jacobson MS, Kevy SV, Grand RJ. Effect of plasticizer leached from polyvinyl chloride on the subhuman primate: a consequence of chronic transfusion therapy. J Lab Clin Med 1977; 89: 1066.

    PubMed  CAS  Google Scholar 

  31. Albro PW, Thomas R, Fishbein L. Metabolism of di-ethylhexhyl phthalate by rats: isolation and characterization of the urinary metabolites. J Chromatogr 1973; 76: 321

    PubMed  CAS  Google Scholar 

  32. Schmid P, Schiatter CH. Excretion and metabolism of (ethylhexyl)phthalate in man. Xenobiotica 1985; 15: 251.

    PubMed  CAS  Google Scholar 

  33. Lanina SY, Strakhova NM, Lappo VG. Toxicological estimate of polyvinyl chloride containers for preparation and storage of blood, its components, preservatives and infusion solutions. Med Prog Technol 1982; 18: 19.

    Google Scholar 

  34. Pollack GM, Buchanan JF, Slaughter RL, Kohii RK, Shen DD. Circulating concentrations of di(2-ethylhexyl)phthalate and its deesterified phthalic acid products following plasticizer exposure in patients receiving hemodialysis. Toxicol Appl Pharmacol 1985; 79: 257.

    PubMed  CAS  Google Scholar 

  35. Gibson TP, Briggs WA, Boone BJ. Delivery of di(2-ethylhexyl)phthalate to patients during hemodialysis. J Lab Clin Med 1976; 87: 519.

    PubMed  CAS  Google Scholar 

  36. Mettang T, Fisher FP, Dunst R, Kuhlmann U, Rettenmeier W. Plasticizers in renal failure: aspects of metabolism and toxicity. Perit Dial Int 1997; 17 (Suppl. 2): S31.

    PubMed  Google Scholar 

  37. Peck CC, Albro PW. Toxic potential of the plasticizer DEHP in the content of its deposition and metabolism in primates and man. Environ Health Perspect 1982; 45: 11.

    PubMed  CAS  Google Scholar 

  38. Van Dooren AA. PVC as pharmaceutical packing material. Pharmaceutish Weekblag (Scientific edition) 1991; 13: 109.

    Google Scholar 

  39. Agarwal DK, Eustin S, Lamb JC IV, Reel JR, Kluwe WM. Effects of DEHP on the gonadal pathophysiology, sperm morphology and reproductive performance in male rats. Environ Health Perspect 1986; 65: 343.

    PubMed  CAS  Google Scholar 

  40. Prasad AS. Metabolism of Zinc and its Deficiency in Human Subjects. Springfield, IL: Charles C. Thomas, 1966, p. 250.

    Google Scholar 

  41. Wolkowski TR, Jones PC, Marr MC, Kimmel CA. Teratologic evaluation of DEHP in CD-1 mice. Teratology 1983; 3: 27.

    Google Scholar 

  42. Moody DE, Reddy JK. Hepatic peroxisome (microbody) proliferation in rats fed plasticizers and related compounds. Toxicol Applied Pharmacol 1975; 45: 497.

    Google Scholar 

  43. Reddy JK, Lalwani ND. Carcinogenesis by hepatic peroxisome proliferators: evaluation of the risk of hypolipidemic drugs and industrial plasticizers in humans. CNT Rev Toxicol 1983; 12: 1.

    CAS  Google Scholar 

  44. Bentley P, Calder I, Elcombe C, Grasso P, Stringer D, Wiegand HJ. Hepatic peroxisome proliferation in rodents and its significance for humans. Food Chem Toxicol 1993; 31: 857.

    PubMed  CAS  Google Scholar 

  45. Huber WW, Grasl-Kraupp B, Schulte HR. Hepatocarcinogenic potential of DEHP in rodents and its implications on human risk. Crit Rev Toxicol 1996; 26: 365.

    PubMed  CAS  Google Scholar 

  46. Tomita I, Nakamura Y, Aoki N, Inui N. Mutagenic/carcinogenic potential of DEHP and MEHP. Environ Health Perspect 1982; 45: 119.

    PubMed  CAS  Google Scholar 

  47. Crocker JFS, Safe SH, Acott P. Effects of chronic phthalate exposure to the kidney. J Toxicol Environ Health 1988; 23: 433.

    PubMed  CAS  Google Scholar 

  48. Schultz CO, Rubin RJ, Hutkins GM. Acute lung toxicity and sudden death in rats following the intravenous administration of the plasticizers DEHP, solubilized with twin surfactants. Toxicol Appl Pharmacol 1975; 33: 514.

    Google Scholar 

  49. Carilli AD, Ramanamurty MV, Chang YS, Shin D, Sethi V. Non-cardiogenic pulmonary edema following blood transfusion. Chest 1978; 74: 311.

    Google Scholar 

  50. Nässberger L, Arbin A, Ostelius J. Exposure of patients to phthalates from polyvinylchloride tubes and bags during dialysis. Nephron 1987; 45: 286.

    PubMed  Google Scholar 

  51. Bommer J, Gemsa D, Waldherr R, Kessler J, Ritz E. Plastic filling from dialysis tubing induces prostanoid release from macrophages. Kidney Int 1984; 26: 331.

    PubMed  CAS  Google Scholar 

  52. Mallette FS, von Haam E. Study on the toxicity and skin effects of compounds used in the rubber and plastics industries. Contact Derm Newsl 1972, 308.

    Google Scholar 

  53. Mettang T, Thomas S, Kiefer T. Uremic pruritus and the exposure to DEHP in hemodialysis patients. Nephrol Dial Transplant 1996; 11: 2439.

    Google Scholar 

  54. Crocker JF, Blecher SR, Safe SH. Chemically induced poly-cystic kidney disease. Prog Clin Biol Res 1983; 140: 281.

    PubMed  CAS  Google Scholar 

  55. Nässberger L, Arbin A. Eosinophilic peritonitis - hypothesis. Nephron 1987; 46: 103.

    PubMed  Google Scholar 

  56. Chen WS, Kerkay J, Pearson KH. Tissue DEHP levels in uremic subjects. Anal Lett 1979; 12: 1517.

    CAS  Google Scholar 

  57. Sabatini S, Fracasso A, Bazzato G, Kurtzman NA. Effects of phthalate esters on transport in toad bladder membrane. J Pharmacol Exper Ther 1989; 250: 910.

    CAS  Google Scholar 

  58. Fracasso A, Coli U, Landini S et al. Peritoneal sclerosis: role of plasticizers. Trans ASAIO 1987; 33: 676.

    CAS  Google Scholar 

  59. Cale) L, Fracasso A, Cantaro S et al. Plasticizers induced mononuclear cell Interleukin 1 production: implications with peritoneal sclerosis. Clin Nephrol 1993; 40: 57.

    Google Scholar 

  60. Picard C, Brazier M, Bou P, Hary L, Renaux C. Stabilité de quatre solutions de penicillines dans le poches de perfusion multicouches. J Pharm Clin 1993; 13: 45.

    Google Scholar 

  61. Jackson A. A comparison of peritoneal dialysis products and their effect on insulin dosage. British Analytical Control, unpublished data, 1994.

    Google Scholar 

  62. Verger C, Brunschvic O, Lecharpentier Y. Structural and ultrastructural peritoneal membrane changes and permeability alteration during CAPD. Eur Dial Transplant Assoc 1981; 18: 199.

    CAS  Google Scholar 

  63. Di Paolo N, Sacchi D, De Mia M. Morphology of the peritoneal membrane during continuous ambulatory peritoneal dialysis. Nephron 1986; 44: 204.

    PubMed  Google Scholar 

  64. Cantù P, Limido A, Caretta E. Influenza del riscaldamento sulla contaminazione particellare delle sacche per CAPD. Atti IV National Meeting on Peritoneal Dialysis. Wichtig Publishers, 1988, p. 213.

    Google Scholar 

  65. Chaimovitz C. Peritoneal dialysis. Kidney Int 1994; 45: 1226

    PubMed  CAS  Google Scholar 

  66. Fracasso A, Landini S, Morachiello P, Righetto F, Scanferla F, Toffoletto P. Il problema dei plastificanti. In: La Greca G, Petrella E, Cioni A, eds. I Liquidi nella Dialisi. Milan: Ghedini Editore, 1992, p. 85.

    Google Scholar 

  67. Carozzi S, Nasini MG, Schelotto C, Caviglia PM, Santoni O, Pietrucci A. A biocompatibility study on peritoneal dialysis solution bags for CAPD. Adv Petit Dial 1990; 13: 55.

    Google Scholar 

  68. Darby TD, Johnson AJ, Northup SJ. An evaluation of a polyurethane for use as alcal grade plastic. Toxicol Appl Pharmacol 1978; 446: 449.

    Google Scholar 

  69. Anon. 4,4’-Methylendianiline (MDA). US Department of Health and Human Services, Public Health Service, Center for Disease Control, Robert A. Taft Laboratories, 4676 Columbia Parkway, Cincinnati, OH 45266, USA, 25 July 1986, p. 21.

    Google Scholar 

  70. Bonk J. REXflexFPO - going beyond polyolefines; presented 27 June at FLEXPO, Huston, Texas, 1996.

    Google Scholar 

  71. Lambert P. Packaging of intravenous solutions. Med Dev Technol, September/October 1990, p. 27.

    Google Scholar 

  72. Feriani M, Biasioli S, Borin D, Fabris A, Ronco C, La Greca G. Bicarbonate solutions for peritoneal dialysis: a reality. Int J Artif Organs 1985, 8: 57.

    PubMed  CAS  Google Scholar 

  73. Ing TS, Quon MJ, Daugirdas JT, Ghandi VC, Epstain MB. Preparation of bicarbonate containing peritoneal dialysate using an automated dialysate delivery system. Int J Artif Organs 1981; 4: 148.

    PubMed  CAS  Google Scholar 

  74. Ing TS, Quon MJ, Daugirdas JT, Liu P, Gandhi VC, Reid RR. On line preparation of bicarbonate containing dialysate for use in peritoneal dialysis. Int J Artif Organs 1981; 4: 308.

    PubMed  CAS  Google Scholar 

  75. Ing TS, Humayun HM, Daugirdas JT et al. Preparation of bicarbonate-containing dialysate for peritoneal dialysis. Int J Artif Organs 1983; 6: 217

    PubMed  CAS  Google Scholar 

  76. Ing TS, Ghandi VC, Daugirdas JT, Reid RW, Hunt J, Popli S. Peritoneal dialysis using bicarbonate buffered dialysate. Int J Artif Organs 1984; 7: 166.

    PubMed  CAS  Google Scholar 

  77. Maillard LC. Action des acides amines sur le sucres: formation des melanoidines par voie methodique. CR Acad Sci 1912; 154: 66.

    CAS  Google Scholar 

  78. Dobbie JW. Advanced glycosylation end products in peritoneal dialysis tissue with different solutions. Peri Dial Int 1997; 17 (Suppl. 2): S27.

    Google Scholar 

  79. Wieslander A, Linden T. Glucose degradation and cytotoxicity in PD fluids. Petit Dial Int 1996; 16 (Suppl. 1): S114.

    Google Scholar 

  80. Henderson IS, Couper IA, Lumsden A. The effect of shelf-life of peritoneal dialysis fluid on ultrafiltration in CAPD. In: La Greca G, Chiaramonte S, Fabris A, Feriani M, Ronco C. eds. Peritoneal Dialysis. Milan: Wichtig Editore, 1986: p. 85.

    Google Scholar 

  81. Martinson E, Wieslander A, Kjellestrand P, Boberg U. Toxicity in heat sterilized fluids for peritoneal dialysis derives from degradation of glucose. Trans ASAIO 1992; 38: 370.

    Google Scholar 

  82. Rippe B, Simonsen O, Wieslander A, Landgren C. Clinical and physiological effects of a new, less toxic and less acidic fluid for peritoneal dialysis. Petit Dial Int 1997: 17: 27.

    CAS  Google Scholar 

  83. Boen ST. Kinetics of peritoneal dialysis. Medicine 1961; 40: 243.

    Google Scholar 

  84. Henderson LW. Peritoneal ultrafiltration dialysis. Enhanced urea transfer using hypertonic peritoneal dialysis fluid. J Clin Invest 1964; 45: 950.

    Google Scholar 

  85. Henderson LW, Nolph KD. Altered permeability of the peritoneal membrane after using hypertonic peritoneal dialysis fluid. J Clin Invest 1969; 48: 992.

    PubMed  CAS  Google Scholar 

  86. Nolph KD, Miller FN, Pyle K, Popovich RP, Sorkin MJ. A hypothesis to explain the characteristics of peritoneal ultrafiltration. Kidney Int 1981; 20: 543.

    PubMed  CAS  Google Scholar 

  87. Boen ST. History of peritoneal dialysis. In: Nolph KD ed, Peritoneal Dialyis. Dordrecht: Kluwer, 1989: p. 1.

    Google Scholar 

  88. Merril JP, Hampers CL. Uremia. N Engl J Med 1970; 282: 953.

    Google Scholar 

  89. Lowrie EG, Steinberg SM, Galen MA et al. Factors in the dialysis regimen which contribute to alterations in the abnormalities of uremia. Kidney Int 1976; 10: 409.

    PubMed  CAS  Google Scholar 

  90. Teschan PE. Electroencephalographic and other neurophysiological abnormalities in uremia. Kidney Int 1975; (Suppl. 2 ): S210.

    Google Scholar 

  91. Nolph KD, Parker A. The composition of dialysis solution for continuous ambulatory peritoneal dialysis. In: Legrain M, ed. Continuous Ambulatory Peritoneal Dialysis. Amsterdam: Excerpta Medica, 1980, p. 341.

    Google Scholar 

  92. Nolph KD, Twardowski ZJ, Popovich RP, Rubin J. Equilibration of peritoneal dialysis solutions during long dwell exchanges. J Lab Clin Med 1979; 93: 246.

    PubMed  CAS  Google Scholar 

  93. Nolph KD, Sorkin MJ, Moore H. Autoregulation of sodium and potassium removal during continuous ambulatory peritoneal dialysis. Trans ASAIO 1980; 26: 334.

    CAS  Google Scholar 

  94. Nolph KD, Hano JE, Teschan PE. Peritoneal sodium transport during hypertonic peritoneal dialysis: physiologic mechanisms and clinical implications. Ann Intern Med 1969; 70: 931.

    PubMed  CAS  Google Scholar 

  95. Raja RM, Cantor RE, Boreyco C, Bushchri H, Kramer MS, Rosenbaum JL. Sodium transport during ultrafiltration peritoneal dialysis. Trans ASAIO 1972; 18: 429.

    CAS  Google Scholar 

  96. Raja RM, Kramer MS, Rosenbaum JL, Manchanda R, Lazaro N. Evaluation of hypertonic peritoneal dialysis solutions with low sodium. Nephron 1973; 11: 342.

    PubMed  CAS  Google Scholar 

  97. Ahearn DJ, Nolph KD. Controlled sodium removal with peritoneal dialysis. Trans ASAIO 1972; 18: 423.

    CAS  Google Scholar 

  98. Bosch JP. Permeability characteristics of the peritoneal membrane. In: La Greca G, Chiaramonte S, Fabris A, Feriae M, Ronco C, eds. Peritoneal Dialysis. Milan: Wichtig Editore, 1985: p. 25.

    Google Scholar 

  99. Rippe B, Stein G, Haraldsson B. Computer simulations of peritoneal fluid transport in CAPD. Kidney Int 1991; 40: 315.

    PubMed  CAS  Google Scholar 

  100. Monquil MCJ, Imholz ALT, Struijk DG, Krediet RT. Does impaired transcellular water transport contribute to net ultrafiltration failure during CAPD? Petit Dial Int 1995; 15: 42.

    CAS  Google Scholar 

  101. Colombi A. Fluid and electrolyte balance in CAPD patients. In: La Greca G, Chiaramonte S, Fabris A, Feriani M, Ronco C, eds. Peritoneal Dialysis. Milan: Wichtig Editore, 1988, p. 265.

    Google Scholar 

  102. De Vecchi A, Paparella M, Scalamogna A, Guerra L, Castelnovo C. Effetti della variazione delle concentrazioni di sodio nel liquido di dialisi peritoneale. In: La Greca G, Petrella E, Cioni A, eds. I liquidi nella dialisi. Milan: Ghedini Editore, 1991, p. 93.

    Google Scholar 

  103. Nakayama M, Yokoyama K, Kawaguchi Y, Sakai O. Effect of ultra low sodium concentration dialysate (ULNaD) in patients with OF loss. Petit Dial Int 1991 (Suppl. 1): 187 (abstract).

    Google Scholar 

  104. Imholz ALT, Koomen GCM, Struijk DG, Arisz L, Krediet RT. Fluid and solute transport in CAPD patients using ultralow sodium dialysate. Kidney Int 1994; 46: 333.

    PubMed  CAS  Google Scholar 

  105. Nakayama M, Yokoyama K, Kubo H et al. The effect of ultra-low sodium dialysate in CAPD. A kinetic and clinical analysis. Clin Nephrol 1996; 45: 188.

    PubMed  CAS  Google Scholar 

  106. Twardowski ZJ. New approaches to intermittent peritoneal dialysis therapies. In: Nolph KD, ed. Peritoneal Dialysis. Dordrecht: Kluwer, 1989, p. 133.

    Google Scholar 

  107. Gault MH, Ferguson EL, Sidhu JS, Corbin RP. Fluid and electrolyte complications of peritoneal dialysis. Choice of dialysis solutions. Ann Intern Med 1971; 75: 253.

    PubMed  CAS  Google Scholar 

  108. Shen FH, Sherrard DJ, Scollard D, Merrit A, Curtis FK. Thirst, relative hypernatremia and excessive weight gain in maintenance peritoneal dialysis. Trans ASAIO 1978; 24: 142.

    CAS  Google Scholar 

  109. Twardowski ZJ, Nolph KD, Khanna R, Gluck Z, Prowant BF, Ryan LP. Daily clearances with continuous ambulatory peritoneal dialysis and nightly peritoneal dialysis. Trans ASAIO 1986; 32: 575.

    CAS  Google Scholar 

  110. Nolph KD. Kinetic of ultrafiltration and electrolyte transport during peritoneal dialysis. In: La Greca G, Chiaramonte S, Fabris A, Feriani M, Ronco C, eds. Peritoneal Dialysis. Milan: Wichtig Editore, 1985, p. 47.

    Google Scholar 

  111. Brown ST, Ahearn DJ, Nolph KD. Potassium removal with peritoneal dialysis. Kidney Int 1973; 4: 67.

    PubMed  CAS  Google Scholar 

  112. Gokal R. Continuous ambulatory peritoneal dialysis. In: Maher JF, ed. Replacement of Renal Function by Dialysis. Dordrecht: Kluwer, 1989, p. 590.

    Google Scholar 

  113. Blumenkrantz MJ, Kopple JD, Moran JK, Coburn JW. Metabolic balance studies and dietary protein requirements in patients undergoing continuous ambulatory peritoneal dialysis. Kidney Int 1982; 21: 849.

    PubMed  CAS  Google Scholar 

  114. Sandle GI, Gaiger E, Tapster S, Goodship THJ. Evidence for large intestinal control of potassium homeostasis in uraemic patients undergoing CAPD. Clin Sci 1987; 73: 247.

    PubMed  CAS  Google Scholar 

  115. Lameire N, Ringoir S. Introductory remarks: an overview of peritonitis and other complications of continuous ambulatory peritoneal dialysis. In: Legrain M, ed. Continuous Ambulatory Peritoneal Dialysis. Amsterdam: Excerpta Medica, 1980, p. 229.

    Google Scholar 

  116. Oreopoulos DG, Khanna R, Williams P. Continuous ambulatory peritoneal dialysis. Nephron 1982; 30: 293.

    PubMed  CAS  Google Scholar 

  117. Spital A, Sterns RH. Potassium supplementation via the dialysate in continuous ambulatory peritoneal dialysis. Am J Kidney Dis 1985; 6: 173.

    PubMed  CAS  Google Scholar 

  118. Lindholm B, Alvestrand A, Hultman F, Bergstrom J. Muscle water and electrolytes in patients undergoing continuous ambulatory peritoneal dialysis. Acta Med Scand 1986; 219: 323.

    PubMed  CAS  Google Scholar 

  119. Heide B, Pierratos A, Khanna R et al. Nutritional status of patients undergoing continuous ambulatory peritoneal dialysis. Petit Dial Bull 1983; 3: 138.

    Google Scholar 

  120. Rubin J, Kirchner K, Barnes T, Teal N, Ray R, Bower JD. Evaluation of continuous ambulatory peritoneal dialysis. Am J Kidney Dis 1983; 3: 199.

    PubMed  CAS  Google Scholar 

  121. Schilling H, Wu G, Petit J et al. Nutritional status of patients on long term CAPD. Petit Dial Bull 1985; 5: 12.

    Google Scholar 

  122. Randall RE, Cohen MD, Spray CC, Rossmeisl EC. Hypermagnaesemia in renal failure: etiology and toxic manifestation. Ann Intern Med 1964; 61: 73.

    PubMed  CAS  Google Scholar 

  123. Whang R. Magnesium deficiency: pathogenesis, prevalence and clinical implications. Am J Med 1987; 82 (Suppl. 3A): 24.

    PubMed  CAS  Google Scholar 

  124. Hollifield J. Magnesium depletion, diuretics and arrhythmias. Am J Med 1987; 82 (Suppl. 3A): 30.

    PubMed  CAS  Google Scholar 

  125. Selling M. Electrocardiographic patterns of magnesium depletion appearing in alcoholic heart disease. Ann NY Acad Sci 1969; 162: 906.

    Google Scholar 

  126. Parker A, Nolph KD. Magnesium and calcium mass transfer during continuous ambulatory peritoneal dialysis. Trans ASAIO 1980; 26: 194.

    CAS  Google Scholar 

  127. Kwong MBL, Lee JSK, Chan MK. Transperitoneal calcium and magnesium transfer during an 8-hour dialysis. Petit Dial Bull 1987; 7: 85.

    Google Scholar 

  128. Gokal R, Fryer R, McHugh M, Ward MK, Kerr DNS. Calcium and phosphate control in patients on continuous ambulatory peritoneal dialysis. In: Legrain M, ed. Continuous Ambulatory Peritoneal Dialysis. Amsterdam: Excerpta Medica, 1980, p. 283.

    Google Scholar 

  129. Nolph KD, Prowant B, Serkes KD et al. Multicentric evaluation of a new peritoneal dialysis solution with a high lactate and low magnesium concentration. Petit Dial Bull 1983; 3: 63.

    Google Scholar 

  130. Kohaut EC, Balfe JW, Potter D, Alexandre S, Lum G. Hypermagnesemia and mild hypocarbia in pediatric patients on CAPD. Petit Dial Bull 1983; 3: 41.

    Google Scholar 

  131. Rahman R, Heaton A, Goodship T et al. Renal osteodystrophy in patients on CAPD: a five year study. Petit Dial Bull 1987; 7: 1.

    Google Scholar 

  132. Rubin J. Comments on dialysis solution, antibiotic transport, poisonings and novel uses of peritoneal dialysis. In: Nolph KD, ed. Peritoneal Dialysis. Dordrecht: Kluwer, 1989, p. 199.

    Google Scholar 

  133. Gonella M. Plasma and tissue levels of magnesium in chronically hemodialyzed patients: effects of dialysate magnesium levels. Nephron 1983; 34: 141.

    PubMed  CAS  Google Scholar 

  134. Meema HE, Oreopoulos DG, Rapoport A. Serum magnesium level and arterial calcification in end-stage renal disease. Kidney Int 1987; 32: 388.

    PubMed  CAS  Google Scholar 

  135. Hutchison AJ, Freemont AJ, Boulton HF, Gokal R. Low-calcium dialysis fluid and oral calcium carbonate in CAPD. A method of controlling hyperphosphataemia whilst minimizing aluminium exposure and hypercalcaemia. Nephrol Dial Transplant 1992; 7: 1219.

    PubMed  CAS  Google Scholar 

  136. Hutchison AJ, Gokal R. Improved solutions for peritoneal dialysis: physiological calcium solutions, osmotic agents and buffers. Kidney Int 1992; 42 (Suppl. 38): S153.

    Google Scholar 

  137. Breuer J, Moniz C, Baldwin D, Parsons V. The effects of zero magnesium dialysate and magnesium supplements on ionized calcium concentration in patients on regular dialysis treatment. Nephrol Dial Transplant 1987; 2: 347.

    PubMed  CAS  Google Scholar 

  138. Shan G. Winer R, Cutler R et al. Effects of a magnesium-free dialysate on magnesium metabolism during continuous ambulatory peritoneal dialysis. Am J Kidney Dis 1987; 10: 268.

    PubMed  Google Scholar 

  139. Delmez JA, Slatopolsky E, Martin KJ, Gearing BN, Harter HR. Minerals, vitamin D, and parathyroid hormone in continuous ambulatory peritoneal dialysis. Kidney Int 1982; 21: 862.

    PubMed  CAS  Google Scholar 

  140. Digenis G, Khanna R, Pierratos A et al. Renal osteodystrophy in patients maintained on CAPD for more than three years. Petit Dial Bull 1983; 3: 81.

    Google Scholar 

  141. Gokal R, Ramos JM, Ellis HA et al. Histological renal osteodystrophy and 25 hydroxycholecalciferol and aluminum levels in patients on continuous ambulatory peritoneal dialysis. Kidney Int 1983; 23: 15.

    PubMed  CAS  Google Scholar 

  142. Delmez JA, Fallon M, Bergfeld M, Gearing BN, Dougan C, Teitelbaum S. Continuous ambulatory peritoneal dialysis and bone. Kidney Int 1986; 30: 379.

    PubMed  CAS  Google Scholar 

  143. Bucciante G, Bianchi M, Valenti G. Progress of renal osteodystrophy during CAPD. Clin Nephrol 1984; 6: 279.

    Google Scholar 

  144. Lindholm B, Bergstrom J. Nutritional aspects of CAPD. In: Gokal R, ed. Continuous Ambulatory Peritoneal Dialysis. Edinburgh: Churchill Livingstone, 1986, p. 228.

    Google Scholar 

  145. Sheikh MS, Maguire JA, Emmett M et al. Reduction of dietary phosphorus absorption by phosphorus binders. A theoretical, in vitro, and in vivo study. J Clin Invest 1989; 83: 66.

    PubMed  CAS  Google Scholar 

  146. Ramirez JA, Emmett M, White MG et al. The absorption of dietary phosphorus and calcium in hemodialysis patients. Kidney Int 1986; 30: 753.

    PubMed  CAS  Google Scholar 

  147. Davenport A, God S, MacKenzie JC. Audit of the use of calcium carbonate as phosphate binder in 100 patients treated with continuous ambulatory peritoneal dialysis. Nephrol Dial Transplant 1992; 7: 632.

    PubMed  CAS  Google Scholar 

  148. Joffe P, Olsen F, Heaf J, Gammelgaard B, Pondephant J. Aluminium concentrations in serum, dialysate, urine and bone among patients undergoing continuous ambulatory peritoneal dialysis. Clin Nephrol 1989; 32: 133.

    PubMed  CAS  Google Scholar 

  149. Andreoli S, Briggs J, Junior B. Aluminium intoxication from aluminium containing phosphate binders in children with azotemia not undergoing dialysis. N Engl J Med 1984; 310: 1074.

    Google Scholar 

  150. Ackrill P, Day J, Ahmed R. Aluminium and iron overload in chronic dialysis. Kidney Int 1988; 33 (Suppl. 24): S163.

    Google Scholar 

  151. Altmannn P, Dhanesha U, Hamon C, Cunningham J, Blair J, Marsch F. Disturbance of cerebral function by aluminium in hemodialysis patients without overt aluminium toxicity. Lancet 1989; ii: 7.

    Google Scholar 

  152. Martis L, Serkes KD, Nolph KD. Calcium as a phosphate binder: is there a need to adjust peritoneal dialysate calcium concentration for patients using CaCO3. Perit Dial Int 1989; 9: 325.

    PubMed  CAS  Google Scholar 

  153. Weinreich T, Passlick-Deetjen J, Ritz E, collaborators of the peritoneal dialysis multicenter study group. Low dialysate calcium in continuous ambulatory peritoneal dialysis: a randomized controlled multicenter trial. Am J Kidney Dis 1995; 25: 452.

    PubMed  Google Scholar 

  154. Weinreich T. Low or high calcium dialysate solutions in peritoneal dialysis? Kidney Int 1996; 50 (Suppl. 56): S92.

    Google Scholar 

  155. Cunningham J, Beer J, Coldwell RD, Noonan K, Sawyer N, Makin HLJ. Dialysate calcium reduction in CAPD patients treated with calcium carbonate and alfacalcidol. Nephrol Dial Transplant 1992; 7: 63.

    PubMed  CAS  Google Scholar 

  156. Ritz E, Weinreich T, Matthias S. Is it necessary to readjust dialysis calcium concentration. J Nephrol 1992; 5: 70.

    Google Scholar 

  157. Brown CB, Hamdy NAT, Boletis J, Kanis JA. Rationale for the use of low calcium solution in CAPD. In: La Greca G, Ronco C, Feriani M, Chiaramonte S, Conz P, eds. Peritoneal Dialysis. Milan: Wichtig Editore, 1991, p. 125.

    Google Scholar 

  158. Piraino B, Perlmutter JA, Holley JL, Johnston JR, Bernardini J. The use of dialysate containing 2.5 mEq/1 calcium in peritoneal dialysis patients. Perit Dial Int 1992; 12: 75.

    PubMed  CAS  Google Scholar 

  159. Hutchison AJ, Gokal R. Towards tailored dialysis fluids in CAPD: the role of reduced calcium and magnesium in dialysis solution. Perit Dial Int 1992; 12: 199.

    PubMed  CAS  Google Scholar 

  160. Beer J, Tailor D, Noonan K, Cunningham J. Rapid exacerbation of hyperparathyroidism in patients converted to low calcium dialysate without adequate calcium supplementation. Perit Dial Int 1993; 13 (Suppl. 1): S30.

    Google Scholar 

  161. Andersen KEH. Calcium transfer during intermittent peritoneal dialysis. Nephron 1981; 29: 63.

    PubMed  CAS  Google Scholar 

  162. Schmitt H, Ittel TH, Schafer L, Sieberth HG. Effect of a low calcium dialysis solution on serum parathyroid hormone in automated peritoneal dialysis. Perit Dial Int 1993; 13 (Suppl. 1): S59.

    Google Scholar 

  163. Putman J. The living peritoneum as a dialysis membrane. Am J Physiol 1923; 63: 548.

    Google Scholar 

  164. Cunningham RS. Studies on absorption from serious cavities. III. The effect of dextrose upon the peritoneal mesothelium. Am J Physiol 1920; 53: 458.

    Google Scholar 

  165. Palmer RA, Quinton WE, Gray JF et al. Prolonged peritoneal dialysis for chronic renal failure. Lancet 1964; 1: 700.

    PubMed  CAS  Google Scholar 

  166. Rubin J, Nolph KD, Popovich RP, Moncrief JW. Drainage volumes during continuous ambulatory peritoneal dialysis. ASAIO J 1979; 2: 54.

    Google Scholar 

  167. Gokal R, Mistry CD. Glucose polymer as osmotic agent in CAPD. In: La Greca G, Ronco C, Feriani M, Chiaramonte S, Conz P, eds. Peritoneal Dialysis. Milan: Wichtig Editore, 1991, p. 119.

    Google Scholar 

  168. Twardowski ZJ, Khanna R, Nolph KD. Osmotic agents and ultrafiltration in peritoneal dialysis. Nephron 1986; 42: 93.

    PubMed  CAS  Google Scholar 

  169. Starling EH. On the absorption of fluids from connetive tissue spaces. J Physiol 1895, 19: 312.

    Google Scholar 

  170. Mistry CD, Mallick NP, Gokal R. Ultrafiltration with an isosmotic solution during long peritoneal dialysis exchanges. Lancet 1987; 2: 178.

    PubMed  CAS  Google Scholar 

  171. Staverman PJ. The theory of measurement of osmotic pressure. Rec Tray Chim Pays-Bas 1951; 70: 344

    CAS  Google Scholar 

  172. Kiil F. Mechanism of osmosis. Kidney Int 1982; 21: 303.

    PubMed  CAS  Google Scholar 

  173. Mistry CD, Gokal R. New osmotic agents for peritoneal dialysis: where we are and where we’re going. Semin Dial 1991; 4: 9.

    Google Scholar 

  174. Mistry CD, Gokal R. A single daily overnight (12 h dwell) use of 7.5% glucose polymer (Mw 18 700; Mn 7300) + 0.35% glucose solution: a 3-month study. Nephrol Dial Transplant 1993; 8: 443.

    PubMed  CAS  Google Scholar 

  175. Ronco C, Feriani M, Chiaramonte S et al. Pathophysiology of ultrafiltration in peritoneal dialysis. Perit Dial Int 1990; 10: 119.

    PubMed  CAS  Google Scholar 

  176. Pyle WK, Moncrief JW, Popovich RP. Peritoneal transport evaluation in CAPD. In: Moncrief JW, Popovich RP, eds. CAPD Update. New York: Masson, 1981: p. 35.

    Google Scholar 

  177. Maher JF, Bennett RR, Hirszel P, Chakrabarti E. The mechanism of dextrose-enhanced transport rates. Kidney Int 1985; 28: 16.

    PubMed  CAS  Google Scholar 

  178. Krediet RT, Boeschoten EW, Zuyderhoudt FMJ, Arisz L. The relationship between peritoneal glucose absorption and body fluid loss by ultrafiltration during continuous ambulatory peritoneal dialysis. Clin Nephrol 1987; 27: 51.

    PubMed  CAS  Google Scholar 

  179. Maher JF. Peritoneal transport rate: mechanisms, limitation and methods for augmentation. Kidney Int 1980; 18: S117.

    Google Scholar 

  180. Nolph KD, Mactier RA, Khanna R, Twardowski ZJ, Moore H, McGary T. The kinetics of ultrafiltration during peritoneal dialysis: the role of lymphatics. Kidney Int 1987; 32: 219.

    PubMed  CAS  Google Scholar 

  181. Mactier RA, Khanna R, Twardowski ZJ, Moore H, Nolph KD. Contribution of lymphatic absorption to loss of ultrafiltration and solute clearances in CAPD. J Clin Invest 1987; 80: 1311.

    PubMed  CAS  Google Scholar 

  182. Grodstein GP, Blumenkrantz MJ, Kopple JD, Moran JK, Coburn JW. Glucose absorption during continuous ambulatory peritoneal dialysis. Kidney Int 1981; 19: 564.

    PubMed  CAS  Google Scholar 

  183. DeSanto NG, Capodicasa G, Senatore R et al. Glucose utilization from dialysate in patients on continuous ambulatory peritoneal dialysis. Int J Artif Organs 1978; 2: 119.

    Google Scholar 

  184. Lindholm B, Bergstrom J. Nutritional management of patients undergoing peritoneal dialysis. In: Nolph KD, ed. Peritoneal Dialysis. Dordrecht: Kluwer, 1989, p. 230.

    Google Scholar 

  185. Kreusch G, Bammatter F, Mordasini R, Binswanger U. Serum lipoprotein concentrations during continuous ambulatory peritoneal dialysis. In: Ghal GM, Kessel M, Nolph KD, eds. Advances in Peritoneal Dialysis. Amsterdam: Excerpta Medica, 1981, p. 427.

    Google Scholar 

  186. Lindholm B, Karlander SG, Norbek HE, Furst P, Bergstrom J. Carboyhdrate and lipid metabolism in CAPD patients. In: Atkins R, Thomson N, Farrell P. eds. Peritoneal Dialysis. Edimburgh: Churchill Livingstone, 1981, p. 198.

    Google Scholar 

  187. Von Baeyer H, Gahl GM, Riedinger H et al. Adaptation of CAPD patients to the continuous peritoneal energy upyake. Kidney Int 1983; 23: 29.

    Google Scholar 

  188. Boyer J, Gill GN, Epstein FH. Hyperglycemia and hyperosmolality complicating peritoneal dialysis. Ann Intern Med 1967; 67: 568.

    PubMed  CAS  Google Scholar 

  189. Nolph KD, Rosenfeld PS, Powell JT, Danforth JR. Peritoneal glucose transport and hyperglycemia during peritoneal dialysis. Am J Med Sci 1970; 259: 272.

    PubMed  CAS  Google Scholar 

  190. Heaton A, Johnston DG, Burrin JM et al. Carbohydrate and lipid metabolism during continuous ambulatory peritoneal dialysis: the effect of a single dialysis cycle. Clin Sci 1983; 65: 539.

    PubMed  CAS  Google Scholar 

  191. Amstrong VW, Creutzfeldt W, Ebert R, Fuchs C, Hilgers R, Scheler F. Effect of dialysis glucose load on plasma and glucoregulatory hormones in CAPD patients. Nephron 1985; 39: 141.

    Google Scholar 

  192. Amstrong VW, Buschmann U, Ebert R, Fuchs C, Rieger J, Scheler F. Biochemical investigations of CAPD: plasma levels of trace elements and amino acids and impaired glucose tolerance during the course of treatment. Int J Artif Organs 1980; 3: 237.

    Google Scholar 

  193. Oreopoulos DG, Marliss E, Anderson et al. Nutritional aspects of CAPD and the potential use of amino acid containing dialysis solutions. Petit Dial Bull 1983; 3: 10.

    Google Scholar 

  194. Wideroe TE, Smeby LC, Myking OL. Plasma concentrations and transperitoneal transport of native insulin and C-peptide in patients on continuous ambulatory peritoneal dialysis. Kidney Int 1984; 25: 82.

    PubMed  CAS  Google Scholar 

  195. Lindholm B, Bergstrom J, Karlander SG. Glucose metabolism in patients on continuous ambulatory peritoneal dialysis. Trans ASAIO 1981; 17: 58.

    Google Scholar 

  196. Lindholm B, Bergstrom J, Norbek HE. Lipoprotein (LP) metabolism in patients on continuous ambulatory peritoneal dialysis. In: Gahl GM, Kessel M, Nolph KD. eds. Advances in Peritoneal Dialysis. Amsterdam: Excerpta Medica, 1981, p. 434.

    Google Scholar 

  197. Lindholm B, Karlander SG, Norbek HE, Bergstrom J. Glucose and lipid metabolism in peritoneal dialysis. In: La Greca G, Biasioli S, Ronco C. eds. Peritoneal DFialysis. Milan: Wichtig Editore, 1982, p. 219.

    Google Scholar 

  198. Gokal R, Ramos JM, McGurk JG, Ward MK, Kerr DNS. Hyperlipidaemia in patients on continuous ambulatory peritoneal dialysis. In: Gahl GM, Kessel M, Nolph KD, eds. Advances in Peritoneal Dialysis. Amsterdam: Excerpta Medica, 1981, p. 430.

    Google Scholar 

  199. Roncari DAK, Breckenridge WC, Khanna R, Oreopoulos DG. Rise in high-density lipoprotein-cholesterol in some patients treated with CAPD. Petit Dial Bull 1981; 1: 136.

    Google Scholar 

  200. Ramos JM, Heaton A, McGurk JG, Wark MK, Kerr DNS. Sequential changes in serum lipids and their subfractions in patients receiving continuous ambulatory peritoneal dialysis. Nephron 1983; 35: 20.

    PubMed  CAS  Google Scholar 

  201. Nolph KD, Ryan KL, Prowant B, Twardowski ZJ. A cross sectional assessment of serum vitamin D and triglyceride concentration in a CAPD population. Petit Dial Bull 1984; 4: 232.

    Google Scholar 

  202. Lindholm B, Norbek HE. Serum lipids and lipoproteins during continuous ambulatory peritoneal dialysis. Acta Med Scand 1986; 220: 143.

    PubMed  CAS  Google Scholar 

  203. Khanna R, Breckenridge WC, Roncari DAK, Digenis G, Oreopoulos DG. Lipids abnormalities in patients undergoing continuous ambulatory peritoneal dialysis. Petit Dial Bull 1983; 3: S13.

    Google Scholar 

  204. Henderson IS, Couper IA, Lumsden A. Potentially irritant glucose in unused CAPD fluid. In: Maher JF, Winchester JF, eds. Frontiers in Peritoneal Dialysis. New York: Field, Rich and Associates, 1986, p. 261.

    Google Scholar 

  205. Dobbie JW, Lloyd JK, Gall CA. Categorization of ultra-structural changes in peritoneal mesothelium, stroma and blood vessels in uremia and CAPD patients. In: Khanna R, Nolph KD, Prowant P, Twardowski ZJ, Oreopoulos DG, eds. Advances in Continuous Ambulatory Peritoneal Dialysis. Toronto: Peritoneal Dialysis Bulletin Inc., 1990, p. 3.

    Google Scholar 

  206. Dobbie JW. Pathogenesis of peritoneal fibrosis syndromes (sclerosing peritonitis) in peritoneal dialysis. Petit Dial Int 1992; 12: 14.

    CAS  Google Scholar 

  207. De Paepe M, Matthijs E, Peluso F et al. Experience with glycerol as the osmotic agent in peritoneal dialysis in diabetic and non-diabetic patients. In: Keen H, Legrain M, eds. Prevention and Treatment of Diabetic Nephropathy. Boston: MTP Press, 1983, p. 299.

    Google Scholar 

  208. Heaton A, Ward MK, Johnston DG, Nicholson DV, Alberti KGMM, Kerr DNS. Short-term studies on the use of glycerol as an osmotic agent in continuous ambulatory peritoneal dialysis. Clin Sci 1984; 67: 121.

    PubMed  CAS  Google Scholar 

  209. Matthys E, Dolkart R, Lameire N. Extended use of a glycerol-containing dialysate in diabetic CAPD patients. Petit Dial Bull 1987; 7: 10.

    Google Scholar 

  210. Lameire N, Faict D. Peritoneal dialysis solutions containing glycerol and amino acids. Pen Dial Int 1994; 14 (Suppl. 13): S 145. Daniels FH, Leonard EF, Cortell S. Glucose and glycerol compared as osmotic agents for peritoneal dialysis. Kidney Int 1984; 25: 20.

    Google Scholar 

  211. Lindholm B, Werynski A, Bergstrom J. Kinetic of peritoneal dialysis with glycerol and glucose as osmotic agents. Trans ASAIO 1987; 33: 19.

    CAS  Google Scholar 

  212. Heaton A, Ward MK, Johnston DG, Alberti KGMM, Kerr DNS. Evaluation of glycerol as an osmotic agent for continuous ambulatory peritoneal dialysis in end-stage renal failure. Clin Sci 1986; 70: 23.

    PubMed  CAS  Google Scholar 

  213. Matthys E, Dolkart R, Lameire N. Potential hazards of glycerol dialysate in diabetic CAPD patients. Petit Dial Bull 1987; 7: 16.

    Google Scholar 

  214. Hain H, Kessel M. Aspects of new solutions for peritoneal dialysis. Nephrol Dial Transplant 1987; 2: 67.

    PubMed  CAS  Google Scholar 

  215. Gokal R, Mistry C. Osmotic agents in continuous ambulatory peritoneal dialysis. In: La Greca G, Chiaramonte S, Fabris A, Feriani M, Ronco C, eds. Peritoneal Dialysis. Milan: Wichtig Editore, 1988, p. 61.

    Google Scholar 

  216. Goodship THJ, Heaton A, Wilkinson R, Ward MK. The use of glycerol as an osmotic agent in continuous ambulatory peritoneal dialysis. In: Ota K, Maher J, Winchester J, Hirszel P, eds. Current Concepts in Peritoneal Dialysis. Amsterdam: Excerpta Medica, 1992, p. 143.

    Google Scholar 

  217. Bazzato G, Coli U, Landini S et al. Xylitol and low dosages of insulin: new perspectives for diabetic uremic patients on CAPD. Petit Dial Bull 1982; 2: 161.

    Google Scholar 

  218. Wu G. Osmotic agents for peritoneal dialysis solutions. Petit Dial Bull 1982; 2: 151.

    Google Scholar 

  219. Yatuc W, Ward G, Shipetar G, Tenckhoff H. Substitution of sorbitol for dextrose in peritoneal irrigation fluid. A preliminary report. Trans ASAIO 1967; 13: 168.

    Google Scholar 

  220. Raja RM, Motos JG, Kramer MS, Rosenbaum JL. Hyperosmolal coma complicating peritoneal dialysis with sorbitol dialysate. Ann Intern Med 1970; 73: 993.

    PubMed  CAS  Google Scholar 

  221. Bischel MC, Barbour BH. Peritoneal dialysis with sorbitol versus dextrose dialysate: clinical findings and alterations of blood and cerebrospinal fluid. Nephron 1974; 12: 449.

    PubMed  CAS  Google Scholar 

  222. Vidt DG. Recommendations on choice of peritoneal dialysis solutions. Ann Intern Med 1973; 78: 144.

    PubMed  CAS  Google Scholar 

  223. Robson MD, Levi J, Rosenfeld JB. Hyperglycemia and hyperosmolality in peritoneal dialysis. Its prevention by the use of fructose. Proc EDTA 1969; 6: 300.

    Google Scholar 

  224. Raja RS, Kramer MS, Manchanda R, Lazaro N, Rosenbaum JL. Peritoneal dialysis with fructose dialysate. Prevention of hyperglycemia and hyperosmolality. Ann Intern Med 1973; 79: 511.

    PubMed  CAS  Google Scholar 

  225. Faict D, Hartman JP, Lameire N, Kesteloot D, Peluso F. The evaluation of a peritoneal dialysis solution with amino acids and glycerol in a new rat model. Petit Dial Int 1990; 10 (Suppl. 1): S60.

    Google Scholar 

  226. Lameire N, Faict D. Peritoneal dialysis solutions containing glycerol and amino acids. Petit Dial Int 1994; 14 (Suppl. 3): 5145.

    Google Scholar 

  227. Faict D, Lameire N, Kesteloot D, Peluso F. Evaluation of peritoneal dialysis solutions with amino acids and glycerol in a rat model. Nephrol Dial Transplant 1991; 6: 120.

    PubMed  CAS  Google Scholar 

  228. Van Biesen W, Faict D, Boer W, Lameire N. Further animal and human experience with a 0.6% amino acid/1.4% glycerol peritoneal dialysis solution. Petit Dial Int 1997; 17 (Suppl. 2): S56.

    Google Scholar 

  229. Young GA, Kopple JD, Lindholm B et al. Nutritional assessment of continuous ambulatory peritoneal dialysis patients: an international study. Am J Kidney Dis 1991; 17: 462.

    PubMed  CAS  Google Scholar 

  230. Kopple JD, Blumenkrantz MJ, Jones MR, Moran JK, Coburn JW. Plasma amino acid levels and amino acid losses during continuous ambulatory peritoneal dialysis. Am J Clin Nutr 1982; 36: 395.

    PubMed  CAS  Google Scholar 

  231. Lindholm B, Bergstrom J. Nutritional aspects on peritoneal dialysis. Kidney Int 1992; 42 (Suppl. 38): S165.

    Google Scholar 

  232. Gjessing J. Addition of amino acids to peritoneal dialysis fluid. Lancet 1968; 2: 812.

    PubMed  CAS  Google Scholar 

  233. Oreopoulos DG, Crassweller P, Katirtzoglou A et al. Amino acids as an osmotic agent (instead of glucose) in continuous ambulatory peritoneal dialysis. In: Legrain M, ed. Continuous Ambulatory Peritoneal Dialysis. Amsterdam: Excerpta Medica, 1980, p. 335.

    Google Scholar 

  234. Williams PF, Marliss EB, Harvey Anderson G et al. Amino acid absorption following intraperitoneal administration in CAPD patients. Petit Dial Bull 1982; 2: 124.

    Google Scholar 

  235. Nakao T, Ogura M, Takahashi H, Okada T. Charge-affected transperitoneal movement of amino acids in CAPD. Petit Dial Int 1996; 16 (Suppl. 1): S88.

    Google Scholar 

  236. Oren A, Wu G, Harvey Anderson G et al. Effective use of amino acid dialysate over four weeks in CAPD patients. Petit Dial Bull 1983; 3: 66.

    Google Scholar 

  237. Goodship THJ, Lloyd S, McKenzie PW et al. Short-term studies on the use of amino acids as an osmotic agent in continuous ambulatory peritoneal dialysis. Clin Sci 1987; 73: 471.

    PubMed  CAS  Google Scholar 

  238. Lindholm B, Werynsky A, Bergstrom J. Peritoneal dialysis with amino acid solutions: fluid and solute transport kinetics. Artif Organs 1988; 12: 2.

    PubMed  CAS  Google Scholar 

  239. Lindholm B, Traneus A, Werynski A, Osterberg T, Bergstrom J. Amino acids for peritoneal dialysis: technical and metabolic implications. In: La Greca G, Chiaramonte S, Fabris A, Feriani M, Ronco C, eds. Peritoneal Dialysis. Milan: Wichtig Editore, 1986, p. 149.

    Google Scholar 

  240. Young GA, Dibble JB, Taylor AE, Kendall S, Brownjohn AM. A longitudinal study of the effects of amino acid-based CAPD fluid on amino acid retention and protein losses. Nephrol Dial Transplant 1989; 4: 900.

    PubMed  CAS  Google Scholar 

  241. Young GA, Dibble JB, Brownjohn AM. The use of amino acid based CAPD fluid in chronic renal failure. In: Amino Acids, Chemistry, Biology and Medicine. Lubec and Rosenthal, 1992, p. 850.

    Google Scholar 

  242. Steinhauer HB, Lubrich-Birker I, Kluthe R, Baumann G, Schollmeyer P. Effects of amino acid based dialysis solution on peritoneal permeability and prostanoid generation in patients undergoing continuous ambulatory peritoneal dialysis. Am J Nephrol 1992; 12: 61.

    PubMed  CAS  Google Scholar 

  243. Douma CE, de Waart DR, Struijk DG, Krediet RT. Effect of amino acid based dialysate on peritoneal blood flow and permeability in stable CAPD patients: a potential role for nitric oxide? Clin Nephrol 1996; 45: 295.

    PubMed  Google Scholar 

  244. Pedersen FB. Alternate use of amino acid and glucose solutions in CAPD. Contr Nephrol 1991; 89: 147.

    CAS  Google Scholar 

  245. Schilling H, Wu G, Pettit J et al. Effects of prolonged CAPD with amino acid containing solutions in three patients. In: Khanna R, Nolph KD, Prowant BF, Twardowski ZJ, Oreopoulos DG, eds. Advances in Continuous Ambulatory Peritoneal Dialysis. Toronto: University of Toronto Press, 1985, p. 49.

    Google Scholar 

  246. Schilling H, Wu G, Pettit J et al. Use of amino acid containing solutions in continuous ambulatory peritoneal dialysis patients after peritonitis: results of a prospective controlled trial. Proc EDTA-ERA 1985; 22: 421.

    Google Scholar 

  247. Dombros NV, Prutis K, Tong M et al. Six-month overnight intraperitoneal amino-acid infusion in continuous ambulatory peritoneal dialysis (CAPD) patients. No effect on nutritional status. Petit Dial Int 1990; 10: 79.

    CAS  Google Scholar 

  248. Lindholm B, Bergstrom J. Amino acids in CAPD solutions: lights and shadows. In: La Greca G, Ronco C, Feriani M, Chiaramonte S, Conz P, eds. Peritoneal Dialysis. Milan: Wichtig Editore, 1991, p. 139.

    Google Scholar 

  249. Okamura K, Yamauchi J, Nakahamma H et al. The effects of adding essential amino acids to the dialysis solution of continuous ambulatory peritoneal dialysis patients. In: Maekawa M, Nolph KD, Kishimoto T, Moncrief J eds. Machine Free Dialysis for Patient Convenience: The fourth ISAO Official Satellite Symposium on CAPD. Cleveland, ISAO Press, 1984, p. 103.

    Google Scholar 

  250. Pedersen FB, Dragsholt C, Laier E et al. Alternate use of amino acid and glucose solutions in CAPD. Petit Dial Bull 1985; 5: 215.

    Google Scholar 

  251. Alvestrand A, Furst P, Bergstrom J. Plasma and muscle free amino acids in uremia: influence of nutrition with amino acids. Clin Nephrol 1982; 18: 297.

    PubMed  CAS  Google Scholar 

  252. Young GA, Dibble JB, Hobson SM et al. The use of an amino-acid-based CAPD fluid over 12 weeks. Nephrol Dial Transplant 1989; 4: 285.

    PubMed  CAS  Google Scholar 

  253. Dibble JB, Young GA, Hobson SM, Brownjohn AM. Amino-acid-based continuous ambulatory peritoneal dialysis (CAPD) fluid over twelve weeks: effects on carbohydrate and lipid metabolism. Petit Dial Int 1990; 10: 71.

    CAS  Google Scholar 

  254. Bruno M, Bagnis C, Marangella M et al. CAPD with an amino acid solution: a long-term, cross-over study. Kidney Int 1989; 35: 1189.

    PubMed  CAS  Google Scholar 

  255. Arfeen S, Goodship THJ, Kirkwood A, Ward MK. The nutritional/metabolic and hormonal effects of 8 weeks of continuous ambulatory peritoneal dialysis with a 1% amino acid solution. Clin Nephrol 1990; 33: 192.

    PubMed  CAS  Google Scholar 

  256. Scanziani R, Dozio B, Iacuitti G. CAPD in diabetics: use of amino acids. In: Ota K, Maher J, Winchester J, Hirszel P, eds. Current Concepts in Peritoneal Dialysis. Amsterdam. Excerpta Medica, 1992, p. 628.

    Google Scholar 

  257. Jones MR, Mattis L, Algrim CE et al. Amino acid solutions for CAPD: rationale and clinical experience. Miner Electrolyte Metab 1992; 18: 309.

    PubMed  CAS  Google Scholar 

  258. Kopple JD, Bernard D, Messana J et al. Treatment of malnourished CAPD patients with an amino acid based dialysate. Kidney Int 1995; 47: 1148

    PubMed  CAS  Google Scholar 

  259. Faller B, Aparicio M, Faict D et al. Clinical evaluation of an optimized 1.1% amino acid solution for peritoneal dialysis. Nephrol Dial Transplant 1995; 10: 1432.

    PubMed  CAS  Google Scholar 

  260. Jones MR, Hagen T, Vonesh E, Moran J, the Nutrineal study group. Use of a 1.1% amino acid solution to treat malnutrition in peritoneal dialysis patients. J Am Soc Nephrol 1995; 6: 580 (abstract).

    Google Scholar 

  261. Jones MR, Gehr TW, Burkart JM et al. Replacement of amino acid and protein losses with 1.1% amino acid peritoneal dialysis solution. Petit Dial Int 1998; 18: 210.

    CAS  Google Scholar 

  262. Jones M, Kalil R, Blake P, Mattis L, Oreopoulos DG. Modification of an amino acid solution for peritoneal dialysis to reduce risk of acidemia. Petit Dial Int 1997; 17: 66.

    CAS  Google Scholar 

  263. Plum J, Fussho11er A, Schoenicke G et al. In vivo and in vitro effects of amino-acid-based and bicarbonate-buffered peritoneal dialysis solutions with regard to peritoneal transport and cytokines/prostanoids dialysate concentration. Nephrol Dial Transplant 1997; 12: 1652.

    PubMed  CAS  Google Scholar 

  264. Lazarus-Barlow WS. Observations upon the initial rates of osmosis of certain substances in water and in fluids containing albumen. J Physiol 1895–6; 19: 140.

    Google Scholar 

  265. Hain H, Ghal G. Osmotic agent. An update. Contrib Nephrol 1991; 89: 119.

    CAS  Google Scholar 

  266. Daniels FH, Nedev ND, Cataldo T, Leonard EF, Cortell S. The use of polyelectrolytes as osmotic agent for peritoneal dialysis. Kidney Int 1988; 33: 925.

    PubMed  CAS  Google Scholar 

  267. Struijk DG, Bakker JC, Krediet RT, Koomen GCM, Stekkinger P, Arisz L. Effect of intraperitoneal administration of two different batches of albumin solutions on peritoneal solute transport in CAPD patients. Nephrol Dial Transplant 1991; 6: 198.

    PubMed  CAS  Google Scholar 

  268. Nolph KD, Hopkins C, Rubin J et al. Polymer induced ultrafiltration in dialysis: high osmotic pressure due to impermeant polymer sodium. Trans ASAIO 1978; 24: 162.

    CAS  Google Scholar 

  269. Rubin J, Nolph KD, McGary TJ. Osmotic ultrafiltration with dextran sodium sulfate: potential for use in peritoneal dialysis. J Dialysis 1979; 3: 251.

    CAS  Google Scholar 

  270. Twardowski ZJ, Moore HL, McGary TJ, Poskuta M, Stathakis C, Hirszel P. Polymers as osmotic agent for peritoneal dialysis. Petit Dial Bull 1984; 4 (Suppl. 3): 5125.

    Google Scholar 

  271. Frank HA, Seligman AM, Fine J. Further experiences with peritoneal irrigation for acute renal failure. Ann Surg 1948; 128: 561.

    CAS  Google Scholar 

  272. Twardowski ZJ, Hain H, McGary TJ, Moore HL, Keller RS. Sustained OF with gelatin dialysis solution during long dwell dialysis exchanges in rats. In: Maher JF, Winchester JF, eds. Frontiers in Peritoneal Dialysis. New York: Field, Rich and Associates, 1986, p. 249.

    Google Scholar 

  273. Ring J, Messmer K. Incidence and severity of anaphylactoid reactions to colloid substitutes. Lancet 1977; 2: 466.

    Google Scholar 

  274. Gjessing J. The use of dextran as a dialysing fluid in peritoneal dialysis. Acta Med Scand 1969; 185: 237.

    PubMed  CAS  Google Scholar 

  275. Hain H, Schutte W, Pustelnik A, Gahl G, Kessel M. Ultrafiltration and absorption characteristics of hydroxyethylstarch and dextran during long dwell peritoneal dialysis exchanges in rat. In: Khanna R, Nolph KD, Prowant BF, Twardowski ZJ, Oreopoulos DG, eds. Advances in Peritoneal Dialysis. Toronto: Peritoneal Dialysis Bulletin Inc., 1989, p. 28.

    Google Scholar 

  276. Hain H, Kempf D, Schnell P, Gahl G, Kessel M. Ultrafiltration patterns of dextran and hydroxyethylstarch during long dwell peritoneal dialysis exchanges in nonuremic rats. In: Avram MM, Giordano C, eds. Ambulatory Peritoneal Dialysis. New York: Plenum, 1990, p. 83.

    Google Scholar 

  277. Bergonzi G, Paties C, Vassallo G et al. Dextran deposit in tissues of patients undergoing hemodialysis. Nephrol Dial Transplant 1990; 5: 54.

    PubMed  CAS  Google Scholar 

  278. Dienes HP, Gerharz CD, Wagner R, Weber M, John HD. Accumulation of hydroxyethyl starch (HES) in the liver of patients with renal failure and portal hypertension. J Hepatol 1986; 3: 223.

    PubMed  CAS  Google Scholar 

  279. Alsop RM. History, chemical and pharmaceutical developement of icodextrin. Petit Dial Int 1994; 14 (Suppl. 2): S5.

    Google Scholar 

  280. Mistry CD, Fox JE, Mallick NP, Gokal R. Circulating maltose and isomaltose in chronic renal failure. Kidney Int 1987; 32 (Suppl. 22): S210.

    Google Scholar 

  281. Peers E, Gokal R. Icodextrin: overview of clinical experience. Petit Dial Int 1997; 17: 22.

    CAS  Google Scholar 

  282. Mistry CD, Gokal R, Mallick NP. Glucose polymer as an osmotic agent in CAPD. In: Maher JF, Winchester JF, eds. Frontiers in Peritoneal Dialysis. New York: Field, Rich and Associates, 1986, p. 241.

    Google Scholar 

  283. Winchester JF, Stegink LD, Ahmad S et al. A comparison of glucose polymer and dextrose as osmotic agents in CAPD. In: Maher JF, Winchester JF, eds. Frontiers in Peritoneal Dialysis. New York: Field, Rich and Associates, 1986, p. 231.

    Google Scholar 

  284. Higgins JT, Gross ML, Somani P. Patient tolerance and dialysis effectiveness of a glucose polymer-containing peritoneal dialysis solution. Petit Dial Bull 1984; 4: 5131.

    Google Scholar 

  285. Winchester JF. Alternative osmotic agents to dextrose for peritoneal dialysis. In: La Greca G, Chiaramonte S, Fabris A, Feriani M, Ronco C, eds. Peritoneal Dialysis: Proceedings of Second International Course on Peritoneal Dialysis. Milan: Wichtig Editore, 1986, p. 135.

    Google Scholar 

  286. Mistry CD, Gokal R. Icodextrin in peritoneal dialysis: early development and clinical use. Petit Dial Int 1994; 14 (Suppl. 2): S13.

    Google Scholar 

  287. Mistry CD, Mallick NP, Gokal R. The advantage of glucose polymer as an osmotic agent in continuous peritoneal dialysis. Proc EDTA 1985; 22: 415.

    CAS  Google Scholar 

  288. Mistry CD, Mallick NP, Gokal R. The use of large molecular weight polymer (MW 20000) as an osmotic agent in continuous ambulatory peritoneal dialysis (CAPD). In: Khanna R, Nolph KD, Prowant BF, Twardowski ZJ, Oreopoulos DG, eds. Advances in Peritoneal Dialysis. Toronto: Peritoneal Dialysis Bulletin Inc., 1986, p. 7.

    Google Scholar 

  289. Mistry CD, Gokal R. The use of hyposmolar glucose polymer solution in continuous ambulatory peritoneal dialysis. In: Avram MM, Giordano C, eds. Ambulatory Peritoneal Dialysis. New York: Plenum, 1990, p. 83.

    Google Scholar 

  290. Mistry CD, Walker M, Gokal R. Safe use of glucose polymer dialysate over three months in CAPD patients. Nephrol Dial Transplant 1990; 5: 299.

    Google Scholar 

  291. Mistry CD, Gokal R, Peers EM, and the MIDAS study group. A randomized multicenter clinical trial comparing isosmolar icodextrin with hyperosmolar glucose solutions in CAPD. Kidney Int 1994; 46: 496.

    Google Scholar 

  292. Wilkie Me, Brown CB. Polyglucose solutions in CAPD. Petit Dial Int 1997; 17 (Suppl. 2): 547.

    Google Scholar 

  293. Lam Po Tang MKL, Bending MR, Kwan JTC. Icodextrin hypersensitivity in a CAPD patient. Petit Dial Int 1997; 17: 82.

    CAS  Google Scholar 

  294. Schildt B, Bouveng R, Sollenberg M. Plasma substitute induced impairement of reticuloendothelial system function. Acta Chir Scand 1975; 141: 7.

    PubMed  CAS  Google Scholar 

  295. Davies DS. Kinetics of icodextrin. Petit Dial Int. 1994; 14 (Suppl. 2): S45.

    Google Scholar 

  296. Krediet RT, Brown CB, Imholz ALT, Koomen GCM. Protein clearance and icodextrin. Petit Dial Int 1994; 14 (Suppl. 2): S39.

    Google Scholar 

  297. Gokal R, Mistry CD, Peers EM and the MIDAS study group. Peritonitis occurrence in a multicentre study of icodextrin and glucose in CAPD. Petit Dial Int 1995; 15: S226.

    Google Scholar 

  298. Wilkie ME, Plant MJ, Edwards L, Brown C. Icodextrin 7.5% dialysate solution (glucose polymer) in patients with ultrafiltration failure: extension of CAPD technique survival. Petit Dial Int 1997; 17: 84.

    CAS  Google Scholar 

  299. Posthuma N, ter Wee PM, Verbrugh HA, Oe PL, Peers E, Sayers J, Donker AJ. Icodextrin instead of glucose during the daytime dwell in CCPD increases ultrafiltration and 24-h dialysate creatinine clearance. Nephrol Dial Transplant 1997; 12: 550.

    PubMed  CAS  Google Scholar 

  300. Krediet RT, Imholz ALT, Lameire N, Faict D, Koomen GCM, Mattis L. The use of peptides in peritoneal dialysis fluid. Petit Dial Int 1994; 14 (Suppl. 3): S152.

    Google Scholar 

  301. Klein E, Ward RA, Williams TE, Feldhoff PW. Peptides as substitute osmotic agent for glucose in peritoneal dialysis. Trans ASAIO 1986; 32: 550.

    CAS  Google Scholar 

  302. Mattis L, Burke R, Klein E. Evaluation of a peptide-based solution for peritoneal dialysis. Petit Dial Int 1993; 13 (Suppl. 2): S92.

    Google Scholar 

  303. Imholz ALT, Lameire N, Faict D, Koomen GCM, Krediet RT, Mattis L. Evaluation of short chain polypeptides as osmotic agent in continuous ambulatory peritoneal dialysis patients. Petit Dial Int 1994; 14: 215.

    CAS  Google Scholar 

  304. Wang T, Lindholm B. Oligopeptides as osmotic agents in peritoneal dialysis. Petit Dial Int 1997; 17 (Suppl. 2): S75.

    Google Scholar 

  305. Mistry CD, Gokal R. Can ultrafiltration occur with a hyposmolar solution in peritoneal dialysis ? The role for `colloid’ osmosis. Clin Sci 1993; 85: 495.

    PubMed  CAS  Google Scholar 

  306. Mistry CD, Bhowmick B, Ashman R, Uttley L. Clinical studies of new icodextrin formulations. Petit Dial Int 1994; 14 (Suppl. 2): S55.

    Google Scholar 

  307. Peers E. Icodextrin plus glucose combinations for use in CAPD. Petit Dial Int 1997; 17 (Suppl. 2): S68.

    Google Scholar 

  308. Wang T, Heimburger O, Cheng HH, Bergstrom J, Lindholm B. Peritoneal fluid and solute transport with different polyglucose formulations. Peri Dial Int 1998; 18: 193.

    CAS  Google Scholar 

  309. Faller B, Shockley T, Genestier S, Mattis 1. Polyglucose and amino acids: preliminary results. Petit Dial Int 1997; 17 (Suppl. 2): S63.

    Google Scholar 

  310. Marsiglia JC, Cingolani HE, Gonzales NC. Relevance of beta receptor blockade to the negative inotropic effect induced by metabolic acidosis. Cardiovasc Res 1973; 7: 336.

    PubMed  CAS  Google Scholar 

  311. Lemann J Jr, Litzow JR, Lennon EJ. The effect of chronic acid loads in normal man: further evidence for the participation of bone mineral in the defence against chronic metabolic acidosis. J Clin Invest 1966; 45: 1608.

    PubMed  CAS  Google Scholar 

  312. Bichara M, Mercier O, Borensztein P, Paillard M. Acute metabolic acidosis enhances circulating parathyroid hormone, which contributes to renal response against acidosis in the rat. J Clin Invest 1990; 86: 430.

    PubMed  CAS  Google Scholar 

  313. Lefebvre A, de Verneoul MC, Gueris J, Goldfarb B, Graulet AM, Morieux C. Optimal correction of acidosis changes progression of dialysis osteodystrophy. Kidney Int 1989; 36: 1112.

    PubMed  CAS  Google Scholar 

  314. Papadoyannakis NJ, Stefanides CJ, Mc Geown M. The effect of the correction of metabolic acidosis on nitrogen and protein balance of patients with chronic renal failure. Am J Clin Nutr 1984; 40: 623.

    PubMed  CAS  Google Scholar 

  315. May RC, Kelly RA, Mitch WE. Metabolic acidosis stimulates protein degradation in rat muscle by a glucocorticoiddependent mechanism. J Clin Invest 1986; 7: 614.

    Google Scholar 

  316. Hara Y, May RC, Kelly RA, Mitch WE. Acidosis, not azotemia, stimulates branched-chain amino acid catabolism in uremic rats. Kidney Int 1987; 32: 808.

    PubMed  CAS  Google Scholar 

  317. Jenkins D, Burton PR, Bennet SE, Baker F, Walls J. The metabolic consequences of the correction of acidosis in uraemia. Nephrol Dial Transpl 1989; 4: 92.

    CAS  Google Scholar 

  318. Williams B, Hattersley J, Layward E, Walls J. Metabolic acidosis and skeletal muscle adaptation to low protein diets in chronic uremia. Kidney Int 1991; 40: 779.

    PubMed  CAS  Google Scholar 

  319. Stein A, Baker F, Larratt C et al. Correction of metabolic acidosis and protein catabolic rate in PD patients. Petit Dial Int 1994; 14: 187.

    CAS  Google Scholar 

  320. Graham KA, Reaich D, Channon SM et al. Correction of acidosis in CAPD decreases whole body protein degradation. Kidney Int 1996; 49: 1396.

    PubMed  CAS  Google Scholar 

  321. Stein A, Moorhouse J, Iles-Smith H et al. Role of an improvement in acid-base status and nutrition in CAPD patients. Kidney Int 1997; 52: 1089.

    PubMed  CAS  Google Scholar 

  322. Garibotto G, Russo R, Sofia A et al. Skeletal muscle protein synthesis and degradation in patients with chronic renal failure. Kidney Int 1994; 45: 1432.

    PubMed  CAS  Google Scholar 

  323. Bergstrom J, Alvestrand A, Furst P. Plasma and muscle free amino acids in maintenance hemodialysis patients without protein malnutrition. Kidney Int 1990; 38: 108.

    PubMed  CAS  Google Scholar 

  324. Bazilinsky NG, Dunea G, Ing TS. Treatment of metabolic alkalosis in renal failure. Int J Artif Organs 1987; 10: 284.

    Google Scholar 

  325. Preuss HG. Biochemistry of bicarbonate, lactate and acetate in man. North Med Proc 1977; 1: 1.

    Google Scholar 

  326. Boen ST, Mulinari AS, Dillard DH, Scribner BH. Periodic peritoneal dialysis in the management of chronic uremia. Trans ASAIO 1962; 8: 256.

    Google Scholar 

  327. Biasioli S, Feriani M, Chiaramonte S, La Greca G. Buffers in peritoneal dialysis. Int J Artif Organs 1987; 10: 3.

    PubMed  CAS  Google Scholar 

  328. La Greca G, Biasioli S, Chiaramonte S et al. Acid-base balance on peritoneal dialysis. Clin Nephrol 1981; 16: 1.

    PubMed  Google Scholar 

  329. Faller B, Marichal JF. Loss of ultrafiltration in CAPD: a role for acetate. Petit Dial Bull 1984; 4: 10–3.

    Google Scholar 

  330. Slingeneyer A, Mion C, Mourad G et al. Progressive sclerosing peritonitis. A late and severe complication of maintenance peritoneal dialysis. Trans ASAIO 1983; 29: 633.

    CAS  Google Scholar 

  331. Feriani M. Adequacy of acid-base correction in continuous ambulatory peritoneal dialysis patients. Petit Dial Int 1994; 14 (Suppl. 3): S133.

    Google Scholar 

  332. Brin M. The synthesis and metabolism of lactic acid isomers. Ann NY Acad Sci 1965; 119: 942.

    CAS  Google Scholar 

  333. Searle GL, Cavalieri RR. Determination of lactate kinetics in the human analysis of data from single injection. Proc Soc Exp Biol Med 1972; 139: 1002.

    PubMed  CAS  Google Scholar 

  334. Fabris A, Biasioli S, Chiaramonte S et al. Buffer metabolism in CAPD: relationship with respiratory dynamics. Trans ASAIO 1982; 28: 270.

    CAS  Google Scholar 

  335. Teehan BP, Schleifer CR, Reichard GA, Cupit MC, Sigler MH, Haff AC. Acid-base studies in continuous ambulatory peritoneal dialysis. In: Moncrief JW, Popovich RP, eds. CAPD Update. New York: Masson, 1981, p. 95.

    Google Scholar 

  336. Richardson RMA, Roscoe JM. Bicarboante, L-lactate and D-lactate balance in intermittent peritoneal dialysis. Petit Dial Bull 1986; 6: 178.

    Google Scholar 

  337. Nolph KD, Twardowski ZJ, Khanna R et al. Tidal peritoneal dialysis with racemic or L-lactate solutions. Petit Dial Int 1990; 10: 161.

    CAS  Google Scholar 

  338. Robson MD, Faivoseviz A, Malmoud H. Physiological transfer of acid-base. In: Legrain M, ed. Continuous Ambulatory Peritoneal Dialysis. Amsterdam: Excerpta Medica, 1980, p. 194.

    Google Scholar 

  339. Rubin J, Adair C, Johnson B, Bower JD. Stereospecific lactate absorption during peritoneal dialysis. Nephron 1982; 31: 224.

    PubMed  CAS  Google Scholar 

  340. Fine A. Metabolism of D-lactate in the dog and in man. Petit Dial Int 1989; 9: 99.

    CAS  Google Scholar 

  341. Chan L, Slater J, Hasbargen J, Herndon DN, Veech RL, Wolf S. Neurocardiac toxicity of racemic D,L-lactate fluids. Integr Physiol Behav Sci 1994; 29: 383.

    PubMed  CAS  Google Scholar 

  342. Anderson YS, Curtis NJ, Hobbs AR et al. High serum D-lactate in patients on continuous ambulatory peritoneal dialysis. Nephrol Dial Transplant 1997; 12: 981.

    PubMed  CAS  Google Scholar 

  343. Thurn JR, Pierpont GL, Ludvigsen CW, Eckfeldt JH. D-lactate encephalopathy. Am J Med 1985; 79: 717

    PubMed  CAS  Google Scholar 

  344. Feriani M, Biasioli S, Borin D, La Greca G. Bicarbonate buffer for CAPD solution Trans ASAIO, 1985; 31: 668.

    CAS  Google Scholar 

  345. Feriani M, Ronco C, La Greca G. Acid-base balance with different CAPD solutions. Petit Dial Int 1996; 16 (Suppl. 1): S126.

    Google Scholar 

  346. Uribarri J, Buquing J, Oh MS. Acid-base balance in chronic peritoneal dialysis patients. Kidney Int 1995; 47: 269.

    PubMed  CAS  Google Scholar 

  347. Veech RL. The untoward effects of the anions of dialysis fluid. Kidney Int 1988; 34: 587.

    PubMed  CAS  Google Scholar 

  348. Nissenson AR. Acid-base homeostasis in peritoneal dialysis patients. Int J Artif Organs 1984; 7: 175.

    PubMed  CAS  Google Scholar 

  349. Feriani M. Buffers: Bicarbonate, lactate and pyruvate. Kidney Int 1996; 50 (Suppl. 56): S75.

    Google Scholar 

  350. Gennari FJ, Cohen JJ, Kassirer JP. Normal acid-base values. In: Cohen JJ, Kassirer JP, eds. Acid/Base. Boston: Little, Brown, 1982, p. 107.

    Google Scholar 

  351. Yamamoto T, Sakakura T, Yamakawa M et al. Clinical effects of long-term use of neutralized dialysate for continuous ambulatory peritoneal dialysis. Nephron 1992; 60: 324.

    PubMed  CAS  Google Scholar 

  352. Frohlich ED. Vascular effects of the Krebs intermediate metabolites. Am J Physiol 1965; 208: 149.

    PubMed  CAS  Google Scholar 

  353. Kirkendol PL, Devia CJ, Bower JD et al. Comparison of the cardiovascular effects of sodium acetate, sodium bicarbonate and other potential sources of fixed base in hemodialysis solutions. Trans ASAIO 1977; 23: 399.

    CAS  Google Scholar 

  354. Veech RL. The toxic impact of parenteral solutions on the metabolism of cells: a hypothesis for physiological parenteral therapy. Am J Clin Nutr 1986; 44: 519.

    PubMed  CAS  Google Scholar 

  355. Sistare FD, Haynes RC. The interaction between the cytosolic pyridine nucleotide redox potential and gluconeogenesis from lactate/pyruvate in isolated rat hepatocytes. J Biol Chem 1985; 23: 1 2748.

    Google Scholar 

  356. Oh MS, Phelpo KR, Traube M et al. D-lactic acidosis in a man with the short bowel syndrome. N Engl J Med 1979; 301: 249.

    PubMed  CAS  Google Scholar 

  357. Veech RL, Fowler RC. Cerebral dysfunction and respiratory alkalosis during peritoneal dialysis with D-lactate containing dialysis fluid. Am J Med 1986; 82: 572.

    Google Scholar 

  358. Feriani M, La Greca G. CAPD with bicarbonate solution. In: Horl WH, Schollmeyer PJ, eds. New Perspectives in Hemodialysis, Peritoneal Dialysis, Arterovenous Hemofiltration and Plasmaferesis. New York: Plenum, 1989, p. 139.

    Google Scholar 

  359. Feriani M, Reinhard B, La Greca G. Calcium carbonate precipitation in oversatured bicarbonate containing CAPD solutions. In: La Greca G, Ronco C, Feriani M, Chiaramonte S, Conz P, eds. Peritoneal Dialysis. Milan: Wichtig Editore, 1991, p. 145.

    Google Scholar 

  360. Gretz N, Kraft E, Meisinger E, Lasserre J, Strauch M. Calcium deposits due to bicarbonate containing CAPD solutions? In: Khanna R, Nolph KD, Prowant BF, Twardowski ZJ, Oreopoulos DG, eds. Advances in Peritoneal Dialysis. Toronto: Peritoneal Dialysis Bulletin Inc., 1988, p. 220.

    Google Scholar 

  361. Feriani M, Biasioli S, Barbacini S et al. Acid-base correction in bicarbonate CAPD patients. In: Khanna R, Nolph KD, Prowant BF, Twardowski ZJ, Oreopoulos DG, eds. Advances in Peritoneal Dialysis. Toronto: Peritoneal Dialysis Bulletin Inc., 1989, p. 191.

    Google Scholar 

  362. Feriani M, Passlick-Deetjen J, La Greca G. Factors affecting bicarbonate transfer with bicarbonate-containing CAPD solution. Petit Dial Int 1995; 15: 336.

    CAS  Google Scholar 

  363. Feriani M, Dissegna D, La Greca G, Passlick-Deetjen J. Short term clinical study with bicarbonate containing peritoneal dialysis solution. Petit Dial Int 1993; 13: 296.

    CAS  Google Scholar 

  364. Feriani M, Kirchgessner J, La Greca G, Passlick-Deetjen J, and the Bicarbonate CAPD Cooperative Group. A randomized multicenter long-term clinical study comparing a bicarbonate buffered CAPD solution with the standard lactate buffered CAPD solution. Kidney Int 1998; 54: 1731.

    Google Scholar 

  365. Feriani M, Carobi C, La Greca G, Buoncristiani U, PasslickDeetjen J. Clinical experiences with a bicarbonate buffered (39 mmol/L) peritoneal dialysis solution. Petit Dial Int 11997; 7: 17.

    Google Scholar 

  366. Ryckelynck JP, Feriani M, Passlick-Deetjen J, JaeckleMeyer I. Pd patients’ need for bicarbonate (Bic): 34 vs 39 mmol/L bic containing PD solutions. Nephrol Dial Transplant 1998; 13: A236 (abstract).

    Google Scholar 

  367. Yatzidis H. A new stable bicarbonate dialysis solution for peritoneal dialysis: preliminary report. Petit Dial Int 1991; 11: 224.

    CAS  Google Scholar 

  368. Slingeneyer A, Faller B, Michel C, Przbylski C, Rolland R, Mion C. Increased ultrafiltration capacity using a new bicarbonate CAPD solution. Petit Dial Int 1993; 13 (Suppl. 1): S57 (abstract).

    Google Scholar 

  369. Slingeneyer A, Przybylski C, Rolland R, Mion C. A new bicarbonate buffered solution for CAPD. Petit Dial Int 1993; 13 (Suppl. 1): S57.

    Google Scholar 

  370. Schambye HT, Flesner P, Pedersen RB et al. Bicarbonate versus lactate-based CAPD fluids: a biocompatibility study in rabbits. Petit Dial Int 1992; 12: 281.

    CAS  Google Scholar 

  371. Coles GA, Gokal R, Ogg C et al. A randomized controlled trial of a bicarbonate and a bicarbonate/lactate containing dialysis solution in CAPD. Petit Dial Int 1997; 17: 48.

    CAS  Google Scholar 

  372. Mactier RA, Sprosen TS, Gokal R et al. Bicarbonate and bicarbonate/lactate peritoneal dialysis solutions for the treatment of infusion pain. Kidney Int 1998; 53: 1061.

    PubMed  CAS  Google Scholar 

  373. Tenckhoff H, Schechter H. A bacteriologically safe peritoneal access device. Trans Am Soc Artif Intern Organs 1968; 14: 181.

    PubMed  CAS  Google Scholar 

  374. Popovich RP, Moncrief JW, Decherd JF, Bomar JB, Pyle WK. The definition of a novel portable-wearable equilibrium peritoneal dialysis technique. Am Soc Artif Intern Organs 1976; 5: 64 (abstract).

    Google Scholar 

  375. Popovich RP, Moncrief JW, Nolph KD, Ghods AJ, Twardowski IJ, Pyle WK. Continuous ambulatory peritoneal dialysis. Ann Intern Med 1978; 88: 449.

    PubMed  CAS  Google Scholar 

  376. Buoncristiani U. Continuous ambulatory peritoneal dialysis: connection systems. Petit Dial Int 1993; 13 (Suppl. 2): S139

    Google Scholar 

  377. Buoncristiani U. Clinical results of long-term peritoneal dialysis. Proc EDTA 1975; 12: 145.

    Google Scholar 

  378. Buoncristiani U, Bianchi P, Cozzari M, Carobi C, Quintaliani G, Barbarossa D. A new safe simple connection system for CAPD. Int J Nephrol Urol Androl 1980; 1: 50.

    Google Scholar 

  379. Bazzato G, Coli U, Landini S, Lucatello S, Fracasso A, Moracchiello M. Continuous ambulatory peritoneal dialysis without wearing a bag: complete freedom of patient and significant reduction of peritonitis. Proc EDTA 1980; 17: 266.

    CAS  Google Scholar 

  380. Buoncristiani U, Cozzari M, Quintaliani G, Carobi C. Abatement of exogenous peritonitis risk using the Perugia CAPD system. Dial Transplant 1983; 12: 14.

    Google Scholar 

  381. Dasgupta MK, Lam K, Bettcher KB. Y-set, touch contamination, flush and hypochlorite treatment on the growth of biofilm in Tenckhoff catheter (TC) discs. Petit Dial Bull 1987; 7: S20.

    Google Scholar 

  382. Obst G, Gagnon RF, Prentis J. Sterilisation of Staphylococcus epidermidis biofilm by Ren New-Pand common disinfecting agents. Adv Petit Dial 1988; 4: 273.

    Google Scholar 

  383. Burkart JM. Comparison of peritonitis rates using standard spike versus Y sets in CAPD. Trans ASAIO 1988; 34: 433.

    CAS  Google Scholar 

  384. Luzar MA, Slingeneyer A, Cantaluppi A, Peluso F. In vitro study of the flush effect in two reusable continuous ambulatory peritoneal dialysis (CAPD) disconnect systems. Petit Dial Int 1989; 9: 169.

    CAS  Google Scholar 

  385. Ryckelynck J-Ph, Verger C, Cam G, Faller B, Pierre D. Importance of the flush effect in disconnect systems. Adv Petit Dial 1988; 4: 282.

    Google Scholar 

  386. Maiorca R, Cantaluppi A, Cancarini GC et al. Prospective controlled trial of a Y-connector and disinfectant to prevent peritonitis in continuous ambulatory peritoneal dialysis. Lancet 1983; 2: 642.

    PubMed  CAS  Google Scholar 

  387. Scalamogna A, De Vecchi A, Castelnuovo C, Guerra L, Ponticelli C. Long-term incidence of peritonitis in CAPD patients treated by Y set technique: experience in a single center. Nephron 1990; 55: 24.

    PubMed  CAS  Google Scholar 

  388. Burkart JM, Hylander B, Durnell-Figel Th, Roberts D. Comparison of peritonitis rates during long-term use of standard spike versus Ultra-set in continuous ambulatory peritoneal dialysis (CAPD). Pent Dial Int 1990; 10: 41

    CAS  Google Scholar 

  389. Viglino G, Colombo A, Scalamogna A et al. Prospected randomized study of two Y devices in continuous ambulatory peritoneal dialysis (CAPD). Petit Dial Int 1989; 9: 165.

    CAS  Google Scholar 

  390. Canadian CAPD Clinical Trials Group. Peritonitis in continuous ambulatory peritoneal dialysis (CAPD): a multi-centre randomized clinical trial comparing the Y connector disinfectant system to standard system. Petit Dial Int 1989; 9: 159.

    Google Scholar 

  391. Salahudeen AK, Cost R, Pingle A. Defects and demerits of the double-bag system. Petit Dial Bull 1987; 7: 106.

    Google Scholar 

  392. Bazzato G, Coli U, Landini S et al. Closter: a new connection for a double-bag system to prevent exogenous peritonitis. Petit Dial Bull 1986; 6: 138.

    Google Scholar 

  393. Bazzato G, Landini S, Fracasso A et al. Why the double-bag system still remains the best technique for peritoneal fluid exchanges in continuous ambulatory peritoneal dialysis? Petit Dial Int 1993; 13 (Suppl. 2): S152.

    Google Scholar 

  394. Tielens E, Nubé MJ, de Vet JA et al. Major reduction of CAPD peritonitis after the introduction of the twin-bag system. Nephrol Dial Transplant 1993; 8: 1237.

    PubMed  CAS  Google Scholar 

  395. Viglino G, Colombo A, Cantu P et al. In vitro and in vivo efficacy of a new connector device for continuous ambulatory peritoneal dialysis. Petit Dial Int 1993; 13 (Suppl. 2): S 148.

    Google Scholar 

  396. Junor BJR, Briggs JD, Forwell MA, Dobbie JW, Hendersen I. Sclerosing peritonitis. The contribution of chlorhexidine in alcohol. Petit Dial Bull 1985; 5: 101.

    Google Scholar 

  397. Mackow RC, Argy WP, Winchester JF et al. Sclerosing encapsulating peritonitis in rats induced by long-term intraperitoneal administration of antiseptics. J Lab Clin Med 1988; 112: 363

    PubMed  CAS  Google Scholar 

  398. Lo W-K, Chan K-T, Leung ACT, Pang S-W, Tse C-Y. Sclerosing peritonitis complicating continuous ambulatory peritoneal dialysis with the use of chlorhexidine in alcohol. Adv Petit Dial 1990; 6: 79.

    CAS  Google Scholar 

  399. Verger C, Faller B, Ryckelynck J-Ph, Cam G, Pierre D. Efficacy of CAPD Y-line system without disinfectant and standard systems on peritonitis prevention: a multicenter prospective controlled trial. Petit Dial Int 1988; 8: 104.

    Google Scholar 

  400. Orange GV, Henderson IS, Marshall EA. Effectiveness of the flush technique in CAPD disconnect systems. Int J Artif Organs 1987 10: 185.

    PubMed  CAS  Google Scholar 

  401. Verger C, Luzar M-A. In vitro study of CAPD Y-line systems. Adv Petit Dial 1986; 2: 160.

    Google Scholar 

  402. Junor BJR. CAPD disconnect systems. Blood Purif 1989; 7: 156.

    PubMed  CAS  Google Scholar 

  403. Lempert KD, Kolb JA, Swartz RD et al. A multicenter trial to evaluate the use of the CAPD `O’ set. Trans ASAIO 1986; 32: 557.

    CAS  Google Scholar 

  404. Diaz-Buxo JA. Comparison of peritonitis rates with CCPD, manual CAPD, Y-set, O-set, UV devices and sterile weld. Adv Petit Dial 1989; 5: 223.

    CAS  Google Scholar 

  405. Swartz R, Reynolds J, Lees P, Rocher L. Disconnect during continuous ambulatory peritoneal dialysis (CAPD): retrospective experience with three different systems. Petit Dial Int 1989; 9: 175.

    CAS  Google Scholar 

  406. Owen JE, Walker RG, Lemon RG, Brett L, Mitron D, Becker GJ. Randomized study of peritonitis with conventional versus O-set techniques in continuous ambulatory peritoneal dialysis. Petit Dial Int 1992; 12: 216.

    CAS  Google Scholar 

  407. Cheng IKP, Chan C-Y, Cheng S-W et al. A randomized prospective study of the cost-effectiveness of the conventional spike, O-set, UVXD techniques in continuous ambulatory peritoneal dialysis (CAPD). Petit Dial Int 1994; 14: 255.

    CAS  Google Scholar 

  408. Van Biesen W, Kirchgessner J, Schilling H, Lage C, Lambert MC, Passlick-Deetjen J. Stay-Safe: a new PVC-free system for peritoneal dialysis: result of the multi-center trial. Int J Artif Organs 1998; 21: 596 (abstract).

    Google Scholar 

  409. Steinhauer HB, Lubrich-Birkner I, Keck I, Schollmeyer P. Decreased rate of CAPD-associated peritonitis by using a heat-sterilisation system. Petit Dial Int 1989; 9 (Suppl. 1): 5178.

    Google Scholar 

  410. Abdel-bary ES, Bartz V. CAPD-System Fresenius. In: La Greca G, Ronco C, Feriani M, Chiaramonte S, Conz P, eds. Peritoneal Dialysis. Milan: Wichtig Editore, 1988, p. 141.

    Google Scholar 

  411. Thomae U. Heat sterilization of Safe-Lock connectors using the Thermoclave. Contrib Nephrol 1987; 57: 172.

    PubMed  CAS  Google Scholar 

  412. Steinhauer HB, Keck I, Lubrich-Birkner I, Schollmeyer P. Randomized clinical trial comparing a heat sterilization system (Thermoclav) to standard connector systems in prevention of CAPD-associated peritonitis. In: La Greca G, Ronco C, Feriani M, Chiaramonte S, Conz P, eds. Peritoneal Dialysis. Milan: Wichtig Editore, 1991, p. 275.

    Google Scholar 

  413. Popovich RP, Moncrief JW, Sorrels-Akar ‘P’AJ, MullinsBlackson C, Pyle WK. The ultraviolet germicidal system: the elimination of distal contamination in CAPD. In: Maher JF, Winchester JF, eds. Frontiers in Peritoneal Dialysis. New York: Field, Rich and Associates, 1986, p. 169.

    Google Scholar 

  414. Holmes CJ, Miyake C, Kubey W. In-vitro evaluation of an ultraviolet germicidal connection system for CAPD. Petit Dial Bull 1984; 4: 215.

    Google Scholar 

  415. Nolph KD, Prowant B, Serkes KD, Morgan LM and a Multicenter Study Group. A randomized multicenter clinical trial to evaluate the effects of an ultraviolet germicidal system on peritonitis rate in continuous ambulatory peritoneal dialysis. Petit Dial Bull 1985; 5: 19.

    Google Scholar 

  416. Jensen WM, Ahmad S. Evaluation of a germicidal device for peritoneal dialysis connectors. Petit Dial Bull 1984; 4: 219.

    Google Scholar 

  417. Kubey W, Holmes CJ. In vitro studies on the microbicidal effectiveness of a Xenon-based ultraviolet light device for continuous ambulatory peritoneal dialysis connections. Blood Purif 1991; 9: 102.

    PubMed  CAS  Google Scholar 

  418. Bailie GR, Rasmussen R, Hollister A, Eisele G. Incidence of CAPD peritonitis in patients using UVXD or O-set systems. Clin Nephrol 1990; 33: 252.

    PubMed  CAS  Google Scholar 

  419. Bielawa RJ, Carr KL, Bousquet GG. Intraluminal thermosterilization using a microwave autoclave. In: Maher J, Winchester JF, eds. Frontiers in Peritoneal Dialysis. New York: Field, Rich and Associates, 1986, p. 166.

    Google Scholar 

  420. Sharp J, Coulthard MG. A heat-sealing device to disconnect peritoneal dialysis lines. Petit Dial Int 1988; 8: 269.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Feriani, M., Catizone, L., Fracasso, A. (2000). Peritoneal dialysis solutions and systems. In: Gokal, R., Khanna, R., Krediet, R.T., Nolph, K.D. (eds) Textbook of Peritoneal Dialysis. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3225-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3225-3_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-3227-7

  • Online ISBN: 978-94-017-3225-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics