Skip to main content

Pharmacological alterations of peritoneal transport rates and pharmacokinetics in peritoneal dialysis

  • Chapter
Textbook of Peritoneal Dialysis

Abstract

In the first part of the chapter the effects of pharmacological manipulations on peritoneal transport will be discussed. Increased understanding of peritoneal transport mechanisms may lead to the development of clinically useful methods to augment peritoneal transport efficiency. In this chapter only pharmacological tools for influencing peritoneal transport will be discussed. A detailed discussion of the physiology of peritoneal transport is provided in another chapter of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rippe B. A three-pore model of peritoneal transport. Perit Dial Int 1993; 13 (suppl. 2): S35–8.

    PubMed  Google Scholar 

  2. Pannekeet MM, Mulder JB, Weening JJ, Struijk DG, Zweers MM, Krediet RT. Demonstration of aquaporin-CHIP in peritoneal tissue of uremic and CAPD patients. Petit Dial Int 1996; 16 (suppl. 1): S54–7.

    Google Scholar 

  3. Carlsson O, Nielsen S, Zakaria ER, Rippe B. In vivo inhibition of transcellular water channels (aquaporin-1) during acute peritoneal dialysis in rats. Am J Physiol 1996; 271: H2254–62.

    PubMed  CAS  Google Scholar 

  4. Pietrzak I, Hirszel P, Shostack A, Welch PG, Lee RE, Maher JF. Splanchnic volume, not flow rate, determines peritoneal permeability. Trans Am Soc Artif Intern Organs 1989; 35: 583–7.

    PubMed  CAS  Google Scholar 

  5. Nolph KD, Ghods A, Brown P et al. Effects of nitroprusside on peritoneal mass transfer coefficients and microvascular physiology. Trans Am Soc Artif Intern Organs 1977; 23: 210–217.

    PubMed  CAS  Google Scholar 

  6. Zemel D, Krediet RT, Koomen GCM, Struijk D, Arisz L. Day to day variability of peritoneal transport used as a method for analyzing peritoneal permeability in CAPD. Petit Dial Int 1991; 11: 217–23.

    CAS  Google Scholar 

  7. Struijk D, Krediet RT, Koomen GCM et al. Functional characteristics of the peritoneal membrane in long-term continuous ambulatory peritoneal dialysis. Nephron 1991; 59: 213–20.

    PubMed  CAS  Google Scholar 

  8. Dumont AE, Robbins E, Martelli A, Iliescu H. Platelet blockade of particle absorption from the peritoneal surface of the diaphragm. Proc Soc Exp Biol Med 1981; 167: 137–42.

    PubMed  CAS  Google Scholar 

  9. Dedrick RL, Fenstermacher JD, Blasberg RG, Sieber SM. Peritoneal absorption of macromolecules. In: Maher JF, Winchester JF, eds. Frontiers in Peritoneal Dialysis. New York: Field, Rich, 1986, pp. 41–6.

    Google Scholar 

  10. Lindholm B, Werynski A, Bergström J. Fluid transport in peritoneal dialysis. Int J Artif Organs 1990; 13: 352–8.

    PubMed  CAS  Google Scholar 

  11. Daugirdas JT, Ing TS, Gandhi VC, Hano JE, Chen WT, Yuan L. Kinetics of peritoneal fluid absorption in patients with chronic renal failure. J Lab Clin Med 1980; 95: 351–61.

    PubMed  CAS  Google Scholar 

  12. Flessner MF, Parker RJ, Sieber SM. Peritoneal lymphatic uptake of fibrinogen and erythrocytes in the rat. Am J Physiol 1983; 224: H89–96.

    Google Scholar 

  13. Rippe B, Stelin G, Ahlmen J. Lymph flow from the peritoneal cavity in CAPD patients. In: Maher JF, Winchester JF, eds. Frontiers in Peritoneal Dialysis. New York: Field, Rich, 1999, pp. 24–30.

    Google Scholar 

  14. Brouard R, Tozer TN, Baumelou A, Gambertoglio JF. Transfer of autologous hemoglobin from peritoneal cavity during peritoneal dialysis. Nephrol Dial Transplant 1992; 7: 57–62.

    PubMed  CAS  Google Scholar 

  15. Carlsson O, Nielsen S, Zakaria el R, Rippe B. In vivo inhibition of transcellular water channels (aquaporin-1) during acute peritoneal dialysis in rats. Am J Physiol 1996; 271: H2254–62.

    PubMed  CAS  Google Scholar 

  16. Krediet RT, Struijk DG, Koomen GC, Hoek FJ, Arisz L. The disappearance of macromolecules from the peritoneal cavity during continuous ambulatory peritoneal dialysis is not dependent on molecular size. Petit Dial Int 1990; 10: 147–52.

    CAS  Google Scholar 

  17. Mactier RA, Nolph KD, Khanna R, Twardowski ZJ, Moore H, McGary T. Lymphatic absorption in peritoneal dialysis in the rat. Lymphology 1987; 20: 47.

    Google Scholar 

  18. De Paepe M, Matthys D, Lameire N. Measurement of peritoneal lymph flow in CAPD using different osmotic agents. In: Khanna R, Nolph KD, Prowant BF, Twardowski ZJ, Oreopoulos DG, eds. Advances in Peritoneal Dialysis, 1989, pp. 2–15.

    Google Scholar 

  19. Koomen GC, Krediet RT, Leegwater ACI, Arisz L, Hoek FJ. A fast reliable method for the measurement of intraperitoneal dextran used to calculate lymphatic absorption. In: Khanna R, Nolph KD, Prowant BF, Twardowski ZJ, Oreopoulos DG, eds. Advances in Peritoneal Dialysis, 1991, pp. 10–14.

    Google Scholar 

  20. Hirszel P, Shea-Donohue T, Chakrabarti EK, Montcalm E, Maher JF. The role of the capillary wall in restricting diffusion of macromolecules. A study of peritoneal clearance of dextran. Nephron 1988; 49: 58–61.

    PubMed  CAS  Google Scholar 

  21. Charonis AS, Wissig SL. Anionic sites in basement membranes. Differences in their electrostatic properties in continuous and fenestrated capillaries. Microvasc Res 1983; 25: 265–85.

    PubMed  CAS  Google Scholar 

  22. Gotloib L, Shustack A, Jaichenko J. Ruthenium-red-stained anionic charges of rat and mice mesothelial cells and basal lamina: the peritoneum is a negatively charged dialyzing membrane. Nephron 1988; 48: 65–70.

    PubMed  CAS  Google Scholar 

  23. Leypoldt JK, Henderson LE. Molecular charge influences transperitoneal macromolecule transport. Kidney Int 1993; 43: 837–44.

    PubMed  CAS  Google Scholar 

  24. Nakao T, Ogura M, Takahashi H, Okada T. Charge-affected transperitoneal movement of amino acids in CAPD. Petit Dial Int 1996; 16 (suppl. 1): S90.

    Google Scholar 

  25. Buis B, Koomen GC, Imholz AL et al. Effect of electric charge on the transperitoneal transport of plasma proteins during CAPD (see comments). Nephrol Dial Transplant 1996; 11: 1113–20.

    PubMed  CAS  Google Scholar 

  26. Keshaviah P. Adequacy of CAPD: a quantitative approach. Kidney Int 2000; 42 (suppl. 38): S160–4.

    Google Scholar 

  27. Rubin J, Clawson M, Planch A, Jones Q. Measurements of peritoneal surface in man and rat. Am J Med Sci 1988; 295: 453–58.

    PubMed  CAS  Google Scholar 

  28. Grayson J, Mendel D. Physiology of the Splanchnic Circulation. Baltimore, MD: Williams and Wilkins, 1965.

    Google Scholar 

  29. Aune S. Transperitoneal exchange. II: Peritoneal blood flow estimated by hydrogen gas clearances. Scand J Gastroenterol 1970; 5: 99–104.

    PubMed  CAS  Google Scholar 

  30. Nolph KD, Popovich R, Ghods J, Twardowski ZJ. Determinants of low clearances of small solutes during peritoneal dialysis. Kidney Int 1978; 13: 117–23.

    PubMed  CAS  Google Scholar 

  31. Grzegorzewska AE, Antoniewicz K. An indirect estimation of effective peritoneal capillary blood flow in peritoneally dialyzed uremic patients. Petit Dial Int 1993; 13 (suppl. 2): S39–40.

    Google Scholar 

  32. Douma CE, de Waart DR, Struijk DG, Krediet RT. Effect of amino acid based dialysate on peritoneal blood flow and permeability in stable CAPD patients: a potential role for nitric oxide? Clin Nephrol 1996; 45: 295–302.

    PubMed  Google Scholar 

  33. Douma CE, Hiralall JK, de Waart DR, Struijk DG, Krediet RT. Icodextrin with nitroprusside increases ultrafiltration and peritoneal transport during long CAPD dwells (see comments). Kidney Int 1998; 53: 1014–21.

    PubMed  CAS  Google Scholar 

  34. Douma CE, de Waart DR, Struijk DG, Krediet RT. The nitric oxide donor nitroprusside intraperitoneally affects peritoneal permeability in CAPD. Kidney Int 1997; 51: 1885–92.

    PubMed  CAS  Google Scholar 

  35. Felt J, Richard C, McCaffrey C, Levy M. Peritoneal clearance of creatinine and inulin during dialysis in dogs: effect of splanchnic vasodilators. Kidney Int 1979; 16: 459–69.

    PubMed  CAS  Google Scholar 

  36. Renkin EM. Exchange of substances through capillary walls. In: Wolstenholme GEW, ed. Ciba Foundation Symposium. Boston: Little, Brown, 1969, pp. 50–66.

    Google Scholar 

  37. Shostak A, Hirszel P, Chakrabarti EK, Maher JF. Dihydroergotamine lowers peritoneal transfer rates; a hypovolemic transport decrease. In: Avram MM, Giordano C, eds. Ambulatory Peritoneal Dialysis. New York: Plenum, 1990, pp. 79–82.

    Google Scholar 

  38. Maher JF, Bennett RR, Hirszel P, Chakrabarti EK. The mechanism of dextrose-enhanced peritoneal transport. Kidney Int 1985; 28: 16–20.

    PubMed  CAS  Google Scholar 

  39. White R, Korthuis R, Granger DN. The peritoneal microcirculation in peritoneal dialysis. In: Gokal R, Nolph KD, eds. The Textbook of Peritoneal Dialysis. Dordrecht: Kluwer, 1994, pp. 45–68.

    Google Scholar 

  40. Flessner MF. Small-solute transport across specific peritoneal tissue surfaces in the rat. J Am Soc Nephrol 1996; 7: 225–33.

    PubMed  CAS  Google Scholar 

  41. Ronco C, Chiaramonte S, Brendolan A, Milan M, La Greca G. Peritoneal blood flow: does it matter? Petit Dial Int 1996; 16 (suppl. 1): 570–5.

    Google Scholar 

  42. Kim M, Lofthouse J, Flessner MF. A method to test blood flow limitation of peritoneal-blood solute transport. J Am Soc Nephrol 1997; 8: 471–4.

    PubMed  CAS  Google Scholar 

  43. Kim M, Lofthouse J, Flessner MF. Blood flow limitations of solute transport across the visceral peritoneum. J Am Soc Nephrol 1997; 8: 1946–50.

    PubMed  CAS  Google Scholar 

  44. Swan KG, Reynolds DG. Adrenergic mechanisms in the canine mesenteric circulation. Am J Physiol 1971; 220: 1779–85.

    PubMed  CAS  Google Scholar 

  45. Gutman RA, Nixon WP, McRae R, Spencer HW. Effect of intraperitoneal and intravenous vasoactive amines on peritoneal dialysis: study in anephric dogs. Trans Am Soc Artif Intern Organs 1976; 22: 570–3.

    PubMed  CAS  Google Scholar 

  46. Parker HR, Schroeder JP, Henderson LW. Influence of dopamine and regitine on peritoneal dialysis in unanesthetized dogs. Am Soc Artif Intern Organs 1978; 7: 43 (abstract).

    Google Scholar 

  47. Chan MK, Varghese Z, Baillod RA, Moorhead JF. Peritoneal dialysis: effect of intraperitoneal dopamine. Dial Transplant 1980; 9: 380–4.

    Google Scholar 

  48. Hirszel P, Lasrich M, Maher JF. Divergent effects of catecholamines on peritoneal mass transport. Trans Am Soc Artif Intern Organs 1979; 25: 110–12.

    PubMed  CAS  Google Scholar 

  49. Hirszel P, Lasrich M, Maher JF. Augmentation of peritoneal mass transport by dopamine. Comparison with norepinephrine and evaluation of pharmacologic mechanisms. J Lab Clin Med 1979; 94: 747–54.

    PubMed  CAS  Google Scholar 

  50. Goldberg LI. Cardiovascular and renal actions of dopamine: potential clinical applications. Pharmacol Rev 1972; 24: 1–29.

    PubMed  CAS  Google Scholar 

  51. Maher JF, DiPaolo N, Shostack A, Hirszel P. Pharmacology of peritoneal transport. In: Khanna R, Nolph KD, Prowant BF, Twardowski ZJ, Oreopoulos DG, eds. Advances in CAPD. Toronto: University of Toronto Press, 1987, pp. 3–6.

    Google Scholar 

  52. Selgas R, Munos IM, Conesa J et al. Endogenous sympathetic activity in CAPD patients: its relationship to peritoneal diffusion capacity. Perit Dial Bull 1986; 6: 205–8.

    Google Scholar 

  53. Rocha E, Silva M, Rosenberg M. The release of vasopressin in response to hemorrhage and its role in the mechanism of blood pressure regulation. J Physiol (Lond) 1969; 202: 553–7.

    Google Scholar 

  54. Hare HG, Valtin H, Gosselin RE. Effect of drugs on peritoneal dialysis in the dog. J Pharmacol Exp Ther 1964; 145: 122–9.

    PubMed  CAS  Google Scholar 

  55. Henderson LW, Kintzel JE. Influence of antidiuretic hormone on peritoneal area and permeability. J Clin Invest 1971; 50: 2437–43.

    PubMed  CAS  Google Scholar 

  56. Rubin J, Adair C, Bower J. A double-blind trial dipyridamole in CAPD. Am J Kidney Dis 1985; 5: 262–6.

    PubMed  CAS  Google Scholar 

  57. Shear L, Harvey JD, Barry KG. Peritoneal sodium transport: enhancement by pharmacologic and physical agents. J Lab Clin Med 1966; 67: 181–8.

    PubMed  CAS  Google Scholar 

  58. Suvannapara A, Levens AR. Local control of mesenteric blood flow by the renin-angiotensin system. Am J Physiol 1988; 225: G267–74.

    Google Scholar 

  59. Go M, Kumano K, Sakai T. Effect of angiotensin II (AII) on peritoneal transport during peritoneal dialysis in rat. NipponJinzo-Gakkai-Shi 1992; 34: 921–9.

    CAS  Google Scholar 

  60. Erbe RW, Greene JA Jr, Weller JM. Peritoneal dialysis during hemorrhagic shock. J Appl Physiol 1967; 22: 131–5.

    PubMed  CAS  Google Scholar 

  61. Greene JA Jr, Lapco R, Weller JM. Effect of drug therapy of hemorrhagic hypotension on kinetics of peritoneal dialysis in the dog. Nephron 1970; 7: 178–83.

    PubMed  CAS  Google Scholar 

  62. Wayland H. Transmural and interstitial molecular transport. Proc Int Symp Continuous Ambulatory Peritoneal Dialysis 1980; 18–27.

    Google Scholar 

  63. Nolph KD. Peritoneal anatomy and transport physiology. In: Drukker W, Parsons FM, Maher JF, eds. Replacement of Renal Function by Dialysis. The Hague: Martinus Nijhoff, 1983, pp. 440–56.

    Google Scholar 

  64. Miller FN, Nolph KD, Harris PD et al. Microvascular and clinical effects of altered peritoneal dialysis solutions. Kidney Int 1979; 15: 630–9.

    PubMed  CAS  Google Scholar 

  65. Carlsson O, Rippe B. Enhanced peritoneal diffusion capacity of 51Cr-EDTA during the initial phase of peritoneal dialysis dwells: role of vasodilatation, dialysate `stirring’, and of interstitial factors. Blood Purif 1998; 16: 162–70.

    PubMed  CAS  Google Scholar 

  66. Breborowicz A, Knapowski J. Local anesthetic bupivicaine increases the transperitoneal transport of solutes. Part II: In vitro studies. Perit Dial Bull 1984; 4: 224–8.

    Google Scholar 

  67. Brown ST, Ahearn DJ, Nolph KD. Reduced peritoneal clearance in scleroderma increased by intraperitoneal isoproterenol. Ann Int Med 1973; 78: 891–4.

    PubMed  CAS  Google Scholar 

  68. Nolph KD, Miller L, Husted FC, Hirszel P. Peritoneal clearance in scleroderma and diabetes mellitus: effects of intraperitoneal isoproterenol. Int Urol Nephrol 1976; 8: 161–9.

    PubMed  CAS  Google Scholar 

  69. Nolph KD, Ghods AJ, Van Stone J, Brown PA. The effects of intraperitoneal vasodilators on peritoneal clearances. Trans Am Soc Artif Intern Organs 1976; 22: 586–93.

    PubMed  CAS  Google Scholar 

  70. Maher JF, Shea C, Cassetta M, Hohnadel DC. Isoproterenol enhancement of peritoneal permeability. J Dial 1977; 1: 319–31.

    PubMed  CAS  Google Scholar 

  71. Thulin L, Samnegard H. Circulatory effects of gastrointestinal hormones and related peptides. Acta Chir Scand 1978; 482 (suppl.): 73–4.

    CAS  Google Scholar 

  72. Maher JF, Hirszel P, Lasrich M. The effects of gastrointestinal hormones on transport by peritoneal dialysis. Kidney Int 1979; 16: 131–6.

    Google Scholar 

  73. Biber B, Fara J, Lundgren O. Vascular reactions in the small intestine during vasodilation. Acta Physiol Scand 1973; 89: 449–56.

    PubMed  CAS  Google Scholar 

  74. Fara JW. Effects of gastrointestinal hormones on vascular smooth muscle. Am J Digest Dis 1975; 20: 346–53.

    PubMed  CAS  Google Scholar 

  75. Hirszel P, Maher JF, LeGrow W. Increased peritoneal mass transport with glucagon acting at the vascular surface. Trans Am Soc Artif Intern Organs 1978; 24: 136–8.

    PubMed  CAS  Google Scholar 

  76. Vane J, Bakhle Y, Botting R. Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol 1998; 38: 97–120.

    PubMed  CAS  Google Scholar 

  77. Topley N, Petersen MM, Mackenzie R et al. Human peritoneal mesothelial cell prostaglandin synthesis: induction of cyclooxygenase mRNA by peritoneal macrophage-derived cytokines. Kidney Int 1994; 46. 900–9.

    PubMed  CAS  Google Scholar 

  78. Nakano J, McCurdy JR. Hemodynamic effects of prostaglandins El, Al, and F2 in dogs. Proc Soc Exp Biol Med 1968; 128: 39–42.

    PubMed  CAS  Google Scholar 

  79. Messina EJ, Kaley G. Microcirculatory responses to prostacyclin and PGE2 in the rat cremaster muscle. Adv Prostaglandin Thromb Res 1980; 7: 719–22.

    CAS  Google Scholar 

  80. Vane JR, McGiff JC. Possible contributions of endogenous prostaglandins to the control of blood pressure. Circ Res 1975; 36/37 (suppl. 1 ): 68–75.

    Google Scholar 

  81. Maher JF, Hirszel P, Lasrich M. Modulation of peritoneal transport rates by prostaglandins. Adv Prostaglandin Thromb Res 1980; 7: 695–700.

    CAS  Google Scholar 

  82. Maher JF, Hirszel B, Lasrich M. Prostaglandin effects on peritoneal transport. Proc 2nd Symp Perit Dial 1981; 2: 65–9.

    Google Scholar 

  83. Mileti M, Bufano G, Scaravonati P, Pecchini F, Carnevale G, Lanzarini P. Effect of indomethacin on the peritoneum of rabbits on peritoneal dialysis. Perit Dial Bull 1983; 3: 194–5.

    Google Scholar 

  84. Hirszel P, Lasrich M, Maher JF. Arachidonic acid increases peritoneal clearances. Trans Am Soc Artif Intern Organs 1981; 27: 61–3.

    PubMed  CAS  Google Scholar 

  85. Steinhauer HB, Schollmeyer P. Prostaglandin-mediated loss of proteins during peritonitis in continuous ambulatory peritoneal dialysis. Kidney Int 1986; 29: 584–90.

    PubMed  CAS  Google Scholar 

  86. Zemel D, Struijk DG, Dinkla C, Stolk LM, ten Berge IJ, Krediet RT. Effects of intraperitoneal cyclooxygenase inhibition on inflammatory mediators in dialysate and peritoneal membrane characteristics during peritonitis in continuous ambulatory peritoneal dialysis. J Lab Clin Med 1995; 126: 204–15.

    PubMed  CAS  Google Scholar 

  87. Brown EA, Kliger AS, Goffinet J, Finkelstein FO. Effect of hypertonic dialysate and vasodilators on peritoneal dialysis clearances in the rat. Kidney Int 1978; 13: 271–7.

    PubMed  CAS  Google Scholar 

  88. Hirszel P, Maher JF, Chamberlin M. Augmented peritoneal mass transport with intraperitoneal nitroprusside. J Dial 1978; 2: 131–142.

    PubMed  CAS  Google Scholar 

  89. Raja RM, Kramer MS, Rosenbaum J. Enhanced clearance with intraperitoneal nitroprusside in high flow recirculation peritoneal dialysis. Trans Am Soc Artif Intern Organs 1978; 24: 133–5.

    PubMed  CAS  Google Scholar 

  90. Nolph KD, Ghods AJ, Brown PA, Twardowski ZJ. Effects of intraperitoneal nitroprusside on peritoneal clearances in man with variations of dose frequency of administration and dwell times. Nephron 1979; 24: 114–20.

    PubMed  CAS  Google Scholar 

  91. Selgas R, Carmona AR, Martinez ME et al. Peritoneal vascular reserve characterization through nitroprussideinduced modification of peritoneal mass transfer coefficients. Int J Artif Organs 1985; 8: 181–6.

    PubMed  CAS  Google Scholar 

  92. Londos C, Cooper DMF, Wolff J. Subclasses of external adenosine receptors. Proc Natl Acad Sci USA 1980; 77: 2551–4.

    PubMed  CAS  Google Scholar 

  93. Maher JF, Cassetta M, Shea C, Hohnadel DC. Peritoneal dialysis in rabbits. A study of transperitoneal theophylline flux and peritoneal permeability. Nephron 1978; 20: 18–23.

    PubMed  CAS  Google Scholar 

  94. Shostak A, Chakrabarti EK, Hirszel B, Maher JF. Effects of histamine and its receptor antagonists on peritoneal permeability. Kidney Int 1988; 34: 786–90.

    PubMed  CAS  Google Scholar 

  95. Lal SM, Nolph KD, Moore FL, Khanna R: Effects of calcium channel blockers (verapamil, diltiazem) on the permeability of the peritoneal membrane in patients on continuous ambulatory peritoneal dialysis. Trans Am Soc Artif Intern Organs 1986; 32: 564–6.

    CAS  Google Scholar 

  96. Kumano K, Go M, Sakai T. Effects of vasodilators on peritoneal solute and fluid transport in rat peritoneal dialysis. Adv Petit Dial 1996; 12: 27–32.

    CAS  Google Scholar 

  97. Vargemezis V, Pasadakis P, Thodis E. Effect of a calcium antagonist (verapamil) on the permeability of the peritoneal membrane in patients on continuous ambulatory peritoneal dialysis. Blood Purif 1989; 7: 309–13.

    PubMed  CAS  Google Scholar 

  98. Balaskas EV, Dombros N, Savidis N, Pidonia I, Lazaridis A, Tourkantonis A. Nifedipine intraperitoneally increases ultrafiltration in CAPD patients. In. Ota K, Maher JF, Winchester J, Hirszel B, eds. Current Concepts in Peritoneal Dialysis. Amsterdam: Excerpta Medica, 1992, pp. 427–32.

    Google Scholar 

  99. Favazza A, Montanaro D, Messa P, Antonucci F, Gropuzzo M, Mioni G. Peritoneal clearances in hypertensive patients after oral administration of clonidine, enalapril and nifedipine. Petit Dial Int 1992; 12: 287–91.

    CAS  Google Scholar 

  100. Lal SM, Moore HL, Nolph KD. Effects of intraperitoneal captopril on peritoneal transport in rats. Petit Dial Bull 1987; 7: 80–5.

    Google Scholar 

  101. Ripley EB, Gehr TW, Kish CW, Sica DA. Hormonal, blood pressure, and peritoneal transport response to short-term ACE inhibition. Petit Dial Bull 1994; 14. 378–83.

    CAS  Google Scholar 

  102. Coronet F, Hortal L, Naranjo P, Cruceyra A, Barrientos A. Captopril, proteinuria and peritoneal protein leakage in diabetic patients. Nephron 1989; 51: 443.

    Google Scholar 

  103. Ilker NY, Ozgur S, Cetin S. Effects of papaverine on solute transport in peritoneal dialysis. Int Urol Nephrol 1989; 21: 119–20.

    PubMed  CAS  Google Scholar 

  104. Wang T, Cheng H, Heimbürger O et al. Atrial natriuretic factor increases peritoneal fluid removal. J Am Soc Nephrol 1997; 8: 183A (abstract).

    Google Scholar 

  105. Breborowicz A, Knapowski J. Augmentation of peritoneal dialysis clearance with procaine. Kidney Int 1984; 26: 392–6.

    PubMed  CAS  Google Scholar 

  106. Devuyst O, Nielsen S, Cosyns JP et al. Aquaporin-1 and endothelial nitric oxide synthase expression in capillary endothelia of human peritoneum. Am J Physiol 1998; 275: H234–42.

    PubMed  CAS  Google Scholar 

  107. Douma CE, de Waart DR, Struijk DG, Krediet RT. Are phospholipase A2 and nitric oxide involved in the alterations in peritoneal transport during CAPD peritonitis? J Lab Clin Med 1998; 132: 329–40.

    PubMed  CAS  Google Scholar 

  108. Baylis C, Valiance P. Measurement of nitrite and nitrate levels in plasma and urine-what does this measure tell us about the activity of the endogenous nitric oxide system? Curr Opin Nephrol Hypertens 1998; 7: 59–62.

    PubMed  CAS  Google Scholar 

  109. Akubeu J, Stochs SJ. Endrin-induced production of nitric oxide by rat peritoneal macrophages. Toxicol Lett 1992; 62: 311–16.

    Google Scholar 

  110. Moncada S. Induction of nitric oxide synthase in rat peritoneal neutrophils and its inhibition by dexamethasone. Eur J Immunol 1991; 21: 2523–7.

    PubMed  Google Scholar 

  111. Morrissey JJ, McCracken R, Kaneto H, Vehaskari M, Montani D, Kahr S. Location of an inducible nitric oxide synthase mRNA in the normal kidney. Kidney Int 1994; 45: 998–1005.

    PubMed  CAS  Google Scholar 

  112. Combet S, Van Landschoot M, Moulin P et al. Regulation of aquaporin-1 and nitric oxide synthase isoforms in a rat model of acute peritonitis. J Am Soc Nephrol 1999; 10: 2185–96.

    PubMed  CAS  Google Scholar 

  113. Douma CE, de Waart DR, Zemel D et al. Nitrate in stable CAPD patients and during peritonitis. Adv Petit Dial 1995; 11: 36–40.

    CAS  Google Scholar 

  114. White R, Barefield D, Ram S, Work J. Peritoneal dialysis solutions reverse the hemodynamic effects of nitric oxide synthesis inhibitors. Kidney Int 1995; 48: 1986–93.

    PubMed  CAS  Google Scholar 

  115. Breborowicz A, Wieczorowska-Tobis K, Korybalska K, Polubinska A, Radkowski M, Oreopoulos DG. The effect of a nitric oxide inhibitor (L-NAME) on peritoneal transport during dialysis in rats. Petit Dial Bull 1998; 18: 188–92.

    CAS  Google Scholar 

  116. Sano N, Satoh S, Hashimoto K. Differences among dipyridamole, carbochromen and lidoflazine in responses of the coronary and the renal arteries. Jpn J Pharmacol 1972; 22: 857–65.

    PubMed  CAS  Google Scholar 

  117. Maher JF, Hirszel P, Abraham J, Galen MA, Chamberlin M, Hohnadel DC. The effect of dipyridamole on peritoneal mass transport. Am Soc Artif Intern Organs 1977; 23: 219–23.

    CAS  Google Scholar 

  118. Ryckelynck JP, Pierre D, DeMartin A, Rottembourg J. Amélioration des clairances péritonéales par le dipyridamole. Nouv Presse Méd 1978; 7: 472.

    PubMed  CAS  Google Scholar 

  119. Rubin J, Adair C, Barnes T, Bower JD. Augmentation of peritoneal clearance by dipyridamole. Kidney Int 1982; 22: 658–61.

    PubMed  CAS  Google Scholar 

  120. Reams GP, Young M, Sorkin M, Twardowski ZJ, Gloor H, Nolph KD. Effects of dipyridamole on peritoneal clearances. Uremia Invest 1986; 9: 27–33.

    CAS  Google Scholar 

  121. Nolph KD, Stoltz ML, Maher JF. Altered peritoneal permeability in patients with systemic vasculitis. Ann Intern Med 1973; 75: 753–5.

    Google Scholar 

  122. Maher JF, Hirszel P. Augmentation of peritoneal clearances by drugs. In: Legrain M, ed. Proc Int Symp Contin Ambul Perit Dial. Amsterdam: Excerpta Medica, 1980, pp. 42–6.

    Google Scholar 

  123. Alvai H, Lianos E, Andres G. Effect of protamine on the permeability and structure of rat peritoneum. Kidney Int 1982; 21: 44–53.

    Google Scholar 

  124. Galdi P, Shustack A, Jaichenko J, Fudin R, Gotloib L. Prot-amine sulfate induces enhanced peritoneal permeability to proteins. Nephron 1991; 57: 45–51.

    PubMed  CAS  Google Scholar 

  125. Capodicasa G, Capasso G, Anastasio P, Lanzetti N, Giordano C. Changes on peritoneal permeability by charged poly-amino acids. Petit Dial Bull 1987; 7: S13.

    Google Scholar 

  126. Pietrzak I, Hirszel B, Maher JF. Poly-/-lysine, a cationic macromolecule, increases peritoneal hydraulic and solute permeability. In: Ota K, Maher JF, Winchester J, Hirszel B, eds. Current Concepts in Peritoneal Dialysis. Amsterdam: Excerpta Medica, 1992, pp. 433–8.

    Google Scholar 

  127. Maher JF, Pietrzak I, Hirszel P. Role of anions in restricting peritoneal transfer rates. Arq Med 1989; 2: 347–9.

    Google Scholar 

  128. Breborowicz A, Rodela H, Bargman J, Oreopoulos DG. Effect of cationic molecules on the permeability of the mesothelium in vitro. Petit Dial Bull 1987; 7: S9.

    Google Scholar 

  129. Agre P, Bonhivers M, Borgnia MJ. The aquaporins: blueprints for cellular plumbing systems. J Biol Chem 1998; 273: 14659–62.

    PubMed  CAS  Google Scholar 

  130. Akiba T, Ota T, Fushimi K et al. Water channel AQP1, 3, and 4 in the human peritoneum and peritoneal dialysate. Adv Petit Dial 1997; 13: 3–6.

    CAS  Google Scholar 

  131. Maher JF, Hohnadel DC, Shea C, DiSanzo F, Cassetta M. Effects of intraperitoneal diuretics on solute transport during hypertonic dialysis. Clin Nephrol 1977; 7: 96–100.

    PubMed  CAS  Google Scholar 

  132. Scarpioni L, Ballocchi S, Bergonzi G, Fontana F, Poisetti P, Zanazzi MA. High-dose diuretics in CAPD. Petit Dial Bull 1982; 2: 177–8.

    Google Scholar 

  133. Grzegorzewska A, Baczyk K. Furosemide-induced increase in urinary and peritoneal excretion of uric acid during peritoneal dialysis in patients with chronic uremia. Artif Organs 1982; 6: 220–4.

    PubMed  CAS  Google Scholar 

  134. Bazzato G, Coli U, Landini S et al. Restoration of ultrafiltration capacity of peritoneal membrane in patients on CAPD. Int J Artif Organs 1984; 7: 93–6.

    PubMed  CAS  Google Scholar 

  135. Maher JF, Hirszel B, Bennett RR, Chakrabarti EK. Amphotericin B selectively increases peritoneal ultrafiltration. Am J Kidney Dis 1984; 4: 285–8.

    PubMed  CAS  Google Scholar 

  136. Maher JF, Hirszel B, Bennett RR, Chakrabarti EK. Augmentation of peritoneal hydraulic permeability by amphotericin B: locus of action. Petit Dial Bull 1984; 4: 229–31.

    Google Scholar 

  137. Wang T, Heimbürger O, Bergström J, Lindholm B. Amphotericin B does not increase peritoneal fluid removal. Petit Dial Int 1998; 18 (suppl. 1) (abstract).

    Google Scholar 

  138. Stegmayr BG. Beta-blockers may cause ultrafiltration failure in peritoneal dialysis patients. Petit Dial Int 1997; 17: 541–5.

    CAS  Google Scholar 

  139. Krediet RT. Beta-blockers and ultrafiltration failure. Petit Dial Int 1997; 17: 528–31.

    CAS  Google Scholar 

  140. Paton TW, Cornish WR, Manuel MA, Hardy BG. Drug therapy in patients undergoing peritoneal dialysis. Clinical pharmacokinetic considerations. Clin Pharmacokin 1985; 10: 404–26.

    CAS  Google Scholar 

  141. Avasthi PS: Effects of aminonucleoside on rat blood peritoneal barrier permeability. J Lab Clin Med 1979; 94: 295–302.

    PubMed  CAS  Google Scholar 

  142. Indrapasit S, Sooksriwongse C. Effects of chlorpromazine on peritoneal clearances. Nephron 1985; 40: 341–3.

    Google Scholar 

  143. Mactier RA, Khanna R, Moore H, Twardowski ZJ, Nolph KD. Pharmacological reduction of lymphatic absorption from the peritoneal cavity increases net ultrafiltration and solute clearances in peritoneal dialysis. Nephron 1988; 50: 229–32.

    PubMed  CAS  Google Scholar 

  144. Maher J, Hirszel P, Shostack A, DiPaolo N, Chakrabarti EK. Prolonged intraperitoneal dwell decreases ultrafiltration coefficient in rabbits. Am J Kidney Dis 1988; 12: 62–5.

    PubMed  CAS  Google Scholar 

  145. Rubin J, Reed V, Adair C, Bower J, Klein E. Effect of intraperitoneal insulin on solute kinetics in CAPD: insulin kinetics in CAPD. Am J Med Sci 1986; 291: 81–7.

    PubMed  CAS  Google Scholar 

  146. Twardowski Z.J, Khanna R, Nolph KD: Osmotic agents and ultrafiltration in peritoneal dialysis. Nephron 1986; 42: 93–101.

    PubMed  CAS  Google Scholar 

  147. Khanna R, Mactier RA, Twardowski ZJ, Nolph KD. Peritoneal cavity lymphatics. Petit Dial Bull 1986; 6: 113–21.

    Google Scholar 

  148. Hasbargen JA, Hasbargen BJ, Fortenberg EJ, James JK. Effects of intraperitoneal neostigmine on peritoneal transport characteristics in CAPD. Kidney Int 1992; 42: 1398–400.

    PubMed  CAS  Google Scholar 

  149. Chan PCK, Tam SCF, Cheng IKP. Oral neostigmine and lymphatic absorption in a myasthenia gravis patient on continuous ambulatory peritoneal dialysis. Petit Dial Int 1990; 10: 93–6.

    CAS  Google Scholar 

  150. Mactier RA, Khanna R, Twardowski ZJ, Moore H, Nolph KD. Influence of phosphatidylcholine on lymphatic absorption during peritoneal dialysis in the rat. Petit Dial Int 1988; 8: 179–86.

    Google Scholar 

  151. Krack G, Viglino G, Gandolfo C, Cantaluppi A, Peluso F. Intraperitoneal administration of phosphatidylcholine improves ultrafiltration in continuous ambulatory peritoneal dialysis patients. Petit Dial Int 1992; 12: 359–64.

    CAS  Google Scholar 

  152. Ersoy FF, Khanna R, Moore H. Effect of phosphatidylcholine on peritoneal fluid kinetics. Petit Dial Int 1992; 12 (suppl. 2): S3.

    Google Scholar 

  153. Mactier RA, Khanna R. Absorption of fluid and solutes from the peritoneal cavity: Theoretic and therapeutic implications. ASAIO Trans 1989; 35: 122–31.

    PubMed  CAS  Google Scholar 

  154. Flessner MF. Peritoneal transport physiology: insights from basic research. J Am Soc Nephrol 1991; 2: 122–35.

    PubMed  CAS  Google Scholar 

  155. Rippe B, Krediet RT. Peritoneal physiology–transport of solutes. In: Gokal R, Nolph KD, ed. Textbook of Peritoneal Dialysis. Dordrecht: Kluwer, 1994, pp. 69–113.

    Google Scholar 

  156. Wang T, Heimbürger O, Waniewski J, Bergström J, Lindholm B. Time dependence of solute removal during a single exchange. Adv Petit Dial 1997; 13: 23–8.

    CAS  Google Scholar 

  157. Wang T, Cheng H, Heimbürger O, Waniewski J, Bergström J, Lindholm B. Hyaluronan prevents the decrease in net fluid removal caused by increased dialysate fill volume. Kidney Int 1998; 53. 496–502.

    PubMed  CAS  Google Scholar 

  158. Wang T, Chen C, Heimbürger O, Waniewski J, Bergström J, Lindholm B. Hyaluronan decreases peritoneal fluid absorption in peritoneal dialysis. J Am Soc Nephrol 1997; 8: 1915–20.

    PubMed  CAS  Google Scholar 

  159. Fraser JRE, Laurent TC, Laurent UBG. Hyaluronan: its nature, distribution, function and turnover. J Intern Med 1997; 242: 27–33.

    PubMed  CAS  Google Scholar 

  160. Wang T, Cheng H, Heimbürger O et al. Hyaluronan decreases peritoneal fluid absorption: effect of molecular weight and concentration of hyaluronan. Kidney Int 1999; 55: 667–73.

    PubMed  CAS  Google Scholar 

  161. Dobbie JW, Anderson JD. Ultrastructure, distribution, and density of lamellar bodies in human peritoneum. Petit Dial Int 1996; 16: 488–96.

    CAS  Google Scholar 

  162. Breborowicz A, Korybalska K, Grzybowski A et al. Synthesis of hyaluronic acid by human peritoneal mesothelial cells: effect of cytokines and dialysate. Petit Dial Int 1996; 16: 374–8.

    CAS  Google Scholar 

  163. Heldin P, Pertoft H. Synthesis and assembly of the hyaluronan-containing coats around normal human mesothelial cells. Exp Cell Res 1993; 208: 422–9.

    PubMed  CAS  Google Scholar 

  164. Breborowicz A, Wieczorowska-Tobis K, Kuzlan M et al. N-acetylglucosamine: a new osmotic solute in peritoneal dialysis solutions. Petit Dial Int 1997; 17 (suppl. 2): S80–3.

    Google Scholar 

  165. Wu G, Breborowicz A, Korybalska K, Tam P, French I. Use of N-acetyl-glucosamine as osmotic agent for peritoneal dialysis. Petit Dial Int 1996; 16: (suppl. 2): S16.

    Google Scholar 

  166. Wu G, Wieczorowska-Tobis K, Polubinska A et al. N-acetylglucosamine changes permeability of peritoneum during chronic peritoneal dialysis in rats. Petit Dial Bull 1998; 18: 217–24.

    CAS  Google Scholar 

  167. Comper WD, Laurent TC. Physiological function of connective tissue polysaccharides. Physiol Rev 1978; 58: 255–325.

    PubMed  CAS  Google Scholar 

  168. Wieczorowska-Tobis K, Breborowicz A, Mattis L, Oreopoulos DG. Protective effect of hyaluronic acid against peritoneal injury. Petit Dial Bull 1995; 15: 81–3.

    Google Scholar 

  169. Breborowicz A, Wieczorowska K, Mattis L, Oreopoulos DG. Glycosaminoglycan chondroitin sulphate prevents loss of ultrafiltration during peritoneal dialysis in rats. Nephron 1994; 67: 346–50.

    PubMed  CAS  Google Scholar 

  170. Bazzato G, Fracasso A, Baggio B. Use of glycosaminoglycans to increase efficiency of long-term continuous peritoneal dialysis. Lancet 1995; 346: 740–1.

    PubMed  CAS  Google Scholar 

  171. Breborowicz A, Wieczorowska K, Knapowski J, Mattis L, Serkes KD, Oreopoulos DG. Chondroitin sulphate and peritoneal permeability. Adv Petit Dial 1992; 8: 11–14.

    CAS  Google Scholar 

  172. Breborowicz A, Radkowski M, Knapowski J, Oreopoulos DG. Effects of chondroitin sulphate on fluid and solute transport during peritoneal dialysis in rats. Petit Dial Int 1991; 11: 351–4.

    CAS  Google Scholar 

  173. Breborowicz A, Wieczorowska K, Knapowski J, Mattis L, Serkes KD, Oreopoulos DG. Chondroitin sulphate and peritoneal permeability. Adv Petit Dial 1992; 8: 11–14.

    CAS  Google Scholar 

  174. Van Biesen W, Waterloos M, Vogeleere P, Naggi A, Lameire N. Use of chondroitin sulphate as additive to glucose containing dialysate. Petit Dial Int 1999; 19: S11 (abstract).

    Google Scholar 

  175. Grahame G, Torchia M, Dankewich K, Ferguson I. Surface active material in peritoneal effluent of CAPD patients. Petit Dial Bull 1985; 5: 109–11.

    Google Scholar 

  176. DiPaolo N, Buoncristiani U, Capotundo L, Saggiotti E, Sansoni E, Bernini M. Phosphatidylcholine and peritoneal transport during peritoneal dialysis. Nephron 1986; 44: 365–70.

    CAS  Google Scholar 

  177. Breborowicz A, Sombolos K, Rodela H, Ogilvie R, Bargman J, Oreopoulos DG. Mechanism of phosphatidylcholine action during peritoneal dialysis. Perit Dial Bull 1987; 7: 9.

    Google Scholar 

  178. De Vecchi A, Castelnovo J, Guerra L, Scalamonga A. Phosphatidylcholine administration in continuous ambulatory peritoneal dialysis patients with reduced ultrafiltration. Perit Dial Int 1989; 9: 207–10.

    PubMed  Google Scholar 

  179. De Alvaro F, Selgas R. Oral phosphatidylcholine effects on peritoneal MTCs in CAPD patients. Abstracts of the 15th EDTA Congress, 1988; 93 (abstract).

    Google Scholar 

  180. Breborowicz A, Witowski J, Knapowski J, Serkes KD, Martis L, Oreopoulos DG. Effect of phosphatidylcholine on the function of human mesothelial cells in vitro. Nephron 1993; 63: 15–20.

    PubMed  CAS  Google Scholar 

  181. Penzotti SC, Mattocks AM. Effects of dwell time, volume of dialysis fluid and added accelerators on peritoneal dialysis of urea. J Pharm Sci 1975; 60: 1520–2.

    Google Scholar 

  182. Penzotti SC, Mattocks AM. Acceleration of peritoneal dialysis by surface-active agents. J Pharm Sci 1968; 57: 1192–5.

    PubMed  CAS  Google Scholar 

  183. Dunham CB, Hak LJ, Hull JH, Mattocks AM. Enhancement of peritoneal permeability of the rat by intraperitoneal use of docusate sodium. Kidney Int 1981; 20: 563–8.

    PubMed  CAS  Google Scholar 

  184. Wang T, Qureshi A, Heimbürger O et al. Dioctyl sodium sulphosuccinate increases net ultrafiltration in peritoneal dialysis. Nephrol Dial Transplant 1997; 12: 1218–22.

    PubMed  CAS  Google Scholar 

  185. Hirszel B, Dodge K, Maher JF. Acceleration of peritoneal solute transport by cytochalasin D. Uremia Invest 1985; 8: 85–9.

    CAS  Google Scholar 

  186. Alavi N, Lianos E, van Liew JB, Mookerjee BK, Bentzel CJ. Peritoneal permeability in the rat: modulation by microfilament-active agents. Kidney Int 1985; 27: 411–19.

    PubMed  CAS  Google Scholar 

  187. Breborowicz A, Witowski J, Mantis L, Oreopoulos DG. Enhancement of viability of human peritoneal mesothelial cells with glutathione precursor: L-2-oxothiazolidine4-carboxylate. Adv Perit Dial 1993; 9: 21–4.

    PubMed  CAS  Google Scholar 

  188. Korybalska K, Breborowicz A, Wieczorowska-Tobis K et al. Alterations of intraperitoneal inflammation by the addition of L-2-oxothiazolidine-carboxylate. Adv Perit Dial 1997; 13: 197–200.

    PubMed  CAS  Google Scholar 

  189. Wieczorowska-Tobis K, Breborowicz A, Witowski J, Mantis L, Oreopoulos DG. Effect of vitamin E on peroxidation and permeability of the peritoneum. J Physiol Pharmacol 1996; 47: 535–43.

    CAS  Google Scholar 

  190. Witowski J, Breborowicz A, Knapowski J. Effect of methotrexate, doxorubicin and mitoxantrone on human peritoneal mesothelial cell function in vitro. Oncology 1995; 52: 60–5.

    PubMed  CAS  Google Scholar 

  191. Witowski J, Breborowicz A, Topley N, Martis L, Knapowski J, Oreopoulos DG. Insulin stimulates the activity of Na K(+)-ATPase in human peritoneal mesothelial cells. Perit Dial Int 1997; 17: 186–93.

    PubMed  CAS  Google Scholar 

  192. Knochel JP, Clayton LE, Smith WL, Barry KG. Intraperitoneal THAM: an effective method to enhance phenobarbital removal during peritoneal dialysis. J Lab Clin Med 1964; 64: 257–68.

    PubMed  CAS  Google Scholar 

  193. Campion DAS, North JDK. Effect of protein binding of barbiturates on their rate of removal during peritoneal dialysis. J Lab Clin Med 1965; 66: 549–63.

    PubMed  CAS  Google Scholar 

  194. Schultz JC, Crouder DG, Medart WS. Excretion studies in ethchlorvynol (Placidyl) intoxication. Arch Intern Med 1966; 117: 409–11.

    Google Scholar 

  195. Etteldorf JN, Dobbins WT, Summit RL, Rainwater WT, Fisher RL. Intermittent peritoneal dialysis using 5% albumin in the treatment of salicylate intoxication in children. J Pediatr 1961; 58: 226–36.

    PubMed  CAS  Google Scholar 

  196. Shinaberger JH, Shear L, Clayton LE, Barry KG, Knowlton M, Goldbaun LR. Dialysis for intoxication with lipid-soluble drugs: enhancement of glutethimide extraction with lipid dialysate. Trans Am Soc Artif Intern Organs 1965; 11: 173–7.

    PubMed  CAS  Google Scholar 

  197. Leypoldt JK, Henderson LW. Molecular charge influences macromolecular transport. Kidney Int 1993; 43: 837–44.

    PubMed  CAS  Google Scholar 

  198. Ho-dac Pannekeet MM, Krediet RT. Water channels in the peritoneum (editorial). Perit Dial Int 1996; 16: 255–9.

    PubMed  CAS  Google Scholar 

  199. Swartz RD, Starmann B, Horvath A, Olson S, Posvar EL. Pharmacokinetics of quinapril and its active metabolite quinaprilate during continuous ambulatory peritoneal dialysis. J Clin Pharmacol 1990; 30: 1136–40.

    PubMed  CAS  Google Scholar 

  200. Rowland M, Tozer TN. Clinical Pharmacokinetics - Concepts and Applications. Baltimore, MD: Williams and Wilkins, 1995.

    Google Scholar 

  201. Benet LZ, Kroetz DL, Sheiner LB. Pharmacokinetics–The dynamics of drug absorption, distribution, and elimination. In: Hardman JG, Limbird LE, Molinoff PB, Ruddon RW, Goodman Gilman A, eds. Goodman and Gilman’s The Pharmacological Basis of Therapeutics. New York: McGraw-Hill, 1996, pp. 3–27.

    Google Scholar 

  202. Benet LZ, Obie S, Schwartz JB. Design and optimization of dosage regimens; pharmacokinetic data. In: Hardman JG, Limbird LE, Molinoff PB, Ruddon RW, Goodman Gilman A, eds. Goodman and Gilman’s The Pharmacological Basis of Therapeutics. New York: McGraw-Hill, 1996, pp. 1707–92.

    Google Scholar 

  203. Lasrich M, Maher JM, Hirszel P, Maher JF. Correlation of peritoneal transport rates with molecular weight: a method for predicting clearances. ASAIO J 1979; 2: 107–13.

    Google Scholar 

  204. Maher JF. Peritoneal transport rates: mechanisms, limitations and methods for augmentation. Kidney Int 1980; 18: 5117–20.

    Google Scholar 

  205. Deguchi Y, Nakashima E, Ishikawa F et al. Peritoneal transport of betalactam antibiotics: effects of plasma protein binding and the inter species relationship. J Pharm Sciences 1988; 77: 559–64.

    CAS  Google Scholar 

  206. Flessner MF, Dedrick RL, Schultz JS. Exchange of macromolecules between peritoneal cavity and plasma. Am J Physiol 1985; 248: H21–5.

    Google Scholar 

  207. Keller E, Reetze P, Schollmeyer P. Drug therapy in patients undergoing continuous ambulatory peritoneal dialysis. Clinical pharmacokinetic considerations. Clin Pharmacokin 1990; 18: 104–17.

    CAS  Google Scholar 

  208. Morse GD, Rowinski CA, Lieveld PE, Walshe JJ. Drug protein binding during continuous ambulatory peritoneal dialysis. Perit Dial Int 1988; 6: 144–7.

    Google Scholar 

  209. Janknegt R, Nube MJ. A simple method for predicting drug clearances during CAPD. Perit Dial Bull 1985; 5: 254–5.

    Google Scholar 

  210. Lee CC, Marbury TC. Drug therapy in patients undergoing hemodialysis. Clinical pharmacokinetic considerations. Clin Pharmacokin 1984; 9: 42–66.

    CAS  Google Scholar 

  211. Lameire N, Belpaire FM. Pharmacokinetics of antibiotics against gram-negative infections in continuous ambulatory peritoneal dialysis. Petit Dial Int 1993; 13 (suppl. 2): S371–6.

    Google Scholar 

  212. Fleming LW, Moreland TA, Scott AC, Stewart WK, White LD. Ciprofloxacin in plasma and peritoneal dialysate after oral therapy in patients in CAPD. J Antimicrob Chemother 1987; 19: 494–503.

    Google Scholar 

  213. Harford AM, Sica DA, Tartaglione T, Polk RE, Dalton HP, Poynor W. Vancomycin pharmacokinetics in continuous ambulatory peritoneal dialysis patients with peritonitis. Nephron 1986; 43: 217–22.

    PubMed  CAS  Google Scholar 

  214. Verbrugh HA, Keane WF, Conroy WE, Peterson PK. Bacterial growth and killing in chronic ambulatory peritoneal dialysis fluids. J Clin Microbiol 1984; 20: 199–203.

    PubMed  CAS  Google Scholar 

  215. Weissauer- Condon C, Engels I, Daschner FD. In vitro activity of four new quinolones in Mueller-Hinton broth and peritoneal dialysis fluid. Eur J Clin Microbiol 1987; 6: 324–6.

    PubMed  CAS  Google Scholar 

  216. Halstead DC, Guzzo J, Giardina JA, Geshan AE. In vitro bactericidal activities of gentamicin, cefazolin, and imipenem in peritoneal dialysis fluids. Antimicrob Agents Chemother 1989; 33: 1553–6.

    PubMed  CAS  Google Scholar 

  217. Wilcox MH, Smith DGE, Evans JA, Denyer SP, Finck RG, Williams P. Influence of carbon dioxide on growth and antibiotic susceptibility of coagulase-negative staphylococci cultures in human peritoneal dialysate. J Clin Microbiol 1990; 28: 2183–6.

    PubMed  CAS  Google Scholar 

  218. Morgera S, Neumayer HH, Fritsche L et al. Pharmacokinetics of mycophenolate mofetil in renal transplant recipients on peritoneal dialysis. Int J Clin Pharmacol Ther Toxicol 1998; 36: 159–63.

    CAS  Google Scholar 

  219. Lukas G, Brindle SD, Greengard P. The route of absorption of intraperitoneally administered compounds. J Pharmacol Exp Ther 1971; 178: 562–6.

    PubMed  CAS  Google Scholar 

  220. Bailie GR, Eisele G, Venezia RA, Yoeum D, Hollister A. Prediction of serum vancomycin concentrations following intraperitoneal loading doses in continuous ambulatory peritoneal dialysis patients with peritonitis. Clin Pharmacokin 1992; 22: 298–307.

    CAS  Google Scholar 

  221. Brouard R, Kapusnik JE, Gambertoglio JF et al. Teicoplanin pharmacokinetics and bioavailability during peritoneal dialysis. Clin Pharmacol Ther 1989; 45: 674–81.

    PubMed  CAS  Google Scholar 

  222. Gotloib L, Bar-Sella P, Jaichenko J, Shostack A. Ruthenium-red stained polyanionic fixed charges in peritoneal microvessels. Nephron 1987; 47: 22–8.

    PubMed  CAS  Google Scholar 

  223. Gotloib L, Shustack A, Jaichenko J. Loss of mesothelial and microvascular fixed anionic charges during murine experimentally induced septic peritonitis. Nephron 1989; 51: 77–83.

    PubMed  CAS  Google Scholar 

  224. De Paepe M, Lameire N. Peritoneal pharmacokinetics of gentamicin in man. Clin Nephrol 1983; 19: 107–9.

    PubMed  Google Scholar 

  225. Rubin J, Deraps GD, Walsh D, Adair C, Bower J. Protein losses and tobramycin absorption in peritonitis treated by hourly peritoneal dialysis. Am J Kidney Dis 1986; 8: 124–7.

    PubMed  CAS  Google Scholar 

  226. Regany C, Schaberg D, Kiroy W. Inhibitory effect of heparin on gentamicin concentrations of blood. Antimicrob Agents Chemother 1972; 4: 329–32.

    Google Scholar 

  227. Ponce SP, Barata JD, Santos R. Interference of heparin with peritoneal solute transport. Nephron 1985; 39: 47–9.

    PubMed  CAS  Google Scholar 

  228. Kuzuya T, Hasegawa T, Shiraki R, Nabeshima T. Structure-related pharmacokinetics of xanthines after direct administration into the peritoneal cavity of rats. Biol Pharmacol Bull 1997; 20: 1051–5.

    CAS  Google Scholar 

  229. Hadley N. Enhanced diffusivity of glucose in a matrix of hyaluronic acid. J Biol Chem 1980; 255: 3532–5.

    Google Scholar 

  230. Mactier RA, Moore H, Khanna R, Shah J. Effect of peritonitis on insulin and glucose absorption during peritoneal dialysis in diabetic rats. Nephron 1990; 54: 240–4.

    PubMed  CAS  Google Scholar 

  231. Wideröe TE, Dahl KJ, Smeby LC et al. Pharmacokinetics of transperitoneal insulin transport. Nephron 1996; 74: 283–90.

    PubMed  Google Scholar 

  232. Fine RN, Fine SE, Sherman BM. Absorption of recombinant human growth hormone (rhGH) following intraperitoneal instillation. Petit Dial Int 1989; 9: 91–3.

    CAS  Google Scholar 

  233. Lameire N, Bogaert M. Peritoneal pharmacokinetics and pharmacological manipulation of peritoneal transport. In: Gokal R, ed. Contiuous Ambulatory Peritoneal Dialysis. Edinburgh: Churchill Livingstone, 1986, pp. 56–93.

    Google Scholar 

  234. Maher JF. Influence of continuous ambulatory peritoneal dialysis on elimination of drugs. Petit Dial Bull 1987; 7: 159–67.

    Google Scholar 

  235. Sewell DL, Golper TA. Stability of antimicrobial agents in peritoneal dialysate. Antimicrob Agents Chemother 1982; 21: 528–9.

    PubMed  CAS  Google Scholar 

  236. Sewell DL, Golper TA, Brown SD, Nelson E, Knower M, Kimbrough RD. Stability of single and combination antimicrobial agents in various peritoneal dialysates in the presence of insulin and heparin. Am J Kidney Dis 1983; 3: 209–12.

    PubMed  CAS  Google Scholar 

  237. Janknegt R, Koks CHW, Nube MJ. Stability of antibiotics in CAPD fluid. Petit Dial Bull 1985; 5: 78.

    Google Scholar 

  238. Kehoe WA, Weber JN, Fries DS. The stability and comparability of clindamycin phosphate and gentamicin sulfate alone and in combination with peritoneal dialysis solution. Petit Dial Bull 1988; 8: 153–4.

    Google Scholar 

  239. Mason NA, Johnson CE, O’Brien MA. Stability of ceftazidime and tobramycin sulfate in peritoneal dialysis solution. Am J Hosp Pharm 1993; 49: 1139–42.

    Google Scholar 

  240. Bastani B, Spijker DA, Westervelt FB. Peritoneal absorption of vancomycin during and after resolution of peritonitis in

    Google Scholar 

  241. continuous ambulatory peritoneal dialysis patients. Petit Dial Bull 1988; 8: 135–6.

    Google Scholar 

  242. Imada A, Itagaki N, Hasegawa H, Horiuchi A. Comparative study of the pharmacokinetics of various beta-lactams after intravenous and intraperitoneal administration in patients undergoing continuous ambulatory peritoneal dialysis. Drugs 1988; 35: 82–7.

    PubMed  Google Scholar 

  243. Ryckelynck JP, Debruyne D, Hurault de Ligny B, Moulin M. Pharamacocinétique de la pipéracilline en dialyse péritonéale continue ambulatoire. Pathol Biol 1988; 36: 507–10.

    PubMed  CAS  Google Scholar 

  244. Low CL, Bailie GR, Evans A, Eisele G, Venezia RA. Pharmacokinetics of once-daily IP gentamicin in CAPD patients. Peril Dial Int 1996; 16: 379–84.

    CAS  Google Scholar 

  245. Husserl F, Back S. Intraperitoneal vancomycin and the `red man’ syndrome. Petit Dial Bull 1987; 7: 262 (letter).

    Google Scholar 

  246. Fabris A, Biasioli S, Borin D, Brendolan A, Chiaramonte S. Fungal peritonitis in peritoneal dialysis: our experience and review of treatment. Perit Dial Bull 1984; 4: 75–7.

    Google Scholar 

  247. Mandell IN, Ahern MJ, Klier AS, Andriole VI. Candida peritonitis complicating peritoneal dialysis: successful treatment with low dose amphotericin B therapy. Clin Nephrol 1976; 6: 192–6.

    Google Scholar 

  248. Struijk DG, Krediet RT, Boeschoten EW, Rietra O, Arisz L. Antifungal treatment of Candida peritonitis in continuous ambulatory peritoneal dialysis. Am J Kidney Dis 1987; 9: 66–70.

    PubMed  CAS  Google Scholar 

  249. Benevent D, El Akoum N, Lagarde C. Danger de l’administration intrapéritonéale de l’amphotéricine B au cours de la dialyse péritonéale continue ambulatoire. La Presse Méd 1984; 13: 1844.

    CAS  Google Scholar 

  250. Piraino B, Bernardini J, Johnston J, Sorkin M. Chemical peritonitis due to intraperitoneal vancomycin (Vancoled). Perit Dial Bull 1987; 7: 156–9.

    Google Scholar 

  251. Steiner RW. Adverse effects of intraperitoneal methylene blue. Perit Dial Bull 1983; 3: 43 (letter).

    Google Scholar 

  252. Bonner G, Lukowski K. Angiotensin I in peritoneal dialysis fluid improved hypotension. Clin Nephrol 1987; 27: 99–101.

    PubMed  CAS  Google Scholar 

  253. Peters U, Risley T, Grabensee B. Pharmacokinetics of digoxin with end-stage renal failure treated with continuous ambulatory peritoneal dialysis. Kidney Int 1981; 20: 159 (abstract).

    Google Scholar 

  254. Demedts W, Desaer JP, Belpaire F, Ringoir S, Lameire N. Life-threatening hyperkalemia associated with clofibrateinduced myopathy in a CAPD patient. Petit Dial Bull 1983; 3: 15–16.

    Google Scholar 

  255. Johnson RJ, Blair AD, Ahmad S. Ketoconazole kinetics in chronic peritoneal dialysis. Clin Pharmacol Ther 1985; 37: 325–7.

    PubMed  CAS  Google Scholar 

  256. Belpaire FM, Van de Velde EJ, Fraeyman NH, Bogaert MG, Lameire N. Influence of continuous ambulatory peritoneal dialysis on serum alpha-l-acid glycoprotein concentrations and drug binding. Eur J Clin Pharmacol 1988; 35: 339–43.

    PubMed  CAS  Google Scholar 

  257. Haughy DB, Krafat CJ, Matzke GR, Keane WF, Halstenson CE. Protein binding of disopyramide and elevated alpha1-glycoprotein concentrations in serum obtained from dialysis patients and renal transplant patients. Am J Nephrol 1985; 5: 35–9.

    Google Scholar 

  258. Shuler C, Golper TA, Bennett WM. Prescribing drugs in renal disease. In: Brenner BM, ed. The Kidney. Philadelphia, PA: WB Saunders, 1996, pp. 2653–702.

    Google Scholar 

  259. Hirszel B, Lameire N, Bogaert M. Pharmacology and pharmacokinetics in peritoneal dialysis. In: Nolph KD, Gokal R, eds. Textbook of Peritoneal Dialysis. Dordrecht: Kluwer, 1994, pp. 161–232.

    Google Scholar 

  260. Pancorbo S, Comty C. Digoxin pharmacokinetics in continuous ambulatory peritoneal dialysis. Ann Intern Med 1980; 93: 639.

    PubMed  CAS  Google Scholar 

  261. De Paoli Vitali E, Casol D, Tessarin C, Tisone GF, Cavogna R. Pharmacokinetics of digoxin in CAPD. In: Gahi GM, Kessel M, Nolph KD, eds. Advances in Peritoneal Dialysis. Amsterdam. Excerpta Med, 1981, pp. 85–7.

    Google Scholar 

  262. Risler T, Peters U, Passlick J, Grabensee B, Krokou J. Pharmacokinetics of digoxin and digitoxin in patients on chronic ambulatory peritoneal dialysis. In: Gabl GM, Kessel M, Nolph KD, eds. Advances in Peritoneal Dialysis. Amsterdam: Excerpta Med, 1981, pp. 88–9.

    Google Scholar 

  263. De Paepe M, Belpaire F, Bogaerts Y. Pharmacokinetics of digoxin in CAPD. Clin Exp Dial Apheresis 1982; 6: 65–73.

    PubMed  Google Scholar 

  264. Gloor HJ, Moore H, Nolph KD: The peritoneal handling of digoxin during CAPD. Pert Dial Bull 1982; 2: 13–16.

    Google Scholar 

  265. Chin TWF, Pancorbo S, Compty C. Quinidine pharmacokinetics in contiuous ambulatory peritoneal dialysis. Clin Exp Dial Apheresis 1981; 5: 391–7.

    PubMed  CAS  Google Scholar 

  266. Yamakado M, Umezu M, Nagano M, Tagawa H. Pharmacokinetics of denopamine in patients on continuous ambulatory peritoneal dialysis. In: Ota K, Maher JF, Winchester J, eds. Current Concepts in Peritoneal Dialysis. Amsterdam’ Excerpta Med, 1992, pp. 441–4.

    Google Scholar 

  267. Halstenson CE, Opsahl JA, Pence TV et al. The disposition and dynamics of labetolol in patients on dialysis. Clin Pharmacol Ther 1986; 40: 462–8.

    PubMed  CAS  Google Scholar 

  268. Parrott KA, Alexander SE, Stennett DJ. Loss of propranolol via CAPD in two patients. Petit Dial Bull 1984; 2: 110 (abstract).

    Google Scholar 

  269. Salahudeen AK, Wilkinson R, McAinsh J, Batemax DN. Atenolol pharmacokinetics in patients on continuous ambulatory peritoneal dialysis. Br J Clin Pharmacol 1984; 18: 457–60.

    PubMed  CAS  Google Scholar 

  270. Flaherty JF, Wong B, La Follette G, Warnock DG, Hulse JD, Gambertoglio JG. Pharmacokinetics of esmolol and ASL-8123 in renal failure. Clin Pharmacol Ther 1989; 45: 321–7.

    PubMed  CAS  Google Scholar 

  271. Bianchetti G, Padovani P, Thenot JP, Thiercelin JF, Martin-Dupont C, Morselli L. Betaxolol disposition in chronic renal insufficiency, hemodialysis and ambulatory peritoneal dialysis. Eur J Clin Invest 1982; 12S: 3A (abstract).

    Google Scholar 

  272. Spital A, Scandling JD. Nifedipine in continuous ambulatory peritoneal dialysis. Arch Intern Med 1983; 143: 2025 (letter).

    Google Scholar 

  273. Evers J, Bonn R, Boertz A et al. Pharmacokinetics of isosorbide-5-nitrate during hemodialysis and peritoneal dialysis. Eur J Clin Pharmacol 1987; 32: 503–5.

    PubMed  CAS  Google Scholar 

  274. Grech-Belanger O, Langlois S, Leboeuf E. Pharmacokinetics of diltiazem in patients undergoing contiuous ambulatory peritoneal dialysis. J Clin Pharmacol 1988; 28: 477–80.

    PubMed  CAS  Google Scholar 

  275. Fujimora A, Kajiyama H, Ebihara A, Iwashita K, Nomura Y, Kawahara Y. Pharmacokinetics and pharmacodynamics of captopril in patients undergoing continuous ambulatory peritoneal dialysis. Nephron 1986; 44: 324–8.

    Google Scholar 

  276. Wolter K, Fritschka E. Pharmacokinetics and pharmacodynamics of quinaprilat after low dose of quinapril in patients with terminal renal failure. Eur J Clin Pharmacol 1993; 44 (suppl. 1): S53–6.

    PubMed  Google Scholar 

  277. Gehr TWB, Sica DA, Grasela DM, Fakhry I, Davis J, Duchin KL. Fosinopril pharmacokinetics and pharmacodynamics in chronic ambulatory peritoneal dialysis. Eur J Clin Pharmacol 1991; 41: 165–9.

    PubMed  CAS  Google Scholar 

  278. Rottembourg J, Issad B, Guerret M, Lavene D, Baumelou A, Kiechel JR. Particularités d’utilisation de la guanfacine chez l’insuffisant rénal traité par dialyse péritonéale continue ambulatoire. In: Structures cérébrales et contrôle tensionnel. Paris: Sandoz, 1983, pp. 165–72.

    Google Scholar 

  279. Raehl CL, Beirne GJ, Moorthy AV, Patel AK. Tocainide pharmacokinetics during continuous ambulatory peritoneal dialysis. Am J Cardiol 1987; 60: 747–50.

    PubMed  CAS  Google Scholar 

  280. Bailie GR, Waldek S. Pharmacokinetics of flecainide in a patient undergoing continuous ambulatory peritoneal dialysis. J Clin Pharmacol Ther 1988; 13: 121–4.

    CAS  Google Scholar 

  281. Low CL, Phelps KR, Bailie GR. Relative efficacy of haemoperfusion, haemodialysis and CAPD in the removal of procainamide and NAPA in a patient with severe procanamide toxicity. Nephrol Dial Transplant 1996; 11: 881–4.

    PubMed  CAS  Google Scholar 

  282. Sica DA, Yonce C, Small R, Cefali E, Harford A, Poynor W. Pharmacokinetics of procainamide in continuous ambulatory peritoneal dialysis. Int J Clin Pharmacol Ther Toxicol 1988; 26: 59–64.

    PubMed  CAS  Google Scholar 

  283. Bourtron H, Singlas E, Brocard JF, Charpentier B, Fries D. Pharmacocinétique clinique du furosémide au cours de la dialyse péritonéale continue ambulatoire. Thérapie 1985; 40: 155–9.

    Google Scholar 

  284. Baumelou A, Singlas E, Merdjan H et al. Pharmacocinétique des médicaments administrés par voie générale chez les malades traités par dialyse péritonéale continue ambulatoire. Sém Urol Néphrol 1985; 11: 124–36.

    Google Scholar 

  285. Martin V, Winne R, Prescott LF. Frusemide disposition in patients on continuous ambulatory peritoneal dialysis. Br J Clin Pharmacol 1991; 31: 227–8.

    Google Scholar 

  286. Lee CSG, Peterson JC, Marbury TC. Comparative pharmacokinetics of theophylline in peritoneal dialysis and hemodialysis. J Clin Pharmacol 1983; 23: 274–80.

    PubMed  CAS  Google Scholar 

  287. Jones TE, Reece PA, Fisher GC. Mexiletine removal by peritoneal dialysis. Eur J Clin Pharmacol 1983; 25: 839–40.

    PubMed  CAS  Google Scholar 

  288. Olson S, Horvath A, Michniewicz B. The clinical pharmacokinetics of quinapril. Angiology 1989; 40: 351–9.

    PubMed  CAS  Google Scholar 

  289. Hoyer J, Schulte KL, Lenz T. Clinical pharmacokinetics of angiotensin converting enzyme inhibitors in renal failure. Clin Pharmacokin 1993; 24: 230–54.

    CAS  Google Scholar 

  290. Blackwell BG, Leggett JE, Johnston CA, Zimmerman SW, Craig WA. Ampicillin and Sulbactam pharmacokinetics and pharmacodynamics in continuous ambulatory peritoneal dialysis. Petit Dial Int 1990; 10: 221–6.

    CAS  Google Scholar 

  291. Somani P, Freimer EH, Gross ML, Higgins JT. Pharmacokinetics of Imipenem-Cilastatin in patients with renal insufficiency undergoing continuous ambulatory peritoneal dialysis. Antimicrob Agents Chemother 1988; 36: 530–4.

    Google Scholar 

  292. Chan CY, Lai KN, Lam AW, Li PKT, Chung WWM, French GL. Pharmacokinetics of parenteral imipenem/cilastatin in patients on continuous ambulatory peritoneal dialysis. J Antimicrob Chemother 1991; 27: 225–32.

    PubMed  CAS  Google Scholar 

  293. Debruyne D, Ryckelynck JP, Hurault de Ligny B, Moulin M. Pharmacokinetics of piperacillin in patients on peritoneal dialysis with and without peritonitis. J Pharmacokine Sci 1990; 79: 99–102.

    CAS  Google Scholar 

  294. Johnston CA, Halstenson CE, Kelloway JS et al. Single dose pharmacokinetics of piperacillin and tazobactam in patients with renal disease. Clin Pharmacol Ther 1992; 51: 32–41.

    Google Scholar 

  295. Johnson CA, Halstenson CE, Kelloway JS et al. Single-dose pharmacokinetics of piperacillin and tazobactam in patients with renal disease. Clin Pharmacol Ther 1992; 51: 32–41.

    PubMed  CAS  Google Scholar 

  296. Boelaert J, Daneels R, Schurgers M et al. Effect of renal function and dialysis on temocillin pharmacokinetics. Drugs 1985; 29 (suppl. 5): 109–13.

    Google Scholar 

  297. Pancorbo S, Compty C. Pharmacokinetics of cefamandole in patients undergoing continuous ambulatory peritoneal dialysis. Pert Dial Bull 1983; 3: 135–7.

    Google Scholar 

  298. Janicke DM, Morse GD, Apicella MA, Jusko WJ, Walshe JJ. Pharmacokinetic modeling of bidirectional transfer during peritoneal dialysis. Clin Pharmacol Ther 1986; 40: 209–18.

    PubMed  CAS  Google Scholar 

  299. Bliss M, Mayersohn M, Arnold T, Logan J, Michael UF, Jones W. Disposition kinetics of cefamandole during continuous ambulatory peritoneal dialysis. Antimicrob Agents Chemother 1986; 29: 649–53.

    PubMed  CAS  Google Scholar 

  300. Bunke CM, Aronoff GR, Brier ME, Sloan R, Luft FC. Cefalozin and cephalexin kinetics in continuous ambulatory peritoneal dialysis. Clin Pharmacol Ther 1983; 33: 66–72.

    PubMed  CAS  Google Scholar 

  301. Paton TW, Manuel A, Cohen LB, Walker SE. The disposition of cefazolin and tobramycin following intraperitoneal administration in patients on CAPD. Pert Dial Bull 1983; 3: 73–6.

    Google Scholar 

  302. Morrison G, Audet P, Peingold R, Murray T. Cefazolin: the cephalosporin antibiotic of choice in CAPD patients. Kidney Int 1999; 21: 174 (abstract).

    Google Scholar 

  303. Barbhaiya RH, Knupp CA, Pfeffer M et al. Pharmacokinetics of cefepime in patients undergoing continuous ambulatory peritoneal dialysis. Antimicrob Agents Chem-other 1992; 36: 1387–91.

    CAS  Google Scholar 

  304. Okamoto MP, Nakahiro RK, Chin A, Bedikian A. Cefepime clinical pharmacokinetics. Clin Pharmacokin 1993; 25: 88–102.

    CAS  Google Scholar 

  305. Mendes P, Lameire N, Rozenkranz B, Malerczyk V, Damm D. Pharmacokinetics of cefodizime during continuous ambulatory peritoneal dialysis. J Antimicrob Chemother 1990; 26 (suppl. C): 89–93.

    PubMed  Google Scholar 

  306. Keller E, Jansen A, Pels K, Hoppe-Seyler G, Schurgers M. Intraperitoneal and intravenous cefoperazone kinetics during continuous ambulatory peritoneal dialysis. Clin Pharmacol Ther 1984; 35: 208–13.

    PubMed  CAS  Google Scholar 

  307. Hodler JE, Geleazzi RL, Frey B, Rudhardt M, Seiler AJ. Pharmacokinetics of cefoperazone in patients undergoing chronic ambulatory peritoneal dialysis: clinical and pathophysiological implications. Eur J Clin Pharmacol 1984; 26: 609–12.

    PubMed  CAS  Google Scholar 

  308. Johnston CA, Zimmerman SW, Reitberg DP, Whall TJ, Leggett JE, Craig WA. Pharmacokinetics and pharmacodynamics of Cefoperazone-Sulbactam in patients on continuous ambulatory peritoneal dialysis. Antimicrob Agents Chem-other 1988; 32: 51–6.

    Google Scholar 

  309. Leehey DJ, Leid R, Chan AY, Ing TS. Cefoperazone in the treatment of peritonitis in continuous ambulatory peritoneal dialysis. Artif Organs 1988; 12: 482–3.

    PubMed  CAS  Google Scholar 

  310. Schuring R, Kampf D, Spieber W, Weihermuller K, Becker H. Cefotaxime pharmacokinetics in peritoneal dialysis. In: Gokal GM, Kessel M, Nolph KD, eds. Advances in Peritoneal Dialysis. Amsterdam: Excerpta Medica, 1981, pp. 96–8.

    Google Scholar 

  311. Alexander D, Bamertoglio J, Barriere S, Warnock D, Schoenfeld P. Cefotaxime pharmacokinetics during continuous ambulatory peritoneal dialysis. Clin Pharmacol Ther 1984; 35: 225 (abstract).

    Google Scholar 

  312. Matouscovic K, Moravek J, Vitko S, Prat V, Horcickova M. Pharmacokinetics of intravenous and intraperitoneal cefotaxime in patients undergoing CAPD. Perit Dial Bull 1985; 5: 33–5.

    Google Scholar 

  313. Albin HC, Demotes-Mainrad FM, Bouchet JL, Vincon GA, Martin-Dupont C. Pharmacokinetics of intravenous and intraperitoneal cefotaxime in chronic ambulatory peritoneal dialysis. Clin Pharmacol Ther 1985; 38: 285–9.

    PubMed  CAS  Google Scholar 

  314. Heim KL, Halstenson CE, Comty C, Affrime MB, Matzke GR. Disposition of cefotaxime and desacetyl cefotaxime during continuous ambulatory peritoneal dialysis. Antimicrob Agents Chemother 1986; 30: 15–19.

    PubMed  CAS  Google Scholar 

  315. Hasegawa H, Imada A, Horiuchi A, Nishii Y, Fukushima M, Kurokawa E. Pharmacokinetics of cefotaxime in patients undergoing hemodialysis and continuous ambulatory peritoneal dialysis. J Antimicrob Chemother 1984; 14 (suppl. B): 135–42.

    PubMed  Google Scholar 

  316. Petersen J, Stewart RDM, Catto GRD, Edward N. Pharmacokinetics of intraperitoneal cefotaxime treatment of peritonitis in patients on continuous ambulatory peritoneal dialysis. Nephron 1985; 40: 78–82.

    Google Scholar 

  317. Overgaard S, Lokkegaard N, Scroder S, Fugleberg S, Nielsen-Kudsk F. Cefotaxime disposition pharmacokinetics during peritoneal dialysis. Pharmacol Toxicol 1987; 60: 321–4.

    PubMed  CAS  Google Scholar 

  318. Raap CM, Nahata MC, Mentser MA, Mahan JD, Puri SK, Hubbard JA. Cefotaxime and metabolite disposition in two pediatric continuous ambulatory peritoneal dialysis patients. Ann Pharmacother 1992; 26: 341–3.

    Google Scholar 

  319. Bald M, Rascher W, Bonzel KA, Muller-Wiefel DE. Pharmacokinetics of intraperitoneal cefotaxime in children with peritonitis undergoing continuous ambulatory peritoneal dialysis. Perit Dial Int 1990; 10: 311–13.

    PubMed  CAS  Google Scholar 

  320. Browning MJ, Holt HA, White LO et al. Pharmacokinetics of cefotetam in patients with end-stage renal failure on maintenance dialysis. J Antimicrob Chemother 1986; 18: 103–6.

    PubMed  CAS  Google Scholar 

  321. Brouard R, Tozer TN, Merdjan H, Guillemin A, Beaumelou A. Transperitoneal movement and pharmacokinetics of cefotiam and cefsulodin in patients on continuous ambulatory peritoneal dialysis. Clin Nephrol 1988; 30: 197–206.

    PubMed  CAS  Google Scholar 

  322. Greaves WL, Kreeft JH, Ogilvie RI, Richards GK. Cefoxitin disposition during peritoneal dialysis. Antimicrob Agents Chemother 1981; 22: 253–5.

    Google Scholar 

  323. Arvidsson A, Alvan G, Tranaeus A, Malmborg AS. Pharmacokinetic studies of cefoxitin in continuous ambulatory peritoneal dialysis. Eur J Clin Pharmacol 1985; 28: 333–7.

    PubMed  CAS  Google Scholar 

  324. Veys N, Lameire N, Malerczyk V, Lehr K, Rozenkranz B. Single dose pharmacokinetics of Cefpirome in hemodialysed patients and patients treated by CAPD. Clin Pharmacol Ther 1993; 54: 395–401.

    PubMed  CAS  Google Scholar 

  325. Ryckelynck JP, Vergnaud M, Hurault de Ligny B, Allogche G, Malbruny B, Morel C. Pharmacocinétique de la ceftazidime par voie intrapéntonéale en dialyse péritonéale continue ambulatoire. Pathol Biolog 1986; 34: 328–31.

    CAS  Google Scholar 

  326. Comstock TJ, Straughn B, Kraus AP, Meyer MC, Finn AL, Chubb JM. Ceftazidime pharmacokinetics during continuous peritoneal dialysis (CAPD) and intermittent peritoneal dialysis (IPD). Drug Intell Clin Pharm 1983; 17: 453 (abstract).

    Google Scholar 

  327. Stea S, Bachelor T, Cooper M, de Souza P, Koenig K, Bolton WK. Disposition and bioavailability of ceftazidime after intraperitoneal administration in patients receiving continuous ambulatory peritoneal dialysis. J Am Soc Nephrol 1996; 7: 2399–402.

    PubMed  CAS  Google Scholar 

  328. Grabe DW, Bailie GR, Eisele G, Frye RF. Pharmacokinetics of intermittent intraperitoneal ceftazidime. Am J Kidney Dis 1999; 33: 111–17.

    PubMed  CAS  Google Scholar 

  329. Gross ML, Somani P, Ribner BS, Raeader R, Freimer EH, Higgins JT. Ceftizoxime elimination kinetics in continuous ambulatory peritoneal dialysis. Clin Pharmacol Ther 1983; 34: 673–80.

    PubMed  CAS  Google Scholar 

  330. Burgess ED, Blair AD. Pharmacokinetics of ceftizoxime in patients undergoing continuous ambulatory peritoneal dialysis. Antimicrob Agents Chemother 1983; 24: 237–9.

    PubMed  CAS  Google Scholar 

  331. Albin HC, Ragnaud JM, Demotes-Mainrad FM, Vincon GA, Couzineau M, Wone C. Pharmacokinetics of intravenous and intraperitoneal ceftriaxone in chronic ambulatory peritoneal dialysis. Eur J Clin Pharmacol 1986; 31: 479–83.

    PubMed  CAS  Google Scholar 

  332. Tomino Y, Fukui M, Hamada C, Inoue S, Osada S. Pharmacokinetics of cefdinir and its transfer to dialysate in patients with chronic renal failure undergoing continuous ambulatory peritoneal dialysis. Arzneim Forsch/Drug Res 1998; 48: 862–7.

    CAS  Google Scholar 

  333. Johnson CA, Taylor III CA, Zimmerman SW et al. Pharmacokinetics of quinupristin-dalfopristin in continuous ambulatory peritoneal dialysis patients. Antimicrob Agents Chemother 1999; 43: 152–6.

    PubMed  CAS  Google Scholar 

  334. Favre H, Probst P. Pharmacokinetics of ceftriaxone after intravenous and intraperitoneal ceftriaxone after intravenous administration to CAPD patients with and without peritonitis. Chemoterapia 1987; 6 (suppl. 2): 273–4.

    CAS  Google Scholar 

  335. Zaruba K, Rastorfer M, Probst P. Pharmacokinetics of ceftriaxone in continuous ambulatory peritoneal dialysis patients after intraperitoneal administration. Chemoterapia 1987; 6 (suppl. 6): 267–70.

    CAS  Google Scholar 

  336. Koup JR, Keller E, Neumann H, Stoeckel K. Ceftriaxone pharmacokinetics during peritoneal dialysis. Eur J Clin Pharmacol 1986; 30: 303–7.

    PubMed  CAS  Google Scholar 

  337. Ti TY, Fortin L, Kreeft JH, East DS, Ogilvie RI, Somerville PJ. Kinetic disposition of intravenous ceftriaxone in normal subjects and patients with renal failure on hemodialysis or peritoneal dialysis. Antimicrob Agents Chemother 1984; 25: 83–7.

    PubMed  CAS  Google Scholar 

  338. Chan MK, Browning AK, Poole CMJ et al. Cefuroxime pharmacokinetics in continuous and intermittent peritoneal dialysis. Nephron 1985; 41: 161–5.

    PubMed  CAS  Google Scholar 

  339. Dahl K, Walstad RA, Wideröe TE. The effect of peritonitis on the transperitoneal transport of cefuroxime in patients on CAPD treatment. Nephrol Dial Transplant 1990; 5: 272–81.

    Google Scholar 

  340. Davis GM, Forland SC, Cutler RE. Serum and dialysate concentrations of cephalexin following repeated dosing in CAPD patients. Am J Kidney Dis 1985; 6: 177–80.

    PubMed  CAS  Google Scholar 

  341. Munch R, Steurer J, Luthy R, Siegenthaler W, Kuhlmann U. Serum and dialysate concentrations of intraperitoneal cephalothin in patients undergoing chronic ambulatory peritoneal dialysis. Clin Nephrol 1983; 20: 40–3.

    PubMed  CAS  Google Scholar 

  342. Johnston CA, Welling PG, Zimmerman SW. Pharmacokinetics of oral cephradine in continuous ambulatory peritoneal dialysis patients. Clin Nephrol 1984; 35: 57–61.

    Google Scholar 

  343. Singlas E, Boutron HF, Merdjan J, Brocard JF, Pocheville M, Fries D. Moxolactam kinetics during chronic ambulatory peritoneal dialysis patients. Clin Pharmacol Ther 1983; 34: 403–7.

    PubMed  CAS  Google Scholar 

  344. Jones TE, Milne RW, Mudaliar Y, Sansom LN. Moxolactam kinetics during continuous ambulatory peritoneal dialysis after intraperitoneal administration. Antimicrob Agents Chemother 1985; 28: 293–8.

    PubMed  CAS  Google Scholar 

  345. Morse G, Janicke D, Cafarell R et al. Moxolactam epimer disposition in patients undergoing continuous ambulatory peritoneal dialysis. Clin Pharmacol Ther 1985; 38: 150–6.

    PubMed  CAS  Google Scholar 

  346. Pancorbo S, Compty C. Peritoneal transport of vancomycin in 4 patients undergoing continuous ambulatory peritoneal dialysis. Nephron 1982; 31: 37–9.

    PubMed  CAS  Google Scholar 

  347. Bunke CM, Aronoff GR, Brier ME, Sloan RS, Luft FC. Tobramycin kinetics during continuous ambulatory peritoneal dialysis. Clin Pharmacol Ther 1983; 34: 110–16.

    PubMed  CAS  Google Scholar 

  348. Blevins RD, Halstenson CE, Salem NG, Matzke GR. Pharmacokinetics of vancomycin in patients undergoing continuous ambulatory peritoneal dialysis. Antimicrob Agents Chemother 1984; 25: 603–6.

    PubMed  CAS  Google Scholar 

  349. Rogge MC, Johnston CA, Zimmerman SW, Welling PG. Vancomycin disposition during continuous ambulatory peritoneal dialysis: a pharmacokinetic analysis of peritoneal drug transport. Antimicrob Agents Chemother 1985; 27: 578–82.

    PubMed  CAS  Google Scholar 

  350. Mounier M, Benevent D, Denis F. Pharmacocinétique de la vancomycine chez les patients insufficants renaux chroniques en dialyse péritonéale continue ambulatoire. Pathol Biolog 1985; 33: 542–4.

    CAS  Google Scholar 

  351. Whitby M, Edwards R, Astan E, Finck RG. Pharmacokinetics of single dose intravenous vancomycin in CAPD peritonitis. J Antimicrob Chemother 1987; 19: 351–7.

    PubMed  CAS  Google Scholar 

  352. Suzuki K, Twardowski ZJ, Nolph KD, Khanna R. Absorption of iron dextran from the peritoneal cavity of rats. Adv Petit Dial 1995; 11: 57–9.

    CAS  Google Scholar 

  353. Neal D, Bailie GR. Clearance from dialysate and equilibration of intraperitoneal vancomycin in continuous ambulatory peritoneal dialysis. Clin Pharmacokin 1990; 18: 485–90.

    CAS  Google Scholar 

  354. Rubin J. Vancomycin absorption from the peritoneal cavity during dialysis-related peritonitis. Petit Dial Int 1990; 10: 283–5.

    CAS  Google Scholar 

  355. Traina GL, Gentile MG, Fellin G et al. Pharmacokinetics of teicoplanin in patients on continuous ambulatory peritoneal dialysis. Eur J Clin Pharmacol 1986; 31: 501–4.

    PubMed  CAS  Google Scholar 

  356. Jankneght R, Koelman HH, Nube MJ. Pharmacokinetics of rifampicin and teicoplanin during CAPD. Med Sci Res 1987; 15: 171–2.

    Google Scholar 

  357. Bonati M, Traina GL, Rosina R. Pharmacokinetics of intraperitoneal teicoplanin in patients with chronic renal failure on continuous ambulatory peritoneal dialysis. Br J Clin Pharmacol 1988; 25: 761–6.

    PubMed  CAS  Google Scholar 

  358. Guay DRP, Awni WM, Halstenson CE, Kenny MT, Keane WF, Matzke GR. Teicoplanin pharmacokinetics in patients undergoing continuous ambulatory peritoneal dialysis. Antimicrob Agents Chemother 1989; 33: 2012–15.

    PubMed  CAS  Google Scholar 

  359. Finch RG, Holliday AP, Innes A et al. Pharmacokinetic behavior of intraperitoneal teicoplanin during treatment of peritonitis complicating continuous ambulatory peritoneal dialysis. Antimicrob Agents Chemother 1996; 40 (letter): 1971–2.

    PubMed  CAS  Google Scholar 

  360. Boeschoten EW, Rietra PJGM, Krediet RW, Visser MJ, Arisz L. CAPD peritonitis: a prospective randomized trial of oral versus intraperitoneal treatment with cephradine. J Antimicrob Chemother 1985; 16: 789–97.

    PubMed  CAS  Google Scholar 

  361. Drew PJT, Casewell MW, Desai N, Houang ET, Simpson CN, Marsh F. Cephalexin for the oral treatment of CAPD peritonitis. J Antimicrob Chemother 1984; 13: 153–9.

    PubMed  CAS  Google Scholar 

  362. Knight KR, Polak A, Crump J, Mashell R. Laboratory diagnosis and treatment of CAPD peritonitis. Lancet 1982; 2: 1301–4.

    PubMed  CAS  Google Scholar 

  363. Ragnaud JM, Roche-Béziam MC, Marceau C et al. Traitement des péritonites en dialyse péritonéale continue ambulatoire par une dose unique quotidienne de 1 g de céfotiam par voie intrapéritonéale. Pathol Biol 1986; 34: 512–16.

    PubMed  CAS  Google Scholar 

  364. Gray MK, Goulding S, Eykyn SJ. Intraperitoneal vancomycin and ceftazidime in the treatment of CAPD peritonitis. Clin Nephrol 1985; 23: 81–4.

    PubMed  CAS  Google Scholar 

  365. Beaman M, Solaro L, McGonigle RJS, Michael J, Adu D. Vancomycin and ceftazidime in the treatment of CAPD peritonitis. Nephron 1989; 51: 51–5.

    PubMed  CAS  Google Scholar 

  366. Ragnaud JM, Roche-Béziam MC, Dupon M, Marceau C, Wone C. Traitement des péritonites en dialyse périonéale continue ambulatoire par la ceftriaxone intrapéritonéale. Pathol Biol 1986; 36: 552–6.

    Google Scholar 

  367. Andrassy K. Pharmacokinetics of cefotaxime in dialysis patients. Diagn Microbiol Infect Dis 1995; 22: 85–7.

    PubMed  CAS  Google Scholar 

  368. Morse GD, Janicke DM, Cafarell R et al. Moxolactam epimer disposition in patients undergoing continuous ambulatory peritoneal dialysis. Clin Pharmacol Ther 1985; 38: 150–6.

    PubMed  CAS  Google Scholar 

  369. Bailie GR, Eisele G. Vancomycin in peritoneal dialysis-associated peritonitis. Sem Dial 1996; 9: 417–23.

    Google Scholar 

  370. Van Biesen W, Vanholder R, Vogelaers D et al. The need for a center-tailored treatment protocol for peritonitis. Petit Dial Int 1998; 18: 274–81.

    Google Scholar 

  371. Rowland M. Clinical pharmacokinetics of teicoplanin. Clin Pharmacokin 1990; 18: 184–209.

    CAS  Google Scholar 

  372. Shalit I, Greenwood RB, Marks MI, Pederson JA, Frederick DL. Pharmacokinetics of single dose oral ciprofloxacin in patients undergoing CAPD. Antimicrob Agents Chemother 1986; 30: 152–6.

    PubMed  CAS  Google Scholar 

  373. Golpet TA, Hartstein AI, Morthland VH, Christensen JM. Effects of antacids and dialysate dwell times on multiple-dose pharmacokinetics of oral ciprofloxacin in patients on CAPD. Antimicrob Agents Chemother 1987; 31: 1787–90.

    Google Scholar 

  374. Kowalsky SF, Echols M. Pharmacokinetics of ciprofloxacin in subjects with varying degrees of renal function and undergoing hemodialysis or CAPD. Clin Nephrol 1993; 39: 53–8.

    PubMed  CAS  Google Scholar 

  375. Stuck AE, Frey FJ, Heizmann P, Brandt R, Weideskamm E. Pharmacokinetics and metabolism of intravenous and oral fleroxacin in subjects with normal and impaired renal function and in patients on CAPD. Antimicrob Agents Chemother 1989; 33: 373–81.

    PubMed  CAS  Google Scholar 

  376. Stuck AE, Donbosco K, Frey FJ. Fleroxacin clinical pharamokinetics. Clin Pharmacokin 1992; 22: 116–31.

    CAS  Google Scholar 

  377. Lameire N, Rosenkranz B, Malerczyk V, Lehr KH, Veys N, Ringoir S. Ofloxacin pharmacokinetics in chronic renal failure and dialysis. Clin Pharmacokin 1991; 21: 357–71.

    CAS  Google Scholar 

  378. Passlick J, Wonner R, Keller E, Essers L, Grabensee B. Single and multiple dose kinetics of ofloxacin in patients on CAPD. Petit Dial Int 1989; 9: 267–72.

    CAS  Google Scholar 

  379. Flor S. Pharmacokinetics of ofloxacin. Am J Med 1989; 87 (suppl. 6C): 24–30.

    Google Scholar 

  380. Rosenkranz B, Malerczyk V, Zamba K, Jungbluth H, Lameire N. Pharmacokinetics of ofloxacin in CAPD. Kidney Int 1991; 39: 1239 (abstract).

    Google Scholar 

  381. Kampf D, Borner K, Hain H, Conrad W. Multiple-dose kinetics of ofloxacin after intraperitoneal application in CAPD patients. Petit Dial Int 1991; 11: 317–21.

    CAS  Google Scholar 

  382. Cheng IK, Chau PY, Kumana CR, Chan CY, Kou M, Siu LK. Single-dose paharmacokinetics of intraperitoneal Ofloxacin in patients on continuous ambualtory peritoneal dialysis. Petit Dial Int 1993; 13 (suppl. 2): S383–5.

    Google Scholar 

  383. Lode H, Hoffkin G, Prinineg C et al. Comparative pharmacokinetics of new quinolones. Drugs 1987; 34 (suppl. I): 21–5.

    PubMed  CAS  Google Scholar 

  384. Schmit JL, Hary L, Bou P et al. Pharmacokinetics of singledose intravenous, oral and intraperitoneal pefloxacin in patients on chronic ambulatory peritoneal dialysis. Anti-microb Agents Chemother 1991; 35: 1492–4.

    CAS  Google Scholar 

  385. Nikolaidis P, Walker SE, Dombros N, Tourkantonis A, Paton TW, Oreopoulos DG. Single dose pefloxacin pharmacokinetics and metabolism in patients undergoing continuous ambulatory peritoneal dialysis. Petit Dial Int 1991; 11: 59–63.

    CAS  Google Scholar 

  386. Somani P, Shapiro RS, Stockard H, Higgins JT. Unidirectional absorption of gentamicin from the peritoneum during continuous ambulatory peritoneal dialysis. Clin Pharmacol Ther 1982; 32: 113–21.

    PubMed  CAS  Google Scholar 

  387. Pancorbo S, Comty C. Pharmacokinetics of gentamicin in patients undergoing continuous ambulatory peritoneal dialysis. Antimicrob Agents Chemother 1981; 19: 605–7.

    PubMed  CAS  Google Scholar 

  388. Paton TW, Manuel M, Walker SE. Tobramycin disposition in patients on continuous ambulatory peritoneal dialysis. Petit Dial Bull 1982; 2: 179–81.

    Google Scholar 

  389. Walshe JJ, Morse GD, Janicke DM, Apicella MA. Crossover pharmacokinetic analysis comparing intravenous and intraperitoneal administration of tobramycin. J Infect Dis 1986; 153: 796–9.

    PubMed  CAS  Google Scholar 

  390. Halstenson CE, Matze GR, Comty CM. Intraperitoneal administration of tobramycin during CAPD. Kidney Int 1984; 25: 256 (abstract).

    Google Scholar 

  391. Rubin J. Tobramycin absorption from the peritoneal cavity. Petit Dial Int 1990; 10: 295–7.

    CAS  Google Scholar 

  392. Sennesael JJ, Maes VA, Pierard D, Debeukelaer SH, Verbeelen DL. Streptomycin pharmacokinetics in relapsing mycobacterium xenopi peritonitis. Am J Nephrol 1990; 10: 422–5.

    PubMed  CAS  Google Scholar 

  393. Smeltzer BD, Schwartzman MS, Bertino JS. Amikacin pharmacokinetics during continuous ambulatory peritoneal dialysis. Antimicrob Agents Chemother 1988; 32: 236–40.

    PubMed  CAS  Google Scholar 

  394. Anding K, Krumme B, Pelz K, Bohler J, Hollmeyer P. Pharmacokinetics and bactericidal activity of a single daily dose of netilmicin in the treatment of CAPD-associated peritonitis. Int J Clin Pharmacol Ther Toxicol 1996; 34: 465–9.

    CAS  Google Scholar 

  395. Krediet RT, Boeschoten EW, Arisz L. Kanamycin as marker for middle-molecular solute transport in CAPD patients with and without peritonitis. Blood Purif 1987; 5: 291 (abstract).

    Google Scholar 

  396. Martea M, Hekster YA, Vree TB, Voets AJ, Berden JHM. Pharmacokinetics of cephradine, sulfamethoxazole and trimethoprim and their metabolites in a patient with peritonitis undergoing continuous ambulatory peritoneal dialysis. Pharm Wkbl 1987; 9: 110–16.

    CAS  Google Scholar 

  397. Walker SE, Paton TW, Churchill DN, Ojo B, Manuel M, Wright N. Trimethoprim-sulfamethoxazole pharmacokinetics during continuous ambulatory peritoneal dialysis. Perit Dial Int 1989; 9: 51–5.

    PubMed  CAS  Google Scholar 

  398. Rubin J, Planch A. Absorption of sulfamethoxazole and albumin from the peritoneal cavity. Trans Am Soc Artif Intern Organs 1990; 36: 834–7.

    CAS  Google Scholar 

  399. Bouchet JL, Albin HC, Quentin CL et al. Pharmacokinetics of intravenous and intraperitoneal fosfomycin in continuous ambulatory peritoneal dialysis. Clin Nephrol 1988; 29: 35–40.

    PubMed  CAS  Google Scholar 

  400. Lam YWF, Flaherty JF, Yumena L, Schoenfeld PY, Gambertoglio JF. Roxithromycin disposition in patients on continuous ambulatory peritoneal dialysis. J Antimicrob Chemother 1995; 36: 157–63.

    PubMed  CAS  Google Scholar 

  401. Gerig JS, Bolton ND, Swabb EA, Scheld WM, Bolton WK. Effect of hemodialysis and peritoneal dialysis on aztreonam pharmacokinetics. Kidney Int 1984; 26: 308–18.

    PubMed  CAS  Google Scholar 

  402. Nikolaidis P, Dombros N, Alexion P, Balaskas EV, Tourkantonis A. Pharmacokinetics of aztreonam administered IP in continuous ambulatory peritoneal dialysis patients. Petit Dial Int 1989; 9: 57–9.

    CAS  Google Scholar 

  403. Brown J, Altmann P, Cunningham J, Shaw E, Marsh F. Pharmacokinetics of once daily intraperitoneal aztreonam and vancomycin in the treatment of CAPD peritonitis. J Antimicrob Chemother 1990; 25: 141–7.

    PubMed  CAS  Google Scholar 

  404. Guay DR, Meatherall RC, Baxter H, Jacyk WR, Penner B. Pharmacokinetics of metronidazole in patients undergoing continuous ambulatory peritoneal dialysis. Antimicrob Agents Chemother 1984; 25: 306–10.

    PubMed  CAS  Google Scholar 

  405. Lau AH, Lam NP, Piscitelli SC, Wilkes L, Danziger LH. Clinical pharmacokinetics of metronidazole and other nitroimidazole anti-infectives. Clin Pharmacokin 1992; 23: 328–64.

    CAS  Google Scholar 

  406. Merdjan H, Beaumelou A, Diquet B, Singlas E. Pharmacokinetics of ornidazole in patients with renal insufficiency: influence of hemodialysis and peritoneal dialysis. Br J Clin Pharmacol 1985; 19: 211–17.

    PubMed  CAS  Google Scholar 

  407. Janknegt R. CAPD peritonitis and fluoroquinolones: a review. Petit Dial Int 1991; 11: 53–8.

    Google Scholar 

  408. Nikolaidis P. Quinolones: pharmacokinetics and pharmacodynamics. Petit Dial Int 1993; 13 (suppl. 2): S377–9.

    Google Scholar 

  409. De Fijter CWH, Biemond A, Oe LP et al. Pharmacokinetics of ciprofloxacin after intraperitoneal administration of uninfected patients undergoing CCPD. Adv Petit Dial 1992; 8: 18–21.

    Google Scholar 

  410. Chong TK, Oiraino B. Vestibular toxicity due to gentamicin in peritoneal dialysis patients. Petit Dial Int 1991; 11: 152–5.

    CAS  Google Scholar 

  411. Glew RH, Pavuk RA. Stability of vancomycin and aminoglycoside antibiotics in peritoneal dialysis concentrate. Nephron 1981; 28: 241–3.

    CAS  Google Scholar 

  412. Dratwa M, Glupczynski Y, Lameire N et al. Treatment of Gram-negative peritonitis with aztreonam in patients undergoing continuous ambulatory peritoneal dialysis. Rev Infect Dis 1991; 13: S645–7.

    PubMed  Google Scholar 

  413. Fuiano G, Sepe V, Viscione M, Nani E, Conte G. Effectiveness of single daily intraperitoneal administration of aztreonam and cefuroxime in the treatment of peritonitis in continuous ambulatory peritoneal dialysis. Petit Dial Int 1989; 9: 273–5.

    CAS  Google Scholar 

  414. Cheng IKP, Chan CY, Wong WT. A randomized prospective comparison of oral ofloxacin and intraperitoneal vancomycin plus aztreonam in the treatment of bacterial peritonitis complicating continuous ambulatory peritoneal dialysis. Petit Dial Int 1991; 11: 27–30.

    CAS  Google Scholar 

  415. Seth SK, Visconti JA, Herbert LA, Krasny HC. Acyclovir pharmacokinetics in a patient on continuous ambulatory peritoneal dialysis. Clin Pharmacol 1985; 4: 320–2.

    CAS  Google Scholar 

  416. Shah GM, Winer RL, Krasny HC. Acyclovir pharmacokinetics in a patient on continuous ambulatory peritoneal dialysis. Am J Kidney Dis 1986; 7: 507–10.

    PubMed  CAS  Google Scholar 

  417. Burgess ED, Gill MJ. Intraperitoneal administration of acyclovir in patients receiving continuous ambulatory peritoneal dialysis. J Clin Pharmacol 1990; 30: 997–1000.

    PubMed  CAS  Google Scholar 

  418. Swan SK, Munat MY, Wigger MA, Bennett WM. Pharmacokinetics of ganciclovir in a patient undergoing hemodialysis. Am J Kidney Dis 1991; 17: 69–72.

    PubMed  CAS  Google Scholar 

  419. Alexander AC, Akers A, Matzke GR, Aweeka FT, Fraley DS. Disposition of foscarnet during peritoneal dialysis. Ann Pharmacothex 1996; 30: 1106–9.

    CAS  Google Scholar 

  420. Schwenk MH, Halstenson CE, Simpson ML, Pence TV, Reynolds DJ. Pharmacokinetics of zidovudine in an AIDS patient during continuous ambulatory peritoneal dialysis. Am Coll Clin Pharm 1990; Kansas City: (abstract).

    Google Scholar 

  421. Gallicano KD, Tobe S, Sahai J et al. Pharmacokinetics of single and chronic dose zidovudine in two HIV positive patients undergoing continuous ambulatory peritoneal dialysis. J Acquir Immune Defic Syndr Hum Retrovirol 1992; 5: 242–50 (abstract).

    CAS  Google Scholar 

  422. Knupp CA, Hak LJ, Coakley DF et al. Disposition of didanosine in HIV-seropositive patients with normal renal function or chronic renal failure: influence of hemodialysis and continuous ambulatory peritoneal dialysis. Clin Pharmacol Ther 1996; 60: 535–42.

    PubMed  CAS  Google Scholar 

  423. Kerr CM, Perfect JR, Cran PC et al. Fungal peritonitis in patients on continuous ambulatory peritoneal dialysis. Ann Int Med 1983; 99: 334–7 (abstract).

    PubMed  CAS  Google Scholar 

  424. Fraser AK, O’Connor JP. Peritoneal penetration of amphotericin B. Petit Dial Bull 1984; 4: 265 (abstract).

    Google Scholar 

  425. Debruyne D, Ryckelynck JP, Morelin M et al. Pharmacokinetics of fluconazole in patients undergoing continuous ambulatory peritoneal dialysis. Clin Pharmacokin 1990; 18: 491–8 (abstract).

    CAS  Google Scholar 

  426. Debruyne D, Ryckelynck JP. Fluconazole serum, urine and dialysate levels in CAPD patients. Petit Dial Int 1999; 12: 328–9 (letter).

    Google Scholar 

  427. Cecchin E, Panarello G, de March IS. Fungal peritonitis in ambulatory peritoneal dialysis. Ann Intern Med 1984; 100: 321 (letter).

    Google Scholar 

  428. Jones JM, Greenfeld RA. Administration of flucytosine to a patient on CAPD. Petit Dial Bull 1982; 2: 46–7.

    Google Scholar 

  429. Krediet RT, Boeschoten EW, Struijk DG, Arisz L. Pharmacokinetics of intraperitoneally administered 5-fluorocytosine in continuous ambulatory peritoneal dialysis. Nephrol Dial Transplant 1987; 2: 453 (abstract).

    Google Scholar 

  430. Boelaert J, Schurgers M, Matthys E, Daneels R, van Peer A. Intraconazole pharmacokinetics in patients with renal dysfunction. Antimicrob Agents Chemother 1988; 32: 1595–7.

    PubMed  CAS  Google Scholar 

  431. Doherty D, Seth S, Bay W. Fungal peritonitis and ketoconazole levels in a CAPD patient. Petit Dial Bull 1984; 4: S20 (abstract).

    Google Scholar 

  432. McGuire N, Port FK, Kauffman CA. Ketoconazole pharm-acokinetics in continuous ambulatory peritoneal dialysis. Petit Dial Int 1984; 4: 199–201.

    Google Scholar 

  433. Valainis GT, Morford DW. Ketoconazole levels in peritoneal fluid. Petit Dial Bull 1985; 5: 136 (letter).

    Google Scholar 

  434. Boelaert J, Schurgers M, Daneels R, Van Landuyt HW, Weatherley BC. Multiple dose pharmacokinetics of intravenous acyclovir in patients on continuous ambulatory peritoneal dialysis. J Antimicrob Chemother 1987; 20: 69–76.

    PubMed  CAS  Google Scholar 

  435. Stathoulopoulou F, Almond MK, Dhillon S, Raftery MJ. Clinical pharmacokinetics of oral acyclovir in patients on continuous ambulatory peritoneal dialysis. Nephron 1996; 74: 337–41.

    PubMed  CAS  Google Scholar 

  436. Davenport A, Goel S, Mackenzie JC. Neurotoxicity of acyclovir in patients with end-stage renal failure treated with continuous ambulatory peritoneal dialysis. Am J Kidney Dis 1992; 20: 647–9.

    PubMed  CAS  Google Scholar 

  437. Sommadossi JP, Bevan R, Ling T et al. Clinical pharmacokinetics of ganciclovir in patients with normal and impaired renal function. Rev Infect Dis 1988; 3 (suppl. 10): 507–14.

    Google Scholar 

  438. Kremer D, Munar MY, Kohlhepp SJ et al. Zidovudine pharmacokinetics in five HIV seronegative patients undergoing continuous ambulatory peritoneal dialysis. Pharmacotherapy. 1992; 12: 56–60 (abstract).

    PubMed  CAS  Google Scholar 

  439. Muther RS, Bennett WM. Clearance of amphotericin B and 5-fluorocytosine by peritoneal dialysis. Western J Med 1980; 133: 157–60.

    CAS  Google Scholar 

  440. Peterson LR, Hall WH, Kelty RH, Votava HJ. Therapy of candida peritonitis: penetration of amphotericin B into peritoneal fluid. Postgrad Med J 1978; 54: 340–2.

    PubMed  CAS  Google Scholar 

  441. Kravitz SP, Berry PL. Successful treatment of aspergillus peritonitis in a child undergoing continuous ambulatory peritoneal dialysis. Arch Intern Med 1986; 146: 2061–2.

    PubMed  CAS  Google Scholar 

  442. Khanna R, Oreopoulos DG, Vas S, McCready W, Dombros N. Fungal peritonitis in patients undergoing chronic intermittent or continuous peritoneal dialysis. Proc EDTA 1980; 17: 291–6.

    CAS  Google Scholar 

  443. Rault R. Candida peritonitis complicating chronic peritoneal dialysis. A report of five cases and review of the literature. Am J Kidney Dis 1983; 2: 544–7.

    PubMed  CAS  Google Scholar 

  444. Maher JF, Hirszel B, Chakrabarti EK, Bennett RR. Contrasting effects of amphotericin B and the solvent sodium desoxycholate on peritoneal transport. Nephron 1986; 43: 38–42.

    PubMed  CAS  Google Scholar 

  445. Imholz AL, Koomen GC, Struijk DG, Arisz L, Krediet RT. The effect of amphotericin B on fluid kinetics and solute transport in CAPD patients. Adv Petit Dial 1993; 9: 12–15.

    CAS  Google Scholar 

  446. Eisenberg ES. Intraperitoneal flucytosine in the management of fungal peritonitis in patients on continuous ambulatory peritoneal dialysis. Am J Kidney Dis 1988; 11: 465–7.

    PubMed  CAS  Google Scholar 

  447. Slingeneyer A, Laroche B, Steel F, Canaud B, Beraud JJ, Mion C. Oral ketoconazole plus IP 5-fluorocytosine as a sole treatment of fungal peritonitis in CAPD. Petit Dial Bull 1984; 4: S60 (abstract).

    Google Scholar 

  448. Levine JD, Bernard DB, Idelson BA, Farnham H, Saunders C, Sugar AM. Fungal peritonitis complicating continuous ambulatory peritoneal dialysis: successful treatment with fluconazole, a new orally active antifungal agent. Am J Med 1989; 86: 825–7.

    PubMed  CAS  Google Scholar 

  449. Fabris A, Pellanda MV, Gardin C, Contestabile A, Bolzo-nella R. Pharmacokinetics of antifungal agents. Petit Dial Int 1993; 13, (suppl. 2): S380–2.

    Google Scholar 

  450. Paton TW, Manuel M, Walker SE. Cimetidine disposition in patients on continuous ambulatory peritoneal dialysis. Perit Dial Bull 1982; 2: 73–6.

    Google Scholar 

  451. Kogan FJ, Sampliner RE, Myersohn M, Kazama RM, Hones W, Michael UF. Cimetidine disposition in patients undergoing continuos ambulatory peritoneal dialysis. J Clin Pharmacol 1983; 20: 252–6.

    Google Scholar 

  452. Sica DA, Comstock T, Hayford A, Eshelman F. Ranitidine pharmacokinetics in continuous ambulatory peritoneal dialysis. Eur J Clin Pharmacol 1987; 32: 587–91.

    PubMed  CAS  Google Scholar 

  453. Gladziwa U, Klotz U, Krishna DR, Schmitt H, Glockner WM, Mann H. Pharmacokinetics and dynamics of famotidine in patients with renal failure. Br J Clin Pharmacol 1988; 26: 315–21.

    PubMed  CAS  Google Scholar 

  454. Lazarovitz AI, Page D. Intraperitoneal cisapride for the treatment diabetes with gastroparesis and end-stage renal disease. Nephron 1990; 56: 107–9.

    Google Scholar 

  455. Gladziwa U, Bares R, Klotz U et al. Pharmacokinetics and pharmacodynamics of cisapride in patients undergoing hemodialysis. Clin Pharmacol Ther 1991; 50: 673–81.

    PubMed  CAS  Google Scholar 

  456. Gora ML, Visconti JA, Seth S, Shields B, Bay W. Pharmacokinetics of intrapertoneal metoclopramide in a patient with renal failure. Clin Pharmacol 1992; 11: 174–6.

    CAS  Google Scholar 

  457. Andersson T. Pharmacokinetics, metabolism and interactions of acid pump inhibitors. Clin Pharmacokin 1996; 31: 9–28.

    CAS  Google Scholar 

  458. Barradell LB, Faulds D, McTavish D. Lansoprazole–a review of its pharmacodynamic and pharmacokinetic properties and its therapeutic efficacy in acid-related disorders. Drugs 1992; 44: 225–50.

    PubMed  CAS  Google Scholar 

  459. Fitton A, Wiseman L. Pantoprazole–a review of its pharmacological properties and therapeutic use in acid-related disorders. Drugs 1996; 51: 460–82.

    PubMed  CAS  Google Scholar 

  460. Lameire N, Rosenkranz B, Brockmeier D. Pharmacokinetics of histamine (H2)-receptor antagonists, including roxatidine, in chronic renal failure. Scand J Gastroenterol 1988; 23 (suppl. 146): 100–10.

    Google Scholar 

  461. Naesdal J, Anderson T, Bodemar G, Larrson R, Regardt CG. Pharmacokinetics of C14-omeprazole in patients with impaired renal function. Clin Pharmacol Ther 1986; 40: 344–51.

    PubMed  CAS  Google Scholar 

  462. Howden CW, Payton CD, Meredith A et al. Antisecretory effect and oral pharmacokinetics of omeprazole in patients with chronic renal failure. Eur J Clin Pharmacol 1985; 28: 637–40.

    PubMed  CAS  Google Scholar 

  463. Bedford TA, Rowbotham DJ. Cisapride-drug interactions of clinical significance. Drug Saf 1996; 15: 167–75.

    PubMed  CAS  Google Scholar 

  464. Boelaert JR, Schurgers ML, Matthys EG, Belpaire FM, Daneels RF. Comparative pharmacokinetics of recombinant erythropoietin administration by the intravenous, subcutaneous and intraperitoneal routes in continuous ambulatory peritoneal dialysis patients. Petit Dial Int 1989; 9: 95–8.

    CAS  Google Scholar 

  465. Gah] GM, Passlick J, Pustelnik A, Kampf D, Grabensee B. Intraperitoneal versus intravenous recombinant erythropoietin in stable CAPD patients. Proc 6th Congr EDTA-ERA Gothenburg 1990, 199 (abstract).

    Google Scholar 

  466. Hughes RT, Cotes PM, Oliver DO et al. Correction of anemia of chronic renal failure with erythropoietin: pharmacokinetic studies on hemodialysis and CAPD. Contrib Nephrol 1989; 76: 123–30.

    Google Scholar 

  467. Kampf D, KahlA, Passlick J, Pustelnik A, Eckardt KU. Single-dose kinetics of recombinant human erythropoietin after intravenous, subcutaneous and intraperitoneal administration. Contrib Nephrol 1989; 76: 106–11.

    PubMed  CAS  Google Scholar 

  468. Kromer G, Solf A, Ehmer B, Kaufmann B, Quel1horst E. Single dose pharmacokinetics of recombinant human erythropoietin comparing intravenous, subcutaneous and intraperitoneal administration in IPD patients. Kidney Int 1990; 37: 311.

    Google Scholar 

  469. Macdougall IC, Roberts DE, Neubert P, Dharmasena AD, Coles GA, Williams JD. Pharmacokinetics of recombinant human erythropoietin in patients on continuous ambulatory peritoneal dialysis. Lancet 1989; 1: 425–7.

    PubMed  CAS  Google Scholar 

  470. Stockenhuber F, Loibl U, Gottsauner-Wolf M et al. Pharmacokinetics and dose response after intravenous and subcutaneous administration of recombinant erythropoietin in patients on regular hemodialysis treatment or continuous ambulatory peritoneal dialysis. Nephron 1991; 59: 399–402.

    PubMed  CAS  Google Scholar 

  471. Lui SF, Chung WWM, Leung CB, Chan K, Lai KN. Pharmacokinetics and pharmacodynamics of subcutaneous and intraperitoneal administration of recombinant human erythropoietin in patients on continuous ambulatory peritoneal dialysis. Clin Nephrol 1990; 33: 47–51.

    PubMed  CAS  Google Scholar 

  472. Bargman J, Jones JE, Petro JM. The pharmacokinetics of intraperitoneal erythropoietin administered undiluted or diluted in dialysate. Petit Dial Int 1992; 12: 269–72.

    Google Scholar 

  473. Nissenson AR. Erythropoietin and peritoneal dialysis: the efficacy of intraperitoneal dosing. Petit Dial Int 1992; 12: 350–2.

    CAS  Google Scholar 

  474. Bargman J, Breborowicz A, Rodela H, Sombolos K, Oreopoulos DG. Intraperitoneal administration of recombinant human erythropoietin in uremic animals. Petit Dial Int 1988; 8: 249–52.

    Google Scholar 

  475. Frenken LAM, Struijk DG, Coppens PJ, Tiggeler RG, Krediet RT, Koene RA. Intraperitoneal administration of recombinant human erythropoietin. Petit Dial Int 1992; 12: 378–3.

    CAS  Google Scholar 

  476. Nasu T, Mitui H, Shinohara Y, Hayashida S, Ohtuka H. Effect of erythropoietin in CAPD patients: comparison between intravenous and intraperitoneal administration. Petit Dial Int 1992; 12: 373–7.

    CAS  Google Scholar 

  477. Park SE, Twardowski ZJ, Moore HL, Khanna R, Nolph KD. Chronic administration of iron dextran into the peritoneal cavity of rats. Petit Dial Int 1997; 17: 179–85.

    CAS  Google Scholar 

  478. Pecoits-Filho RFS, Twardowski ZJ, Kim YL, Khanna R, Moore H, Nolph KD. The absence of toxicity in intraperitoneal iron dextran administration: a functional and histological analysis. Petit Dial Int 1998; 18: 64–70.

    CAS  Google Scholar 

  479. Marquardt ED, Ishisaka DY, Batra KK, Chin B. Removal of ethosuximide and phenobarbital by peritoneal dialysis in a child. Clin Pharm 1992; 11: 1030–1.

    PubMed  CAS  Google Scholar 

  480. Hess B, Keusch G, Fluckinger J, Binswanger U. Zur Pharmakokinetik von Phenytoin bei kontinuerlicher ambulanter Peritonealdialyse. Schweiz Med Wochenschr 1984; 114: 16–19.

    PubMed  CAS  Google Scholar 

  481. Jones CL, Vieth R, Spino M et al. Comparisons between oral and intraperitoneal 1,25-dihydroxyvitamin D3 therapy in children treated with peritoneal dialysis. Clin Nephrol 1994; 42: 44–9.

    PubMed  CAS  Google Scholar 

  482. Joffe P, Cintin C, Ladefoged SD, Rasmussen SN. Pharmacokinetics of 1-alpha-hydroxycholecalciferol after intraperitoneal, intravenous and oral administration in patients undergoing peritoneal dialysis. Clin Nephrol 1994; 41: 364–9.

    PubMed  CAS  Google Scholar 

  483. Saha HHT, Ala-Houhala IO, Liukko-Sipi SH, Ylitalo P, Pasternack AI. Pharmacokinetics of clodronate in peritoneal dialysis patients. Petit Dial Int 1998; 204 (abstract 209).

    Google Scholar 

  484. Garzone PD, Kroboth PD. Pharmacokinetics of the newer benzodiazepines. Clin Pharmacokin 1989; 16: 337–64.

    CAS  Google Scholar 

  485. Calvo R, Suarez JM, Rodriguez-Sasiain JM, Martinez I. The influence of renal failure on the kinetics of intravenous midazolam: an `in vitro’ and `in vivo’ study. Res Comm Chem Pathol Pharmacol 1992; 78: 311–20.

    CAS  Google Scholar 

  486. Salvà P, Costa J. Clinical pharmacokinetics and pharmacodynamics of zolpidem–therapeutic implications. Clin Pharmacokin 1995; 29: 142–53.

    Google Scholar 

  487. Price TM, Dupuis RE, Carr BR, Stanczyk FZ, Lobo RA, Droegemueller W. Single-and multiple-dose pharmacokinetics of a low-dose oral contraceptive in women with chronic renal failure undergoing peritoneal dialysis. Am J Obstet Gynecol 1993; 168: 1400–6.

    PubMed  CAS  Google Scholar 

  488. Leaky TEB, Elias-Jones AC, Coates PE, Smith KL. Pharmacokinetics of theophylline and its metabolites during acute renal failure. Clin Pharmacokin 1991; 21: 400–8.

    Google Scholar 

  489. Cefali EA, Poynor WJ, Sica D, Cox S. Pharmacokinetic comparison of flurbiprofen in end-stage renal disease subjects and subjects with normal renal function. J Clin Pharmacol 1991; 31: 814.

    Google Scholar 

  490. Schmith V, Piraino B, Smith RB, Kroboth PD. Alprazolam in end-stage renal disease. J Clin Pharmacol 1991; 31: 571–9.

    PubMed  CAS  Google Scholar 

  491. Bauer TM, Ritz R, Haberthür C et al. Prolonged sedation due to accumulation of conjugated metabolites of midazolam. Lancet 1995; 346: 145–7.

    PubMed  CAS  Google Scholar 

  492. Shany S, Rapoport J, Goligorsky M, Yankowitz N, Zuili I, Chaimovitz C. Losses of 1,25- and 24,25-dihydroxy-cholecalciferol in the peritoneal fluid of patients treated with continuous ambulatory peritoneal dialysis. Nephron 1984; 36: 111–13.

    PubMed  CAS  Google Scholar 

  493. Delmez JA, Dougan CS, Gearing BK et al. The effects of intraperitoneal calcitriol on calcium and parathyroid hormone. Kidney Int 1987; 31: 795–9.

    PubMed  CAS  Google Scholar 

  494. Salusky IB, Goodman WG, Horst R et al. Pharmacokinetics of calcitriol in continuous ambulatory peritoneal and cycling peritoneal dialysis patients. Am J Kidney Dis 1990; 16: 126–32.

    PubMed  CAS  Google Scholar 

  495. Joffe P, Ladefoged SD, Cintin C, Lehmann H. 1-alphahydroxycholecalciferol adsorption to peritoneal dialysis bags: influence of time, glucose concentration, temperature, and albumin. Nephrol Dial Transplant 1992; 7: 1249–51.

    PubMed  CAS  Google Scholar 

  496. Schade DS, Eaton RP, Davis T et al. The kinetics of peritoneal insulin absorption. Metabolism 1981; 30: 149–55.

    PubMed  CAS  Google Scholar 

  497. Nelson JA, Stephen R, Landau ST, Wilson DE, Tyler FH. Intraperitoneal insulin administration produces a positive portal systemic blood insulin gradient in unanesthetized, unrestrained swine. Metabolism 1982; 31: 969–72.

    PubMed  CAS  Google Scholar 

  498. Schade DS, Eaton RP, Friedman N, Spencer W. The intravenous, intraperitoneal and subcutaneous routes of insulin delivery in diabetic man. Diabetes 1979; 28: 1069–72.

    PubMed  CAS  Google Scholar 

  499. Selam JJ, Slingeneyer A, Hedon B, Mares P, Berand JJ, Mirouze J. Long-term ambulatory peritoneal insulin infusion of brittle diabetes with portable pumps: comparison with intravenous and subcutaneous routes. Diabetes Care 1983; 6: 105–11.

    PubMed  CAS  Google Scholar 

  500. Kritz J, Hagmuller H, Lovett R, Irsigler K. Implanted constant basal rate insulin infusion devices for type 1 (insulin-dependent) diabetic patients. Diabetologica 1983; 25: 78–81.

    CAS  Google Scholar 

  501. Micossi P, Bosi E, Cristallo M et al. Chronic continuous intraperitoneal insulin infusion (CIPII) in type I diabetic patients non-satisfactorily responsive to continuous subcutaneous insulin infusion (CSH). Acta Diabetol Lat 1986; 23: 155–64.

    PubMed  CAS  Google Scholar 

  502. Saudek CD, Selam JL, Pitt HA et al. A preliminary trial of the programmable implantable medication system for insulin delivery. N Engl J Med 1986; 31: 574–9.

    Google Scholar 

  503. Vaag A, Handberg A, Lauritzen M et al. Variation in absorption of NPH-insulin due to intramuscular injection. Diabetes Care 1990; 13: 74–6.

    PubMed  CAS  Google Scholar 

  504. Wredling R, Liu D, Lins PE, Adamson U. Variation of insulin absorption during subcutaneous and intraperitoneal infusion of insulin-dependent diabetic patients with unsatisfactory long-term glycemic response to continuous subcutaneous insulin infusion. Diabète Métab 1991; 17: 456–9.

    PubMed  CAS  Google Scholar 

  505. Balducci A, Slama G, Rottembourg J, Baumelou A, Delage A. Intraperitoneal insulin in uremic diabetics undergoing continuous ambulatory peritoneal dialysis. Br Med J 1981; 283: 1021–3.

    CAS  Google Scholar 

  506. Wideröe TE, Smeby LC, Berg KJ, Jorstad S, Svartas TM. Intraperitoneal (1251) insulin absorption during intermittent and continuous peritoneal dialysis. Kidney Int 1983; 23: 22–8.

    PubMed  Google Scholar 

  507. Peetoom JJ, Willekens FLA, Meinders AE. Absorption and biological effect of intraperitoneal insulin administration in patients with terminal renal failure treated by continuous ambulatory peritoneal dialysis. Neth J Med 1985; 28: 435–1.

    PubMed  CAS  Google Scholar 

  508. Shapiro DJ, Blumenkranz MJ, Levin SR, Coburn JW. Absorption and action of insulin added to peritoneal dialysate in dogs. Nephron 1979; 23: 174–80.

    PubMed  CAS  Google Scholar 

  509. Rubin J, Bell AH, Andrews M, Jones Q, Planck A. Intraperitoneal insulin–a dose responsive curve. Am Soc Artif Intern Organs 1989; 35: 17–21.

    CAS  Google Scholar 

  510. Beardsworth SF, Ahmad R, Terry E, Karim K. Intraperitoneal insulin: a protocol for administration during CAPD and review of published protocol. Petit Dial Bull 1988; 8: 145–51.

    Google Scholar 

  511. Brewer TE, Caldwell FT, Patterson RM, Flanigan WJ. Indwelling peritoneal (Tenckhoff) dialysis catheters–experience with 24 patients. Am J Med 1972; 219: 1011–15.

    CAS  Google Scholar 

  512. Heal MR, England AG. Four years experience with indwelling silastic cannulae for long-term peritoneal dialysis. Br Med J 1973; 4: 596–600.

    PubMed  CAS  Google Scholar 

  513. Lankisch PG, Tonnis JH, Fernandez-Redo E et al. Use of Tenckhoff catheter for peritoneal dialysis in terminal renal failure. Br Med J 1973; 4: 712–13.

    PubMed  CAS  Google Scholar 

  514. Tenckhoff H. Catheter implantation. Dial Transplant 1972; 1: 18–21.

    Google Scholar 

  515. Tenckhoff H. Chronic peritoneal dialysis manual. University of Washington School of Medicine, Seattle, 1974.

    Google Scholar 

  516. Furman KJ, Gomperts ED, Hockley J. Activity of intraperitoneal activity of heparin during peritoneal dialysis. Clin Nephrol 1978; 9: 15–18.

    PubMed  CAS  Google Scholar 

  517. Canavese C, Salomone M, Mangiorotti G et al. Heparin transfer across the rabbit peritoneal membrane. Clin Nephrol 1986; 26: 116–20.

    PubMed  CAS  Google Scholar 

  518. Gotloib L, Grassweller P, Rodella H et al. Experimental models for studies of continuous peritoneal dialysis in uremic rabbits. Nephron 1982; 31: 254–9.

    PubMed  CAS  Google Scholar 

  519. Takahashi S, Shimada A, Okada K et al. Effect of intraperitoneal administration of heparin to patients on continuous ambulatory peritoneal dialysis. Perit Dial Int 1991; 11: 81–3.

    PubMed  CAS  Google Scholar 

  520. Schrader J, Tonnis HJ, Scheler F. Long-term intraperitoneal application of low molecular weight heparin in a continuous ambulatory peritoneal dialysis patient with deep vein thrombosis. Nephron 1986; 42: 83–4.

    PubMed  CAS  Google Scholar 

  521. Tabata T, Shimada H, Emoto M et al. Inhibitor effects of heparin and/or antithrombin III on intraperitoneal fibrin formation in continuous ambulatory peritoneal dialysis. Nephron 1990; 56: 391–5.

    PubMed  CAS  Google Scholar 

  522. Allain P, Chalcil D, Mauras Y et al. Pharmacokinetics of desferrioxamine and of its iron and aluminum chelates in patients on peritoneal dialysis. Clin Chim Acta 1988; 173: 313–16.

    PubMed  CAS  Google Scholar 

  523. Falk RJ, Mattem WD, Lamanna RW et al. Iron removal during continuous ambulatory peritoneal dialysis. Kidney Int 1983; 24: 110–12.

    PubMed  CAS  Google Scholar 

  524. Payton D, Junor BJR, Fell GS. Successful treatment of aluminium encephalopathy by intraperitoneal desferrioxamine. Lancet 1984; 1: 1132–3.

    PubMed  CAS  Google Scholar 

  525. Andreoli SP, Dunn D, Demyer W, Sherrard DJ, Bergstein JM. Intraperitoneal deferoxamine therapy for aluminum intoxication in a child undergoing continuous ambulatory peritoneal dialysis. J Pediatr 1985; 107: 760–3.

    PubMed  CAS  Google Scholar 

  526. Hercz G, Salusky IB, Norris KC, Coburn JW. Aluminum removal by peritoneal dialysis: intravenous vs intraperitoneal deferoxamine. Kidney Int 1986; 30: 944–8.

    PubMed  CAS  Google Scholar 

  527. O’Brien AAJ, McParland C, Keogh JAB. The use of intravenous and intraperitoneal desferrioxamine in aluminum osteomalacia. Nephrol Dial Transplant 1987; 2: 117–19.

    PubMed  Google Scholar 

  528. Boeschoten EW, Schrijver J, Krediet RT, Schreuers WHP, Arisz L. Deficiencies of vitamins in CAPD patients: the effect of supplementation. Nephrol Dial Transplant 1988; 2: 187–93.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lameire, N., Van Biesen, W., Hirszel, P., Bogaert, M. (2000). Pharmacological alterations of peritoneal transport rates and pharmacokinetics in peritoneal dialysis. In: Gokal, R., Khanna, R., Krediet, R.T., Nolph, K.D. (eds) Textbook of Peritoneal Dialysis. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3225-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3225-3_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-3227-7

  • Online ISBN: 978-94-017-3225-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics