Skip to main content

The physiology of peritoneal solute transport and ultrafiltration

  • Chapter
Textbook of Peritoneal Dialysis

Abstract

Few studies have been published on the magnitude of the surface area of the peritoneum. Wegener mentioned a surface area of 1.72 m2 in one adult woman [1] and Putiloff a value of 2.07 m2 in one adult male [2]. More recent autopsy studies reported lower values [3–5]; the average peritoneal surface area in adults ranged from 1.0 m2 [3] to 1.3 m2 [5]. Using CT scanning in CAPD patients a value of 0.55 m2 has been found [6], but this method needs further validation. Some studies reported relationships between peritoneal surface area and body weight and/or body surface area, while others did not. The ratio between peritoneal surface area and body weight in adults is about half of that found in newborn infants [3]. A difference between adults and infants is barely present when peritoneal surface area is related to body surface area [3].The peritoneal/body surface area averaged 0.6–0.8 in adults, and 0.5–0.6 in infants. About 60% of the peritoneum consists of visceral peritoneum, 10% of which covers the liver, 30% of mesenterium and omentum, and 10% is parietal peritoneum [3–5]. The latter includes the diaphragmatic peritoneum which comprises 3–8% of the total peritoneal surface area. Species differences are present, especially with regard to the contribution of diaphragmatic peritoneum, which is larger in humans than in rodents [5]. The contribution of the various parts of the peritoneum to solute transport during peritoneal dialysis may vary. Evisceration was found to cause a marked reduction in the transport of creatinine in rabbits [7], but not in rats [8, 9]. Effective peritoneal dialysis has been described in a neonate with extensive resection of the small intestine [10]. It has been hypothesized that the peritoneum covering the liver might be especially important in solute transport during peritoneal dialysis, because of the close proximity with the liver sinusoids, but this could not be confirmed in experimental studies in rats [11, 12]. The diaphragmatic part of the peritoneum is especially involved in the absorption of solutes and fluid from the peritoneal cavity into the lymphatic system [13]. Observations in rats have shown that the peritoneal surface area increases with the age of the animals, with a proportional increase in dialysate/plasma (D/P) ratios of urea and creatinine [14].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wegener G. Chirurgische Bemerkungen über die peritoneale Hole, mit besondere Berucksichtigung der Ovariotomie. Arch Klin Chir 1877; 20: 51–9.

    Google Scholar 

  2. Putiloff PV. Materials for the study of the laws of growth of the human body in relation to the surface area: the trial on Russian subjects of planigraphic anatomy as a mean of exact anthropometry. Presented at the Siberian branch of the Russian Geographic Society, Omsk, 1886.

    Google Scholar 

  3. Esperanca MJ, Collins DL. Peritoneal dialysis efficiency in relation to body weight. J Paediatr Surg 1966; 1: 162–9.

    Google Scholar 

  4. Rubin JL, Clawson M, Planch A, Jones Q. Measurements of peritoneal surface area in man and rat. Am J Med Sci 1988; 245: 453–8.

    Google Scholar 

  5. Pawlaczyk K, Kuzlan M, Wieczorowska-Tobis K et al. Species-dependent topography of the peritoneum. Adv Petit Dial 1996; 12: 3–6.

    CAS  Google Scholar 

  6. Chagnac A, Herskovitz P, Hamel I, Weinstein T, Hirsch J, Gafter U. Measurement of the peritoneal membrane surface area (PMSA) in PD patients: further validation of the method. J Am Soc Nephrol 1998; 9: 190A (abstract).

    Google Scholar 

  7. Bell JL, Leypoldt JK, Frigon RP, Henderson LW. Hydraulically-induced convective solute transport across the rabbit peritoneum. Kidney Int 1990; 38: 19–27.

    PubMed  CAS  Google Scholar 

  8. Rubin J, Jones Q, Planch A, Stanek K. Systems of membranes involved in peritoneal dialysis. J Lab Clin Med 1987; 110: 448–53.

    PubMed  CAS  Google Scholar 

  9. Fox SD, Leypoldt JK, Henderson LW. Visceral peritoneum is not essential for solute transport during peritoneal dialysis. Kidney Int 1991; 40: 612–20.

    PubMed  CAS  Google Scholar 

  10. Alon U, Bar-Maor JA, Bar-Joseph G. Effective peritoneal dialysis in an infant with extensive resection of the small intestine. Am J Nephrol 1988; 8: 65–7.

    PubMed  CAS  Google Scholar 

  11. Flessner MF. Small solute transport across specific peritoneal tissue surfaces in the rat. J Am Soc Nephrol 1996; 7: 225–32.

    PubMed  CAS  Google Scholar 

  12. Zakaria ER, Carlsson O, Sjunnesson H, Rippe B. Liver is not essential for solute transport during peritoneal dialysis. Kidney Int 1996; 50: 298–303.

    PubMed  CAS  Google Scholar 

  13. Khanna R, Mactier R, Twardowski ZJ, Nolph KD. Peritoneal cavity lymphatics. Petit Dial Bull 1986; 6: 113–21.

    Google Scholar 

  14. Kuzlan M, Pawlaczyk K, Wieczorowska-Tobis K, Korybalska K, Breborowicz A, Oreopoulos DG. Peritoneal sarface area and its permeability in rats. Petit Dial Int 1997; 17: 295–300.

    CAS  Google Scholar 

  15. Granger DN, Ulrich M, Perry MA, Kvietys PR. Peritoneal dialysis solutions and feline splanchnic blood flow. Clin Exp Pharmacol Physiol 1984; 11: 473–82.

    PubMed  CAS  Google Scholar 

  16. Rippe B, Stelin G, Haraldsson B. Understanding the kinetics of peritoneal transport. In: Hatano M, ed. Nephrology. Tokyo, Springer, 1991, pp. 1563–72.

    Google Scholar 

  17. Rippe B, Stelin G, Haraldsson B. Computer simulations of peritoneal fluid transport in CAPD. Kidney Int 1991; 40: 315–25.

    PubMed  CAS  Google Scholar 

  18. Haraldsson B. Assessing the peritoneal dialysis capacities of individual patients. Kidney Int 1995; 47: 1187–98.

    PubMed  CAS  Google Scholar 

  19. Douma CE, Imholz ALT, Struijk DG, Krediet RT. Similarities and differences between the effects of amino acids and nitroprusside on peritoneal permeability during CAPD. Blood Purif 1998; 16: 57–65.

    PubMed  CAS  Google Scholar 

  20. Nolph KD, Miller F, Rubin J, Popovich R. New directions in peritoneal dialysis concepts and applications. Kidney Int 1980; 18 (suppl. 10): S111–16.

    Google Scholar 

  21. Flessner MF. Peritoneal transport physiology: insights from basic research. J Am Soc Nephrol 1991; 2: 122–35.

    PubMed  CAS  Google Scholar 

  22. Nagel W, Kuschinsky W. Study of the permeability of the isolated dog mesentery. Eur J Clin Invest 1970; 1: 149–54.

    PubMed  CAS  Google Scholar 

  23. Rasio EA. Metabolic control of permeability in isolated mesentery. Am J Physiol 1974; 226: 962–8.

    PubMed  CAS  Google Scholar 

  24. Frokjaer-Jensen J, Christensen O. Potasium permeability of the mesothelium of frog mesentery. Acta Physiol Scand 1979; 105: 228–38.

    PubMed  CAS  Google Scholar 

  25. Flessner MF, Dedrick RL, Schulz JS. Exchange of macromolecules between peritoneal cavity and plasma. Am J Physiol 1985; 248: H15–25.

    PubMed  CAS  Google Scholar 

  26. Flessner MF, Fenstermacher JD, Blasberg RG, Dedrick RL. Peritoneal absorption of macromolecules stadied by quantitative autoradiography. Am J Physiol 1985; 248; H26–32.

    PubMed  CAS  Google Scholar 

  27. Flessner MF. Osmotic barrier of the parental peritoneum. Am J Physiol 1994; 267 (Renal Fluid Electrolyte Physiol 36): F861–70.

    PubMed  CAS  Google Scholar 

  28. Wiederhielm CA. The interstitial space. In: Fung YC, Perrone N, Andeker M, eds. Biomechanics: its foundations and objectives. Englewood Cliffs, NJ: Prentice-Hall, 1972, pp. 273–286.

    Google Scholar 

  29. Baron MA. Structure of the interstitial peritoneum in man. Am J Anat 1941; 69: 439–96.

    Google Scholar 

  30. Williams PL, Warwick R, Dyson M, Bannister CH. Gray’s anatomy, 37th edn. Edinburgh: Churchill Livingstone, 1989, p. 1336.

    Google Scholar 

  31. Di Fiore MSH. Atlas of human histology. Philadelphia, PA: Lea and Febiger, 1981.

    Google Scholar 

  32. Flessner MF, Fenstermacher JD, Dedrick RL, Blasberg RG. A distributed model of peritoneal-plasma transport. Tissue concentration gradients. Am J Physiol 1985; 248: F425–35.

    PubMed  CAS  Google Scholar 

  33. Fox JR, Wayland H. Interstitial diffusion of macromolecules in the rat mesentery. Microvasc Res 1979; 18: 255–76.

    PubMed  CAS  Google Scholar 

  34. Grotte G. Passage of dextran molecules across the blood-lymph barrier. Acta Chir Scand 1956; 211 (suppl.): 1–84.

    CAS  Google Scholar 

  35. Mayerson HS, Wolfram CG, Shirley Jr HH, Wasserman K. Regional differences in capilairy permeability. Am J Physiol 1960; 198: 155–60.

    Google Scholar 

  36. Deen WM, Bridges CR, Brenner BM, Myers BD. Heteroporous model of glomerular size selectivity: application to normal and nephrotic humans. Am J Physiol 1985; 249: F374–89.

    PubMed  CAS  Google Scholar 

  37. Renkin EM. Relation of capillary morphology to transport of fluid and large molecules: a review. Acta Physiol Scand 1979; 463 (suppl.): 81–91.

    CAS  Google Scholar 

  38. Bundgaard M. Transport pathways in capillaries; in search of pores. Annu Rev Physiol 1980; 42: 325–36.

    PubMed  CAS  Google Scholar 

  39. Rippe B, Haraldsson B. Transport of macromolecules across microvascular walls: the two-pore theory. Physiol Rev 1994; 74: 163–219.

    PubMed  CAS  Google Scholar 

  40. Karnovsky MJ. The ultrastructural basis of capillary permeability studied with peroxidase as a tracer. J Cell Biol 1967; 35: 213–36.

    PubMed  CAS  Google Scholar 

  41. Rippe B, Haraldsson B. How are macromolecules transported across the capillary wall? News Physiol Sci 1987; 2: 135–8.

    CAS  Google Scholar 

  42. Simionescu N, Simionescu M, Palade GE. Permeability of muscle capillaries to exogenous myoglobin. J Cell Biol 1973; 57: 424–52.

    PubMed  CAS  Google Scholar 

  43. Simionescu N, Simionescu M, Palade GE. Permeability of muscle capillaries to small heme-peptides. J Cell Biol 1975; 64: 586–607.

    PubMed  CAS  Google Scholar 

  44. Haraldsson B, Johansson BR. Changes in transcapillary exchance induced by perfusion fixation with glutaraldehyde, followed by simultaneous measurements of capillary filtration coefficient, diffusion capacity and albumin clearance. Acta Physiol Scand 1985; 124: 99–106.

    PubMed  CAS  Google Scholar 

  45. Rippe B, Kamiya A, Folkow B. Transcapillary passage of albumin; effects of tissue cooling and of increases in filtration and plasma colloid osmotic pressure. Acta Physiol Scand 1979; 105: 171–87.

    PubMed  CAS  Google Scholar 

  46. Frokjaer-Jensen J. Three-dimensional organization of plasmalemmal vesicles in endothelial cells. An analysis by serial sectioning of frog mesenteric capillaries. J Ultrastruct Res 1980; 73: 9–20.

    PubMed  Google Scholar 

  47. Kohn S, Nagy JA, Dvorak HF, Dvorak AM. Pathways of macromolecular tracer transport across venules and small veins. Structural basis for the hyperpermeability of tumor blood vessels. Lab Invest 1992; 67: 596–607.

    PubMed  CAS  Google Scholar 

  48. QuHong, Nagy JA, Senger Dr, Dvorak HF, Dvorak AM. Ultrastructural localization of vascular permeability factor/ vascular endothelial growth factor (VPF/VEGF) to the abluminal plasma membrane and vesico-vacuolar organelles of tumor microvascular endothelium. J Histochem Cytochem 1995; 43: 381–9.

    Google Scholar 

  49. Dvorak HF, Brown LF, Detmar M, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor, micro-vascular hypepermeability, and angiogenesis. Am J Pathol 1995; 146: 1029–39.

    PubMed  CAS  Google Scholar 

  50. Fox J, Galey F, Wayland H. Action of histamine on the mesenteric microvasculature. Microvasc Res 1980; 19: 108–26.

    PubMed  CAS  Google Scholar 

  51. Henderson LW. Peritoneal ultrafiltration dialysis: enhanced urea transfer using hypertonic peritoneal dialysis fluid. J Clin Invest 1966; 45: 950–5.

    PubMed  CAS  Google Scholar 

  52. Nolph KD, Hano JE, Teschan PE. Peritoneal sodium transport during hypertonic peritoneal dialysis. Ann Intern Med 1969; 70: 931–41.

    PubMed  CAS  Google Scholar 

  53. Rubin J, Klein E, Bower JD. Investigation of the net sieving coefficient of the peritoneal membrane during peritoneal dialysis. ASAIO J 1982; 5: 9–15.

    Google Scholar 

  54. Chen TW, Khanna R, Moore H, Twardowski ZJ, Nolph KD. Sieving and reflection coefficients for sodium salts and glucose during peritoneal dialysis. J Am Soc Nephrol 1991; 2: 1092–100.

    PubMed  CAS  Google Scholar 

  55. Leypoldt JK, Blindauer KM. Peritoneal solvent drag reflection coefficients are within the physiological range. Blood Purif 1994; 12: 327–36.

    PubMed  CAS  Google Scholar 

  56. Rippe B, Perry MA, Granger DN. Permselectivity of the peritoneal membrane. Microvasc Res 1985; 29: 89–102.

    PubMed  CAS  Google Scholar 

  57. Krediet RT, Imholz ALT, Struijk DG, Koomen GCM, Arisz L. Ultrafiltration failure in continuous ambulatory peritoneal dialysis. Petit Dial Int 1993; 13 (suppl. 2): S59–66.

    Google Scholar 

  58. Zakaria ER, Rippe B. Osmotic barrier properties of the rat peritoneal membrane. Acta Physiol Scand 1993; 149: 355–64.

    PubMed  CAS  Google Scholar 

  59. Imholz ALT, Koomen GCM, Struijk DG, Arisz L, Krediet RT. Fluid and solute transport in CAPD patients using ultra-low sodium dialysate. Kidney Int 1994; 46: 333–40.

    PubMed  CAS  Google Scholar 

  60. Leypoldt JK. Interpreting peritoneal osmotic reflection coefficients using a distributed model of peritoneal transport. Adv Petit Dial 1993; 9: 3–7.

    CAS  Google Scholar 

  61. Rippe B, Stelin G. Simulations of peritoneal solute transport during CAPD. Application of two-pore formalism. Kidney Int 1989; 35: 1234–44.

    PubMed  CAS  Google Scholar 

  62. Stelin G, Rippe B. A phenomenological interpretation of the variation in dialysate volume with dwell time in CAPD. Kidney Int 1990; 38: 465–72.

    PubMed  CAS  Google Scholar 

  63. Ho-dac-Pannekeet MM, Schouten N, Langedijk MJ et al. Peritoneal transport characteristics with glucose polymer based dialysate. Kidney Int 1996; 50: 979–86.

    PubMed  CAS  Google Scholar 

  64. Preston GM, Carroll TP, Guggino WB, Agre P. Appearance of water channels in Xenopus oocytes expressing red cell CHIP 28 protein. Science, Washington DC 1992; 256: 385–7.

    CAS  Google Scholar 

  65. Dempster JA, van Hoek AN, van Os CH. The quest for water channels. News Physiol Sci 1992; 7: 172–6.

    CAS  Google Scholar 

  66. Nielsen S, Agre P. The aquaporin family of water channels in the kidney. Kidney Int 1995; 48: 1057–68.

    PubMed  CAS  Google Scholar 

  67. Agre P, Preston GM, Smith BL et al. Aquaporin CHIP: the archetypal molecular water channel. Am J Physiol 1993; 265: F463–76.

    PubMed  CAS  Google Scholar 

  68. Pannekeet MM, Mulder JB, Weening JJ, Struijk DG, Zweers MM, Krediet RT. Demonstration of aquaporin-chip in peritoneal tissue of uremic and CAPD patients. Petit Dial Int 1996; 16 (suppl. 1): 554–7.

    Google Scholar 

  69. Hayakawa H, Hasegawa H, Takahashi H, Suzuki M. Kawaguchi Y, Sakai O. Participation of water channels in peritoneal water transport. J Am Soc Nephrol 1995; 6: 511A (abstract).

    Google Scholar 

  70. Akiba P, Ota T, Fushimi K et al. Water channel APQP1, 3 and 4 in the human peritoneum and peritoneal dialysate. Adv Perit Dial 1997; 13: 3–5.

    CAS  Google Scholar 

  71. Goffin E, Combet S, Jamar F, Cosyns J-P, Devuyst O. Expression of aquaporin-1 (AQP1) in a long-term peritoneal dialysis patient with impaired transcellular water transport. Am J Kidney Dis 1999; 33: 383–8.

    PubMed  CAS  Google Scholar 

  72. Ho-dac-Pannekeet MM, Krediet RT. Water channels in the peritoneum. Petit Dial Int 1996; 16: 255–9.

    CAS  Google Scholar 

  73. Krepper MA. The aquaporin family of molecular water channels. Proc Natl Acad Sci USA 1994; 91: 6255–8.

    Google Scholar 

  74. Carlsson O, Nielsen S, Zakaria ER, Rippe B. In vivo inhibition of transcellular water channels (aquaporin-1) during acute peritoneal dialysis in rats. Am J Physiol 1996; 271 (Heart Circ Physiol 40): H2254–62.

    PubMed  CAS  Google Scholar 

  75. Zweers MM, Douma CE, van der Wardt AB, Krediet RT, Struijk DG. Amphotericin B, HgC12 and peritoneal transport in rabbits. Perit Dial Int 1998: 18: 141 (abstract).

    Google Scholar 

  76. Krediet RT, Zuyderhoudt FMJ, Boeschoten EW, Arisz L. Alterations in the peritoneal transport of water and solutes during peritonitis in continuous ambulatory peritoneal dialysis patients. Eur J Clin Invest 1987; 17: 43–52.

    PubMed  CAS  Google Scholar 

  77. Krediet RT, Boeschoten EW, Struijk DG, Arisz L. Differences in the peritoneal transport of water, solutes and proteins between dialysis with two-and with three-litre exchanges. Nephrol Dial Transplant 1988; 2: 198–204.

    Google Scholar 

  78. Lasrich M, Maher JM, Hirszel P, Maher JF. Correlation of peritoneal transport rates with molecular weight: a method for predicting clearances. ASAIO J 1979; 2: 107–13.

    Google Scholar 

  79. Nolph KD, Ghods A, Brown P et al.Effects of nitroprusside on peritoneal mass transfer coefficients and microvascular physiology. Trans Am Soc Artif Intern Organs 1977; 23: 210–18.

    CAS  Google Scholar 

  80. Pietrzak I, Hirszel P, Shostak A, Welch PG, Lee RE, Maher JF. Splanchnic volume, not flow rate, determines peritoneal permeability. Trans Am Soc Artif Intern Organs 1989; 35: 583–7.

    PubMed  CAS  Google Scholar 

  81. Leypoldt JK, Frigon RP, De Vore KW, Henderson LW. A rapid renal clearance methodology for dextran. Kidney Int 1987; 31: 855–60.

    PubMed  CAS  Google Scholar 

  82. Granath KA, Kvist BE. Molecular weight distribution analysis by gel chromatography on sephadex. J Chromatogr 1967; 28: 69–81.

    PubMed  CAS  Google Scholar 

  83. Krediet RT, Struijk DG, Zemel D, Koomen GCM, Arisz L. The transport of macromolecules across the human peritoneum during CAPD. In: La Greca G, Ronco C, Feriani M, Chiaramonte S, Conz P, eds. Peritoneal Dialysis. Milan: Wichtig Ed., 1991, pp. 61–9.

    Google Scholar 

  84. Zemel D, Krediet RT, Koomen GCM, Struijk DG, Arisz L. Day-to-day variability of protein transport used as a method for analyzing peritoneal permeability in CAPD. Perit Dial Int 1991; 11: 217–23.

    PubMed  CAS  Google Scholar 

  85. Krediet RT, Zemel D, Struijk DG, Koomen GCM, Arisz L. Individual characterization of the peritoneal restriction barrier to the transport of serum proteins. In: Ota K. Maher JF, Winchester JF, et al.,eds. Current Concepts in Peritoneal Dialysis. Amsterdam: Excerpta Medica, 1992, pp. 49–55.

    Google Scholar 

  86. Krediet RT, Zemel D, Struijk DG, Koomen GCM, Arisz L. Individual characterization of the peritoneal restriction barrier to macromolecules. Adv Petit Dial 1991; 7: 15–20.

    CAS  Google Scholar 

  87. Imholz ALT, Koomen GCM, Struijk DG, Arisz L, Krediet RT. The effect of dialysate osmolarity on the transport of low molecular weight solutes and proteins during CAPD. Kidney Int 1993; 43: 1339–46.

    PubMed  CAS  Google Scholar 

  88. Ho-dac-Pannekeet MM, Koopmans JG, Struijk DG, Krediet RT. Restriction coefficients of low molecular weight solutes and macromolecules during peritoneal dialysis. Adv Petit Dial 1997; 13: 17–22.

    CAS  Google Scholar 

  89. Van den Born J, Van den Heuvel LPWJ, Bakker MAH, Veerkamp JH, Assmann KJ, Berden JHM. A monoclonal antibody against GBM heparan sulfate induces an acute selective proteinuria in rats. Kidney Int 1992; 41: 115–23.

    PubMed  Google Scholar 

  90. Gotloib L, Bar-Sella P, Jaichenko J, Shustack A. Ruthenium-red-stained polyanionic fixed charges in peritoneal microvessels. Nephron 1987; 47: 22–8.

    PubMed  CAS  Google Scholar 

  91. Galdi P, Shostak A, Jaichenko J, Fudin R, Gotloib L. Prot-amine sulfate induces enhanced peritoneal permeability to proteins. Nephron 1991; 57: 45–51.

    PubMed  CAS  Google Scholar 

  92. Alavi N, Lianos E, Andres G, Bentzel CJ. Effect of protamine on the permeability and structure of rat peritoneum. Kidney Int 1982; 21: 44–53.

    PubMed  CAS  Google Scholar 

  93. Krediet RT, Koomen GCM, Koopman MG et al. The peritoneal transport of serum proteins and neutral dextran in CAPD patients. Kidney Int 1989; 35: 1064–72.

    PubMed  CAS  Google Scholar 

  94. Leypoldt JK, Henderson LW. Molecular charge influences transperitoneal macromolecule transport. Kidney Int 1993; 43: 837–44.

    PubMed  CAS  Google Scholar 

  95. Krediet RT, Struijk DG, Koomen GCM et al. Peritoneal transport of macromolecules in patients on CAPD. Contrib Nephrol 1991; 89: 161–74.

    PubMed  CAS  Google Scholar 

  96. Buis B, Koomen GCM, Imholz ALT et al. Effect of electric charge on the transperitoneal transport of plasma proteins during CAPD. Nephrol Dial Transplant 1996; 11: 1113–20.

    PubMed  CAS  Google Scholar 

  97. Haraldsson B. The peritoneal membrane acts as a negatively charged barrier restricting anionic proteins. J Am Soc Nephrol 1993; 4: 407 (abstract).

    Google Scholar 

  98. Gotloib L, Shustuk A, Jaichenko J. Loss of mesothelial electronegative fixed charges during murine septic peritonitis. Nephron 1989; 51: 77–83.

    PubMed  CAS  Google Scholar 

  99. Vernier RL, Steffels MW, Sisson-Ros S, Mauen SM. Heparan sulfate proteoglycan in the glomerular basement membrane in type 1 diabetes mellitus. Kidney Int 1992; 41: 1070–80.

    PubMed  CAS  Google Scholar 

  100. Tamsma JT, Van den Born J, Bruijn JA et al. Expression of glomerular extracellular matrix components in human diabetic nephropathy: decrease of heparan sulphate in the glomerular basement membrane. Diabetologia 1994; 37: 313–20.

    PubMed  CAS  Google Scholar 

  101. Bradley SE. Variations in hepatic flow in man during health and disease. N Engl J Med 1949; 240: 456–61

    PubMed  CAS  Google Scholar 

  102. Aune S. Transperitoneal exchange. Peritoneal blood flow estimated by hydrogen gas clearance. Scand J Gastroenterol 1970; 5: 99–104.

    PubMed  CAS  Google Scholar 

  103. Grzegorzewska AE, Moore HL, Nolph KD, Chen TW. Ultrafiltration and effective peritoneal blood flow during peritoneal dialysis in the rat. Kidney Int 1991; 39: 608–17.

    PubMed  CAS  Google Scholar 

  104. Erbe RW, Greene Jr JA, Weller JM. Peritoneal dialysis during hemorrhagic shock. J Appl Physiol 1967; 22: 131–5.

    PubMed  CAS  Google Scholar 

  105. Greene Jr JA, Lapco L, Weller JM. Effect of drug therapy of hemorrhagic hypotension on kinetics of peritoneal dialysis in the dog. Nephron 1970; 7: 178–83.

    PubMed  CAS  Google Scholar 

  106. Felt J, Richard C, McCaffrey C, Levy M. Peritoneal clearance of creatinine and inulin during dialysis in dogs: effect of splanchnic vasodilators. Kidney Int 1979; 16: 459–69.

    PubMed  CAS  Google Scholar 

  107. Kim M, Lofthouse J, Flessner MF. A method to test blood flow limitation of peritoneal blood solute transport. J Am Soc Nephrol 1997; 8: 471–4.

    PubMed  CAS  Google Scholar 

  108. Kim M, Lofthouse J, Flessner MF. Blood flow limitations of solute transport across the visceral peritoneum. J Am Soc Nephrol 1997; 8: 1946–50.

    PubMed  CAS  Google Scholar 

  109. Maher JF. Transport kinetics in peritoneal dialysis. Petit Dial Bull 1983 (suppl.): S4–6.

    Google Scholar 

  110. Nolph KD, Popovich RP, Ghods AJ, Twardowski ZJ. Determinants of low clearances of small solutes during peritoneal dialysis. Kidney Int 1978; 13: 117–23.

    PubMed  CAS  Google Scholar 

  111. Grzegorzewska AE, Antoniewicz K. An indirect estimation of effective peritoneal capillary blood flow in peritoneally dialyzed uremic patients. Perit Dial Int 1993; 13 (suppl. 2): 539–40.

    Google Scholar 

  112. Douma CE, De Waart DR, Struijk DG, Krediet RT. Effect of aminoacid based dialysate on peritoneal blood flow and permeability in stable CAPD patients: a potential role for nitric oxide? Clin Nephrol 1996; 5: 295–302.

    Google Scholar 

  113. Douma CE, De Waart DR, Struijk DG, Krediet RT. The nitric oxide donor nitroprusside intraperitoneally affects peritoneal permeability in CAPD. Kidney Int 1997; 51: 1885–92.

    PubMed  CAS  Google Scholar 

  114. Douma CE, De Waart DR, Struijk DG, Krediet RT. Are phospholipase A2 and nitric oxide involved in the alterations in peritoneal transport during CAPD peritonitis? J Lab Clin Med 1998; 132: 329–40.

    PubMed  CAS  Google Scholar 

  115. Ronco C, Brendolan A, Braglantini Let al. Studies on ultrafiltration in peritoneal dialysis: influence of plasma proteins and capillary blood flow. Petit Dial Bull 1986; 6: 93–7.

    Google Scholar 

  116. Ronco G, Feriani M, Chiaramonte S et al. Pathophysiology of ultrafiltration in peritoneal dialysis. Petit Dial Int 1990; 10: 119–26.

    CAS  Google Scholar 

  117. Ronco C, Brendolan A, Crepaldi C et al. Ultrafiltration and clearance studies in human isolated peritoneal vascular loops. Blood Purif 1994; 12: 233–42.

    PubMed  CAS  Google Scholar 

  118. Ronco C, Feriani M, Chiaramonte S, Brendolan A, Milan M, La Graeca G. Peritoneal blood flow: does it matter? Petit Dial Int 1996; 16 (suppl. 1): S70–5.

    Google Scholar 

  119. Ronco C. The `nearest capillary’ hypothesis: a novel approach to peritoneal transport physiology. Petit Dial Int 1996; 16: 121–5.

    CAS  Google Scholar 

  120. Malach M. Peritoneal dialysis for intractable heart failure in acute myocardial infarction. Am J Cardiol 1972; 29: 61–3.

    PubMed  CAS  Google Scholar 

  121. Grzegorzewska AE, Antoniewicz K. Peritoneal blood flow and peritoneal transfer parameters during dialysis with administration of drugs. Adv Petit Dial 1995; 11: 28–32.

    CAS  Google Scholar 

  122. Raja RM, Krasnoff O, Moros JG et al. Repeated peritoneal dialysis in the treatment of heart failure. J Am Med Assoc 1970; 213: 1533–5.

    Google Scholar 

  123. Kim D, Khanna R, Wu G, Fountas P, Druck M, Oreopoulos DG. Successful use of continuous ambulatory peritoneal dialysis in refractory heart failure. Petit Dial Bull 1985; 5: 127–30.

    Google Scholar 

  124. Rubin J, Ball R. CAPD as treatment of severe congestive heart failure in the face of chronic renal failure. Arch Intern Med 1986; 146: 1533–5.

    PubMed  CAS  Google Scholar 

  125. Stegmayr BG, Banga R, Lundberg L, Wikdahl A-M, PlumWirell M. PD treatment for severe congestive heart failure. Petit Dial Int 1996; 16 (suppl. 1): 5231–5.

    Google Scholar 

  126. Ryckelynck J-P, Lobbedez T, Valette B et al. Peritoneal ultrafiltration and refractory congestive heart failure. Adv Perit Dial 1997; 13: 93–7.

    PubMed  CAS  Google Scholar 

  127. Durant P-Y, Bénévent D, Issad B, Chanliau J, Kessler M. Peritoneal dialysis in 15 cirrhotic patients with chronic renal failure: long term study. Petit Dial Int 1997; 17 (suppl. 1): S59 (abstract).

    Google Scholar 

  128. Crissinger KD, Granger DN. Gastrointestinal blood flow. In: Yamada T, ed. Textbook of Gastroenterology. Philadelphia, PA: Lippincott, 1991, pp. 447–74.

    Google Scholar 

  129. Brandt JL, Castleman L, Ruskin HD, Greenwald J, Kelly JJ Jr, Jones A. The effect of oral protein and glucose feeding on splanchnic blood flow and oxygen utilization in normal and cirrhotic subjects. J Clin Invest 1955; 34: 1017–25.

    PubMed  CAS  Google Scholar 

  130. Rocha E, Silva M, Rosenberg M. The release of vasopressin in response to haemorrhage and its role in the mechanism of blood pressure regulation. J Physiol (Lond) 1969; 202: 535–57.

    Google Scholar 

  131. Suvannapara A, Levens NR. Local control of mesenteric blood flow by the renin-angiotensin system. Am J Physiol 1988; 225: G267–74.

    Google Scholar 

  132. Rayford PL, Miller TA, Thompson J. Secretin, cholecysto-kinin and newer gastrointestinal hormones. N Engl J Med 1976; 244: 1093–100.

    Google Scholar 

  133. Wade OL, Combes B, Childs AW, Wheeles HO, Cournand A, Bradley SE. The effect of exercise on the splanchnic blood flow and splanchnic blood volume in normal man. Clin Sci 1956; 15: 457–63.

    PubMed  Google Scholar 

  134. Selgas R, Munoz IM, Conesa J et al. Endogenous sympathetic activity in CAPD patients: its relationship to peritoneal diffusion capacity. Petit Dial Bull 1986; 6: 205–8.

    Google Scholar 

  135. Ratge D, Augustin R, Wisser H. Plasma catecholamines and a-and 13-adrenoceptors in circulating blood cells in patients on continuous ambulatory peritoneal dialysis. Clin Nephrol 1987; 28: 15–21.

    PubMed  CAS  Google Scholar 

  136. Zabetakis PM, Kumar DN, Gleim GW et al. Increased levels of plasma renin, aldosterone, catecholamines and vasopres-sin in chronic ambulatory peritoneal dialysis (CAPD) patients. Clin Nephrol 1987; 28: 147–51.

    PubMed  CAS  Google Scholar 

  137. Steinhauer HB, Grunter B, Schollmeyer P. Stimulation of peritoneal synthesis of vasoactive prostaglandins during peritonitis in patients on continuous ambulatory peritoneal dialysis. Eur J Clin Invest 1985; 15: 1–15.

    PubMed  CAS  Google Scholar 

  138. Steinhauer HB, Günter B, Schollmeyer P. Enhanced peritoneal generation of vasoactive prostaglandins during peritonitis in patients undergoing CAPD. In: Maher JF, Winchester JF, eds. Frontiers in Peritoneal Dialysis. New York: Field, Rich, 1986, pp. 604–9.

    Google Scholar 

  139. Steinhauer HB, Schollmeyer P. Prostaglandin-mediated loss of proteins during peritonitis in continuous ambulatory peritoneal dialysis. Kidney Int 1986; 29: 584–90.

    PubMed  CAS  Google Scholar 

  140. Hain H, Jorres A, Gahl M, Pustelnik A, Müller C, Köttgen E. Peritoneal permeability for proteins in uninfected CAPD patients: a kinetic study. In: Ota K et al.,eds. Current Concepts in Peritoneal Dialysis. Amsterdam: Excerpta Medica, 1992, pp. 59–66.

    Google Scholar 

  141. Zemel D, Imholz ALT, De Waart DR, Dinkla C, Struijk DG, Krediet RT. Appearance of tumor necrosis factor a and soluble TNF-receptors I and II in peritoneal effluent of CAPD. Kidney Int 1994; 46: 1422–30.

    PubMed  CAS  Google Scholar 

  142. Shaldon S, Koch KM, Quellhorst E, Dinarello CA. Hazards of CAPD: interleukin-1 production. In: Maher JF, Winchester JF, eds. Frontiers in Peritoneal Dialysis. New York: Field, Rich, 1986, pp. 630–3.

    Google Scholar 

  143. Shaldon S, Dinarello CA, Wyler DJ. Induction of interleukin-1 during CAPD. Contr Nephrol 1987; 57: 207–12.

    CAS  Google Scholar 

  144. Goldman M, Vandenabeele P, Moulart J et al. Intraperitoneal secretion of interleukin-6 during continuous ambulatory peritoneal dialysis. Nephron 1990; 56: 277–80.

    PubMed  CAS  Google Scholar 

  145. Zemel D, ten Berge RJM, Struijk DG, Bloemena E, Koomen GCM, Krediet RT. Interleukin-6 in CAPD patients without peritonitis: relationship to the intrinsic permeability of the peritoneal membrane. Clin Nephrol 1992; 37: 97–103.

    PubMed  CAS  Google Scholar 

  146. Lin CY, Lin CC, Huang TP. Several changes of interleukin-6 and interleukin-8 levels in drain dialysate of uremic patients with continuous ambulatory peritoneal dialysis during peritonitis. Nephron 1993; 63: 404–8.

    PubMed  CAS  Google Scholar 

  147. Zemel D, Koomen GCM, Hart AAM, ten Berge RJM, Struijk DG, Krediet RT. Relationships of THFa, interleukin-6 and prostoglandins to peritoneal permeability for macromolecules during longitudinal follow-up of peritonitis in continuous ambulatory peritoneal dialysis. J Lab Clin Med 1993; 122: 686–96.

    PubMed  CAS  Google Scholar 

  148. Zemel D, Struijk DG, Dinkla C, Stolk LM, ten Berge RJM, Krediet RT. Effects of intraperitoneal cyclooxygenase inhibition in inflammatory mediators in dialysate and peritoneal membrane characteristics during peritonitis in continuous ambulatory peritoneal dialysis. J Lab Clin Med 1995; 126: 204–15.

    PubMed  CAS  Google Scholar 

  149. Douma CE. Nitric oxide and peritoneal permeability in peritoneal dialysis. Thesis. University of Amsterdam, 1997: 105–14.

    Google Scholar 

  150. Zemel D, Krediet RT. Cytokine patterns in the effluent of continuous ambulatory peritoneal dialysis: relationship to peritoneal permeability. Blood Purif 1996; 14: 198–216.

    PubMed  CAS  Google Scholar 

  151. Ho-dac-Pannekeet MM, Krediet RT. Inflammatory changes in vivo during CAPD: what can the effluent tell us? Kidney Int 1996; 50 (suppl. 56): S12–16.

    Google Scholar 

  152. Douma CE, De Waart DR, Zemel D et al. Nitrate in stable CAPD patients and during peritonitis. Adv Petit Dial 1995; 11: 36–40.

    CAS  Google Scholar 

  153. Yang CW, Hwang TL, Wu CH et al. Peritoneal nitric oxide is a marker of peritonitis in patients on continuous ambulatory peritoneal dialysis. Nephrol Dial Transplant 1996; 11: 2466–71.

    PubMed  CAS  Google Scholar 

  154. Miller FN. Effects of peritoneal dialysis on rat microcirculation and peritoneal clearances in man. Dial Transplant 1978; 7: 818–38.

    Google Scholar 

  155. Miller FN. The peritoneal microcirculation. In: Nolph KD, ed. Peritoneal Dialysis, 2nd edn. Boston, MA: Nijhoff, 1985, pp. 51–93.

    Google Scholar 

  156. Miller FN, Nolph KD, Joshua IG, Wiegman DL, Harris PD, Andersen DB. Hyperosmolality, acetate, and lactate: dilatory factors during peritoneal dialysis. Kidney Int 1981; 20: 397–402.

    PubMed  CAS  Google Scholar 

  157. Miller FN, Nolph KD, Joshua IG. The osmolality component of peritoneal dialysis solutions. In: Legrain M, ed. Continuous Ambulatory Peritoneal Dialysis. Amsterdam: Excerpta Medica, 1980, pp. 12–17.

    Google Scholar 

  158. Rubin J, Nolph KD, Arfania D et al. Clinical studies with a nonvasoactive peritoneal dialysis solution. J Lab Clin Med 1979; 93: 910–15.

    PubMed  CAS  Google Scholar 

  159. Miller FN, Nolph KD, Sorkin ML, Gloor HJ. The influence of solute composition on protein loss during peritoneal dialysis. Kidney Int 1983; 23: 35–9.

    PubMed  CAS  Google Scholar 

  160. Struijk DG, Krediet RT, Imholz ALT, Koomen GCM, Arisz L. Fluid kinetics in CAPD patients during dialysis with a bicarbonate based hypoosmolar solution. Blood Purif 1996; 14: 217–26.

    PubMed  CAS  Google Scholar 

  161. Feriani M, Dissegna D, La Graeca G, Passlick-Deetjen J. Short-term clinical study with bicarbonate-containing peritoneal dialysis solution. Petit Dial Int 1993; 13: 296–301.

    CAS  Google Scholar 

  162. Passlick-Deetjen J, Kirchgessner J. Bicarbonate: the alternative buffer for peritoneal dialysis. Petit Dial Int 1996; 16 (suppl. 1): S109–13.

    Google Scholar 

  163. Coles GA, Gokal R, Ogg C et al. A randomized controlled trial of a bicarbonate-and a bicarbonate/lactate-containing dialysis solution in CAPD. Petit Dial Int 1997; 17: 48–51.

    CAS  Google Scholar 

  164. Plum J, Fuszhöller A, Schoenicke G et al. In vivo and in vitro effects of amino-acid-based and bicarbonate-buffered peritoneal dialysis solutions with regard to peritoneal transport and cytokines/prostanoids dialysate concentrations. Nephrol Dial Transplant 1997; 12: 1652–60.

    PubMed  CAS  Google Scholar 

  165. Coles GA, O’Donoghue DJ, Prichard N et al. A controlled trial of two bicarbonate-containing dialysis fluids for CAPD–Final report. Nephrol Dial Transplant 1998; 13: 3165–71.

    PubMed  CAS  Google Scholar 

  166. Graf H, Stumvoll HK, Luger A, Prager R. Effects of amino acid infusion on glomerular filtration rate. N Engl J Med 1983; 308: 159–60.

    PubMed  CAS  Google Scholar 

  167. Ter Wee PM, Geerlings W, Rosman JB, Sluiter WJ, Van der Geest E, Donkey AJM. Testing renal reserve filtration capacity with an amino acid solution. Nephron 1985; 41: 193–9.

    PubMed  Google Scholar 

  168. Tolins JP, Raij L. Effects of amino acid infusion on renal hemodynamics. Role of endothelium-derived relaxing factor. Hypertension 1991; 17: 1045–51.

    PubMed  CAS  Google Scholar 

  169. Krediet RT, Douma CE, Ho-dac-Pannekeet MM et al. Impact of different dialysis solutions on solute and water transport. Petit Dial Int 1997; 17 (suppl. 2): S17–26.

    Google Scholar 

  170. Lindholm B, Werynski A, Bergström J. Peritoneal dialysis with aminoacid solutions: fluid and solute transport kinetics. Artif Org 1988; 12: 2–10.

    CAS  Google Scholar 

  171. Goodship THJ, Lloyd S, McKenzie PW et al. Short-term studies on the use of amino acids as an osmotic agent in continuous ambulatory peritoneal dialysis. Clin Sci 1987; 73: 471–8.

    PubMed  CAS  Google Scholar 

  172. Bruno M, Bagnis C, Marangella M, Rovera L, Cantaluppi A, Linari F. CAPD with an amino acid dialysis solution: a longterm cross-over study. Kidney Int 1989; 35: 1189–94.

    PubMed  CAS  Google Scholar 

  173. Young GA, Dibble JB, Taylor AE, Kendall S, Brownjohn AM. A longitudinal study of the effects of amino acid-based CAPD fluid on amino acid solution and protein losses. Nephrol Dial Transplant 1989; 4: 900–5.

    PubMed  CAS  Google Scholar 

  174. Steinhauwer HB, Lubrick-Birkner I, Kluthe R, Baumann G, Schollmeyer P. Effect of amino-acid based dialysis solution on peritoneal permeability and prostanoid generation in patients undergoing continuous ambulatory peritoneal dialysis. Am J Nephrol 1991; 12: 61–7.

    Google Scholar 

  175. Steinhauer HB, Lubrich-Birkner I, Kluthe R, Hörl WH, Schollmeyer P. Amino acid dialysate stimulator prostaglandin E2 generation in humans. Adv Petit Dial 1988; 4: 21–6.

    Google Scholar 

  176. Waniewski J, Werynski A, Heimbürger O, Park MS, Lindholm B. Effects of alternative osmotic agents on peritoneal transport. Blood Purif 1993; 11: 248–64.

    PubMed  CAS  Google Scholar 

  177. Mistry CD, O’Donoghue DJ, Nelson S, Gokal R, Ballardi FW. Kinetic and clinical studies of 112-microglobulin in continuous ambulatory peritoneal dialysis: influence of renal and enhanced peritoneal clearances using glucose polymer. Nephrol Dial Transplant 1990; 5: 513–19.

    PubMed  CAS  Google Scholar 

  178. Imholz ALT, Brown CB, Koomen GCM, Arisz L, Krediet RT. The effects of glucose polymers on water removal and protein clearances during CAPD. Adv Perit Dial 1993; 9: 25–30.

    PubMed  CAS  Google Scholar 

  179. Krediet RT, Douma CB, Imholz ALT, Koomen GCM. Protein clearance and icodextrin. Petit Dial Int 194; 14 (suppl. 2 ): S39–44.

    Google Scholar 

  180. Hirszel P, Lasrich M, Maher JF. Augmentation of peritoneal mass transport by dopamine. J Lab Clin Invest 1979; 94: 747–54.

    CAS  Google Scholar 

  181. Hirszel P, Maher JF, Le Grow W. Increased peritoneal mass transport with glucagon acting at the vascular surface. Trans Am Soc Artif Intern Organs 1978; 24: 136–8.

    PubMed  CAS  Google Scholar 

  182. Maher JF, Hirszel P, Lasrich M. Effects of gastrointestinal hormones on transport by peritoneal dialysis. Kidney Int 1979; 16: 130–6.

    PubMed  CAS  Google Scholar 

  183. Felt J, Richard C, McCaffrey C, Levy M. Peritoneal clearance of creatinine and inulin during dialysis in dogs: effect of splanchnic vasodilators. Kidney Int 1979; 16: 459–69.

    PubMed  CAS  Google Scholar 

  184. Hare HG, Valtin H, Gosselin RE. Effect of drugs on peritoneal dialysis in the dog. J Pharmacol Exp Ther 1964; 145: 122–9.

    PubMed  CAS  Google Scholar 

  185. Henderson LW, Kintzel JE. Influence of antidiuretic hormone on peritoneal membrane area and permeability. J Clin Invest 1971; 40: 2437–43.

    Google Scholar 

  186. Fox J, Galey F, Wayland H. Action of histamine on the mesenteric microvasculature. Microvasc Res 1980; 19: 108–26.

    PubMed  CAS  Google Scholar 

  187. Miller FN, Joshua IG, Anderson GL. Quantitation of vasodilator-induced macromolecular leakage by in vivo fluorescent microscopy. Microvasc Res 1982; 24: 56–67.

    PubMed  CAS  Google Scholar 

  188. Brown EA, Kliger AS, Goffinet J, Finkelstein FO. Effect of hypertonic dialysate and vasodilators on peritoneal dialysis clearances in the rat. Kidney Int 1978; 13: 271–7.

    PubMed  CAS  Google Scholar 

  189. Shostak A, Chakrabarti E, Hirszel P, Maher JF. Effects of histamine and its receptor antagonists on peritoneal permeability. Kidney Int 1988; 34: 786–90.

    PubMed  CAS  Google Scholar 

  190. Maher JF, Hirszel P, Lasrich M. Modulation of peritoneal transport rates by prostaglandins. Adv Prostagland Thrombox Res 1980; 7: 695–700.

    CAS  Google Scholar 

  191. Hirszel P, Lasrich M, Maher JF. Arachidonic acid increases peritoneal clearances. Trans Am Soc Artif Intern Organs 1981; 27: 61–3.

    PubMed  CAS  Google Scholar 

  192. Maher JF, Hirszel P, Lasrich M. Prostaglandin effects on peritoneal transport. In: Gahl GM, Kessel M, Nolph KD, eds. Advances in Peritoneal Dialysis. Amsterdam: Excerpta Medica, 1981, pp. 64–9.

    Google Scholar 

  193. Nolph KD, Ghods AJ, Van Stone J, Brown PA. The effects of intraperitoneal vasodilators on peritoneal clearances. ASAIO Trans 1976; 22: 586–94.

    CAS  Google Scholar 

  194. Nolph KD, Ghods AJ, Brown PA et al. Effects of nitroprusside on peritoneal mass transfer coefficients and microvascular physiology. ASAIO Trans 1977; 23: 210–18.

    CAS  Google Scholar 

  195. Nolph KD, Ghods AJ, Brown PA, Twardowski ZJ. Effects of intraperitoneal nitropusside on peritoneal clearances in man with variation in dose, frequency of administration and dwell times. Nephron 1979; 24: 114–20.

    PubMed  CAS  Google Scholar 

  196. Lee HB, Park MS, Chung SH et al. Peritoneal solute clearances in diabetics. Perit Dial Int 1990; 10: 85–8.

    PubMed  CAS  Google Scholar 

  197. Miller FN, Joshua IG, Harris PD, Wiegman DL, Jauchem JR. Peritoneal dialysis solutions and the microcirculation. Contrib Nephrol 1979; 17: 51–58.

    PubMed  CAS  Google Scholar 

  198. Douma CE, Zweers MM, De Waart DR, Van der Wardt AB, Krediet RT, Struijk DG. Substrate and inhibitor for nitric oxide synthase during peritoneal dialysis in rabbits. Petit Dial Int 1999; 19 (suppl 2): 5358–64.

    Google Scholar 

  199. Curatola G, Zoccali C, Crucitti S et al. Effect of posture on peritoneal clearance in CAPD patients. Petit Dial Int 1988; 8: 58–9.

    Google Scholar 

  200. Imholz ALT, Koomen GCM, Voorn WJ, Struijk DG, Arisz L, Krediet RT. Day-to-day variability of fluid and solute transport in upright and recumbent positions during CAPD. Nephrol Dial Transplant 1998; 13: 146–53.

    PubMed  CAS  Google Scholar 

  201. Zanozi S, Winchester JF, Kloberdanz N et al. Upright position and exercise lower peritoneal transport rates. Kidney Int 1983; 23: 165.

    Google Scholar 

  202. Otero A, Esteban J, Canovas L. Does posture modify solute transport in CAPD? Petit Dial Int 1992; 12: 399–400.

    CAS  Google Scholar 

  203. Imholz ALT, Koomen GCM, Struijk DG, Arisz L, Krediet RT. Effect of increased intraperitoneal pressure on fluid and solute transport during CAPD. Kidney Int 1993; 44: 1078–85.

    PubMed  CAS  Google Scholar 

  204. Flessner MF, Dedrick RL, Schultz JS. A distributed model of peritoneal plasma transport: theoretical considerations. Am J Physiol 1984; 246: R597–607.

    PubMed  CAS  Google Scholar 

  205. Seasmes EL, Moncrief JW, Popovich RP. A distributed model of fluid and mass transfer in peritoneal dialysis. Am J Physiol 1990; 258: 958–72.

    Google Scholar 

  206. Lysaght MJ, Farrell PC. Membrane phenomena and mass transfer kinetics in peritoneal dialysis. J Membr Sci 1984; 44: 5–53.

    Google Scholar 

  207. Popovich RP, Moncrief JW. Kinetic modeling of peritoneal transport. Contr Nephrol 1974; 17: 59–72.

    Google Scholar 

  208. Pyle WK, Popovich RP, Moncrief JW. Mass transfer in peritoneal dialysis. In: Gahl GM, Kessel M, Nolph KD, eds. Advances in Peritoneal Dialysis. Amsterdam: Excerpta Medica, 1981, pp. 41–6.

    Google Scholar 

  209. Pyle WK. Mass transfer in peritoneal dialysis. Thesis, University of Texas at Austin, University Microfilms International, Ann Arbor, Michigan, 1982.

    Google Scholar 

  210. Randersson DH, Farrell P. Mass transfer properties of the human peritoneum. ASAIO J 1980; 3: 140–6.

    Google Scholar 

  211. Smeby LC, Wideroe T-E, Jorstad S. Individual differences in water transport during continuous peritoneal dialysis. ASAIO J 1981; 4: 17–27.

    Google Scholar 

  212. Henderson LW, Nolph KD. Altered permeability of the peritoneal membrane after using hypertonic peritoneal dialysis fluid. J Clin Invest 1969; 48: 992–1001.

    PubMed  CAS  Google Scholar 

  213. Lindholm B, Werynski A, Bergstrom J. Kinetics of peritoneal dialysis with glycerol and glucose as osmotic agents. ASAIO Trans 1987; 33: 19–27.

    PubMed  CAS  Google Scholar 

  214. Garred LJ, Canaud B, Farrell PC. A simple kinetic model for assessing peritoneal mass transfer in chronic ambulatory peritoneal dialysis. ASAIO J 1983; 6: 131–7.

    Google Scholar 

  215. Krediet RT, Boeschoten EW, Zuyderhoudt FMJ, Strackee J, Arisz L. Simple assessment of the efficacy of peritoneal transport in continuous ambulatory peritoneal dialysis patients. Blood Purif 1986; 4: 194–203.

    PubMed  CAS  Google Scholar 

  216. Waniewski J, Werynski A, Heimbürger O, Lindholm B. Simple models for description of small solute transport in peritoneal dialysis. Blood Purif 1991; 9: 129–41.

    PubMed  CAS  Google Scholar 

  217. Waniewski J, Heimbürger O, Werynski A, Lindholm B. Aqueous solute concentrations and evaluation of mass transport coefficients in peritoneal dialysis. Nephrol Dial Transplant 1992; 7: 50–6.

    PubMed  CAS  Google Scholar 

  218. Lindholm B, Werynski A, Bergström J. Kinetics of peritoneal dialysis with glycerol and glucose as osmotic agents. ASAIO Trans 1987; 10: 19–27.

    Google Scholar 

  219. Heimbürger O, Waniewski J, Werynski A, Traneaus A, Lindholm B. Peritoneal transport in CAPD patients with permanent loss of ultrafiltration capacity. Kidney Int 1990; 38: 495–506.

    PubMed  Google Scholar 

  220. Rubin J, Nolph KD, Arfania D, Brown P, Prowant B. Follow-up of peritoneal clearances in patients undergoing continuous ambulatory peritoneal dialysis. Kidney Int 1979; 16: 619–23.

    PubMed  CAS  Google Scholar 

  221. Heimbürger O, Waniewski J, Werynski A, Park MS, Lindholm B. Dialysate to plasma solute concentration (D/P) versus peritoneal transport parameters in CAPD. Nephrol Dial Transplant 1994; 9: 47–59.

    PubMed  Google Scholar 

  222. Pannekeet MM, Imholz ALT, Struijk DG et al. The standard peritoneal permeability analysis: a tool for the assessment of peritoneal permeability characteristics in CAPD patients. Kidney Int 1995; 48: 866–75.

    PubMed  CAS  Google Scholar 

  223. Davies SJ, Brown B, Bryan J, Russel GI. Clinical evaluation of the peritoneal equilibration test: a population-based study. Nephrol Dial Transplant 1993; 8: 64–70.

    PubMed  CAS  Google Scholar 

  224. Nolph KD. Clinical implications of membrane transport characteristics on the adequacy of fluid and solute removal. Petit Dial Int 1994; 14 (suppl. 3): S78–81.

    Google Scholar 

  225. Twardowski ZJ, Nolph KD, Khanna R et al. Peritoneal equilibration test. Petit Dial Bull 1987; 7: 138–47.

    Google Scholar 

  226. Nolph KD, Twardowski ZJ, Popovich RP, Rubin J. Equilibration of peritoneal dialysis solutions during long-dwell exchanges. J Lab Clin Med 1979; 93: 246–56.

    PubMed  CAS  Google Scholar 

  227. Heimbürger O, Waniewski J, Werynski A, Lindholm B. A quantitative description of solute and fluid transport during peritoneal dialysis. Kidney Int 1992; 41: 1320–32.

    PubMed  Google Scholar 

  228. Canaud B, Liendo-Liendo C, Claret G, Mion H, Mion C. Etude `in situ’ de la cinétique de l’ultrafiltration en cours de dialyse péritoneale avec périodes de diffusion prolongé. Néphrologie 1980; 1: 126–32.

    PubMed  CAS  Google Scholar 

  229. Wang T, Waniewski J, Heimbürger O, Werynski A, Lindholm B. A quantitative analysis of sodium transport and removal during peritoneal dialysis. Kidney Int 1997; 52: 1609–16.

    PubMed  CAS  Google Scholar 

  230. Raja RM, Cantor RE, Boreyko C, Bushehri H, Kramer MS, Rosenbaum JL. Sodium transport during ultrafiltration peritoneal dialysis. Trans Amer Soc Artif Intern Organs 1972; 18: 429–33.

    CAS  Google Scholar 

  231. Nolph KD, Hano JE, Teschan PE. Peritoneal sodium transport during hypertonic peritoneal dialysis. Ann Intern Med 1989; 70: 931–41.

    Google Scholar 

  232. Leypoldt JK, Charney DI, Cheung AK, Naprestek CL, Akin BH, Shockley TR. Ultrafiltration and solute kinetics using low sodium peritoneal dialysate. Kidney Int 1995; 48: 1959–66.

    PubMed  CAS  Google Scholar 

  233. Stryer L. Biochemistry, 2nd edn. Freeman, San Francisco, CA: Freeman, 1981, p. 205.

    Google Scholar 

  234. Nakayama M, Yokoyama K, Kubo H et al. The effect of ultra-low sodium dialysate in CAPD. A kinetic and clinical analysis. Clin Nephrol 1996; 45: 188–93.

    PubMed  CAS  Google Scholar 

  235. Brown ST, Abeam J, Nolph KD. Potassium removal with peritoneal dialysis. Kidney Int 1973; 4: 67–9.

    PubMed  CAS  Google Scholar 

  236. Merchant MR, Hutchinson AJ, Butler SJ, Boulton H, Hincliffe R, Gokal R. Calcium, magnesium mass transfer and lactate balance study in CAPD patients with reduced calcium/magnesium and high lactate dialysis fluid. Adv Petit Dial 1992; 8: 365–8.

    CAS  Google Scholar 

  237. Mattis L, Serkes KD, Nolph KD. Calcium carbonate as a phosphate binder: is there a need to adjust peritoneal dialysate calcium concentrations for patients using CaCO3? Petit Dial Int 1989; 9: 325–8.

    Google Scholar 

  238. Richardson RMA, Roscoe JM. Bicarbonate, L-lactate and D-lactate balance in intermittent peritoneal dialysis. Petit Dial Bull 1986; 6: 178–85.

    Google Scholar 

  239. Uribarri J, Buquing J, Oh MS. Acid-base balance in chronic peritoneal dialysis patients. Kidney Int 1995; 47: 269–73.

    PubMed  CAS  Google Scholar 

  240. Feriani M. Adequacy of acid-base correction in continuous ambulatory peritoneal dialysis patients. Petit Dial Int 1994; 14 (suppl. 3): 5133–8.

    Google Scholar 

  241. Feriani M, Ronco C. La Graeca G. Acid-base balance with different CAPD solutions. Petit Dial Int 1996; 16 (suppl. 1): S126–9.

    Google Scholar 

  242. Krediet RT, Zuyderhoudt FMJ, Boeschoten EW, Arisz L. Peritoneal permeability to proteins in diabetic and non-diabetic continuous ambulatory peritoneal dialysis patients. Nephron 1986; 42: 133–40.

    PubMed  CAS  Google Scholar 

  243. Bonomini V, Zucchelli P, Mioli V. Selective and unselective protein loss in peritoneal dialysis. Proc Eur Dial Transplant Assoc 1967; 4: 146–9.

    Google Scholar 

  244. Taylor AE, Granger DN. Exchange of macromolecules across the microcirculation. In: Renkin EM, Michell CC, eds. Handbook of Physiology. Section 2: The Cardiovascular System. Bethesda, Maryland: American Physiological Society, 1984, pp. 467–520.

    Google Scholar 

  245. Rippe B, Haraldsson B. Fluid and protein fluxes across small and large pores in the microvasculature. Applications of two-pore equations. Acta Physiol Scand 1987; 131: 411–28.

    PubMed  CAS  Google Scholar 

  246. Nolph KD, Miller FN, Pyle WK, Popovich RP, Sorkin MI. An hypothesis to explain the ultrafiltration characteristics of peritoneal dialysis. Kidney Int 1981; 20: 543–48.

    PubMed  CAS  Google Scholar 

  247. Leypoldt JK, Blindauer KM. Convection does not govern plasma to dialysate transport of protein. Kidney Int 1992; 42: 1412–18.

    PubMed  CAS  Google Scholar 

  248. Schaeffer RC Jr, Bitrick MS, Holberg III WC, Katz MA. Macromolecular transport across endothelial monolayers. Int J Microcirc: Clin Exp 1992; 11: 181–201.

    CAS  Google Scholar 

  249. Renkin EM. Relation of capillary morphology to transport of fluid and large molecules: a review. Acta Physiol Scand 1979; (suppl. 463 ): 81–91.

    Google Scholar 

  250. Krediet RT, Boeschoten EW, Struijk DG, Arisz L. Pharmacokinetics of intraperitoneally administered 5-fluorocytosine in continuous ambulatory peritoneal dialysis. Nephrol Dial Transplant 1987; 2: 453.

    Google Scholar 

  251. Krediet RT, Boeschoten EW, Zuyderhoudt FMJ, Arisz L. The relationship between peritoneal glucose absorption and body fluid loss by ultrafiltration during continuous ambulatory peritoneal dialysis. Clin Nephrol 1987; 27: 51–5.

    PubMed  CAS  Google Scholar 

  252. Heaton A, Ward MK, Johnston DG, Nicholson DV, Alberti KGMM, Kerr DNS. Short-term studies on the use of glycerol as an osmotic agent in continuous ambulatory peritoneal dialysis (CAPD). Clin Sci 1984; 67: 121–30.

    PubMed  CAS  Google Scholar 

  253. Williams PF, Marliss EB, Andersson GH et al. Amino acid absorption following intraperitoneal administration in CAPD patients. Petit Dial Bull 1982; 2: 124–30.

    Google Scholar 

  254. Lukas G, Brindle SD, Greengard P. The route of absorption of intraperitoneally administered compounds. J Pharmacol Exp Ther 1971; 178: 562–6.

    PubMed  CAS  Google Scholar 

  255. Babb AL, Johansen PJ, Strand MJ, Tenckhoff H, Scribner BH. Bi-directional permeability of the human peritoneum to middle molecules. Proc Eur Dial Transplant Assoc 1973; 10: 247–61.

    PubMed  CAS  Google Scholar 

  256. Bouchet JL, Albin H, Quentin C et al. Pharmacokinetics of intravenous and intraperitoneal fosfomycin in continuous ambulatory peritoneal dialysis. Clin Nephrol 1988; 29: 35–40.

    PubMed  CAS  Google Scholar 

  257. Janicke DM, Morse GD, Apicella MA, Jusko WJ, Walshe JJ. Pharmacokinetic modelling of bidirectional transfer during peritoneal dialysis. Clin Pharmacol Ther 1986; 40: 209–18.

    PubMed  CAS  Google Scholar 

  258. Struijk DG, Krediet RT, Koomen GCM, Boeschoten EW, Reijden HJ van der, Arisz L. Indirect measurement of lymphatic absorption with inulin in continuous ambulatory peritoneal dialysis (CAPD) patients. Petit Dial Int 1990; 10: 141–5.

    CAS  Google Scholar 

  259. Struijk DG, Imholz ALT, Krediet RT, Koomen GCM, Arisz L. The use of the disappearance rate for the measurement of lymphatic absorption during CAPD. Blood Purif 1992; 10: 182–8.

    PubMed  CAS  Google Scholar 

  260. Krediet RT, Struijk DG, Boeschoten EW, Hoek FJ, Arisz L. Measurement of intraperitoneal fluid kinetics in CAPD patients by means of autologous hemoglobin. Neth J Med 1988; 33: 281–90.

    PubMed  CAS  Google Scholar 

  261. Leypoldt JK, Pust AH, Frigon RP, Henderson LW. Dialysate volume measurements required for determining peritoneal solute transport. Kidney Int 1988; 34: 254–61.

    PubMed  CAS  Google Scholar 

  262. Rubin J, Adair C, Johnson B, Bower J. Stereospecific lactate absorption during peritoneal dialysis. Nephron 1982; 31: 224–8.

    PubMed  CAS  Google Scholar 

  263. Nemoto EM, Severinghaus JW. Stereospecific permeability of rat blood-brain barrier to lactic acid. Stroke 1974; 5: 81–4.

    PubMed  CAS  Google Scholar 

  264. Nolph KD, Twardowski ZJ, Khanna R et al. Tidal peritoneal dialysis with racemic or L-lactate solutions. Petit Dial Int 1990; 10: 161–4.

    CAS  Google Scholar 

  265. Oh MS, Pheleps KR, Traube M, Barbosa-Saldivar JL, Box-hill C, Carrol HJ. D-lactic acidosis in a man with the short-bowel syndrome. N Engl J Med 1979; 301: 249–52.

    PubMed  CAS  Google Scholar 

  266. Stolberg L, Rolfe R, Gitlin N et al. n-lactate acidosis due to abnormal gut flora. N Engl J Med 1982; 306: 1344–48.

    PubMed  CAS  Google Scholar 

  267. Fine A. Metabolism of D-lactate in the dog and in man. Petit Dial Int 1989; 9: 99–101.

    CAS  Google Scholar 

  268. Dixon SR, McKean WI, Pryor JE, Irvine ROH. Changes in acid-base balance during peritoneal dialysis with fluid containing lactate ions. Clin Sci 1970; 39: 51–60.

    PubMed  CAS  Google Scholar 

  269. Gotch FA, Sargent JA, Keen ML. Hydrogen ion balance in dialysis therapy. Artif Organs 1982; 6: 388–395.

    PubMed  CAS  Google Scholar 

  270. Tattersall TE, Dick S, Doyle S, Greenwood RN, Farrington K. Alkalosis and hypomagnesaemia: unwanted effects of a low calcium CAPD solution. Nephrol Dial Transplant 1995; 10: 258–62.

    PubMed  CAS  Google Scholar 

  271. Feriani M, Passlick-Deetjen J, La Graeca G. Factors affecting bicarbonate transfer with bicarbonate-containing CAPD solution. Perit Dial Int 1995; 15: 336–41.

    PubMed  CAS  Google Scholar 

  272. Rottembourg J, Gahl GM, Pognet JL et al. Severe abdominal complications in patients undergoing continuous ambulatory peritoneal dialysis. Proc Eur Dial Transplant Assoc 1983; 20: 236–42.

    PubMed  CAS  Google Scholar 

  273. Slingeneyer A, Mion, Mourad G, Canaud B, Faller B, Béraud JJ. Progressive sclerosing peritonitis: a late and severe complication of maintenance peritoneal dialysis. Trans Am Soc Artif Intern Organs 1983; 29: 633–40.

    PubMed  CAS  Google Scholar 

  274. Rottembourg J, Issad B, Langlois P, de Groc F, Legrain M. Sclerosing encapsulating peritonitis during CAPD. Evaluation of potential risk factors. In: Maher JF, Winchester JF, eds. Frontiers in peritoneal dialysis. New York: Field, Rich, 1986, pp. 643–9.

    Google Scholar 

  275. Pedersen FB, Ryttov N, Deleuran P, Dragsholt C, Kildeberg P. Acetate versus lactate in peritoneal dialysis solutions. Nephron 1985; 39: 55–8.

    PubMed  CAS  Google Scholar 

  276. Khanna R, Mactier R, Twardowski ZJ, Nolph KD. Peritoneal cavity lymphatics. Perit Dial Bull 1986; 6: 113–21.

    Google Scholar 

  277. Gjessing J. The use of dextran as a dialyzing fluid in peritoneal dialysis. Acta Med Scand 1969; 185: 237–9.

    PubMed  CAS  Google Scholar 

  278. Daugirdas JT, Ing TS, Gandhi VC, Hano JE, Chen WT, Yuan L. Kinetics of peritoneal fluid absorption in patients with chronic renal failure. J Lab Clin Med 1980; 95: 351–61.

    PubMed  CAS  Google Scholar 

  279. Rippe B, Stelin G, Ahlmen J. Lymph flow from the peritoneal cavity in CAPD patients. In: Maher JF, Winchester JF, eds. Frontiers in Peritoneal Dialysis. New York: Field, Rich, 1986, pp. 24–30.

    Google Scholar 

  280. Spencer PC, Farrell PC. Solute and water transfer kinetics in CAPD. In: Gokal R, ed. Continuous Ambulatory Peritoneal Dialysis. Edinburgh: Churchill Livingstone, 1986, pp. 38–55.

    Google Scholar 

  281. De Paepe M, Belpaire F, Schelstraete K, Lameire N. Comparison of different volume markers in peritoneal dialysis. J Lab Clin Med 1988; 111: 421–9.

    PubMed  Google Scholar 

  282. Lindholm B, Heimbürger O, Waniewski J, Werynski A, Bergström J. Peritoneal ultrafiltration and fluid reabsorption during peritoneal dialysis. Nephrol Dial Transplant 1989; 4: 805–13.

    PubMed  CAS  Google Scholar 

  283. Mactier RA, Khanna R, Twardowski ZJ, Moore H, Nolph KD. Contribution of lymphatic absorption to loss of ultrafiltration and solute clearances in continuous ambulatory peritoneal dialysis. J Clin Invest 1987; 80: 1311–16.

    PubMed  CAS  Google Scholar 

  284. Krediet RT, Struijk DG, Koomen GCM, Arisz L. Peritoneal fluid kinetics during CAPD measured with intraperitoneal dextran 70. ASAIO Trans 1991; 37: 662–7.

    PubMed  CAS  Google Scholar 

  285. Struijk DG, Koomen GCM, Krediet RT, Arisz L. Indirect measurement of lymphatic absorption in CAPD patients is not influenced by trapping. Kidney Int 1992; 41: 1668–75.

    PubMed  CAS  Google Scholar 

  286. Brouard R, Tozer TN, Baumelou A, Gambertoglio JG. Transfer of autologous haemoglobin from the peritoneal cavity during peritoneal dialysis. Nephrol Dial Transplant 1992; 7: 57–62.

    PubMed  CAS  Google Scholar 

  287. Struijk DG, Bakker JC, Krediet RT, Koomen GCM, Stekkinger P, Arisz L. Effect of intraperitoneal administration of two different batches of albumin solutions on peritoneal solute transport in CAPD patients. Nephrol Dial Transplant 1991; 6: 198–202.

    PubMed  CAS  Google Scholar 

  288. Hirszel P, Shea-Donohue T, Chakrabarti E, Montcalm E, Maher JF. The role of the capillary wall in restricting diffusion of macromolecules. Nephron 1988; 44: 58–61.

    Google Scholar 

  289. Cheek TR, Twardowski ZJ, Moore HL, Nolph KD. Absorption of inulin and high-molecular weight gelatin isocyanate solutions from peritoneal cavity of rats. In: Avram MM, Giordano C, eds. Ambulatory Peritoneal Dialysis. New York: Plenum, 1990, pp. 149–52.

    Google Scholar 

  290. Krediet RT, Struijk DG, Koomen GCM, Hoek FJ, Arisz L. The disappearance of macromolecules from the peritoneal cavity during continuous ambulatory peritoneal dialysis (CAPD) is not dependent on molecular size. Petit Dial Int 1990; 10: 147–52.

    CAS  Google Scholar 

  291. Nolph KD, Mactier R, Khanna R, Twardowski ZJ, Moore H, McGary T. The kinetics of ultrafiltration during peritoneal dialysis: the role of lymphatics. Kidney Int 1987; 32: 219–26.

    PubMed  CAS  Google Scholar 

  292. Rippe B, El Rashied Z. Peritoneal fluid and albumin kinetics in the rat; effects of increases in intraperitoneal hydrostatic pressure. Perit Dial Int 1993; 13 (suppl. 1): S74.

    Google Scholar 

  293. Mactier RA, Khanna R, Twardowski ZJ, Moore H, Nolph KD. Influence of phosphatidylcholine on lymphatic absorption during peritoneal dialysis in the rat. Petit Dial Int 1988; 8: 179–86.

    Google Scholar 

  294. Flessner MF, Parker RJ, Sieber SM. Peritoneal lymphatic uptake of fibrinogen and erythrocytes in the rat. Am J Physiol 1983; 244: H89–96.

    PubMed  CAS  Google Scholar 

  295. Rose BD. Clinical Physiology of Acid-Base and Electrolyte Disorders, 2nd edn. New York:, McGraw-Hill, 1984, p. 33.

    Google Scholar 

  296. Twardowski ZJ, Khanna R, Nolph KD et al. Intra-abdominal pressures during natural activities in patients treated with continuous ambulatory peritoneal dialysis. Nephron 1986; 44: 129–35.

    PubMed  CAS  Google Scholar 

  297. Twardowski ZJ, Prowant BF, Nolph KD, Martinez AJ, Lampton LM. High volume, low frequency continuous ambulatory peritoneal dialysis. Kidney Int 1983; 23: 64–70.

    PubMed  CAS  Google Scholar 

  298. Krediet RT, Koomen GCM, Struijk DG, Van Olden RW, Imholz ALT, Boeschoten EW. Practical methods for assessing dialysis efficiency during peritoneal dialysis. Kidney Int 1994; 46 (suppl. 48): S7–13.

    Google Scholar 

  299. Krediet RT, Boeschoten EW, Zuyderhoudt FMJ, Arisz L. The relationship between peritoneal glucose absorption and body fluid loss by ultrafiltration during continuous ambulatory peritoneal dialysis. Clin Nephrol 1987; 27: 51–5.

    PubMed  CAS  Google Scholar 

  300. Rubin J, Nolph KD, Popovich RP, Moncrieff JW, Prowant B. Drainage volumes during continuous ambulatory peritoneal dialysis. ASAIO J 1979; 2: 54–60.

    Google Scholar 

  301. Alsop RM. History, chemical and pharmaceutical development of icodextrin. Petit Dial Int 1994; 14 (suppl. 2): S5–12.

    Google Scholar 

  302. Mistry CD, Gokal R. Can ultrafiltration occur with a hypoosmolar solution in peritoneal dialysis?: the role for `colloid’ osmosis. Clin Sci 1993; 85: 495–500.

    PubMed  CAS  Google Scholar 

  303. Gokal R, Mistry CD, Peers E, MIDAS Study Group. A United Kingdom multicenter study of icodextrin in continuous ambulatory peritoneal dialysis. Petit Dial Int 1994; 14 (suppl. 2): S22–7.

    Google Scholar 

  304. Douma CE, Hirallall JK, De Waart DR, Struijk DG, Krediet RT. Icodextrin with nitroprusside increases ultrafiltration and peritoneal transport during long CAPD dwells. Kidney Int 1998; 53: 1014–21.

    PubMed  CAS  Google Scholar 

  305. Mistry CD, Gokal R, Peers E, MIDAS Study Group. A randomized multicenter clinical trial comparing isosmolar icodextrin with hyperosmolar glucose solutions in CAPD. Kidney Int 1994; 46: 496–503.

    PubMed  Google Scholar 

  306. Lindholm B, Heimbürger O, Waniewski J, Werynski A, Bergström J. Peritoneal ultrafiltration and fluid reabsorption during peritoneal dialysis. Nephrol Dial Transplant 1989; 4: 805–13.

    PubMed  CAS  Google Scholar 

  307. Kaysen GA, Schoenfeld PY. Albumin homeostasis in patients undergoing continuous ambulatory peritoneal dialysis. Kidney Int 1984; 25: 107–14.

    PubMed  CAS  Google Scholar 

  308. Nagy JA. Lymphatic and nonlymphatic pathways of peritoneal absorption in mice: physiology versus pathology. Blood Purif 1992; 10: 148–62.

    PubMed  CAS  Google Scholar 

  309. Abernathy HJ, Clin W, Hay JB, Rodela H, Oreopoulos D, Johnston MG. Lymphatic removal of dialysate from the peritoneal cavity of anesthetized sheep. Kidney Int 1991; 40: 174–81.

    Google Scholar 

  310. Johnston MG. Studies on lymphatic drainage of the peritoneal cavity in sheep. Blood Purif 1992; 10: 122–31.

    PubMed  CAS  Google Scholar 

  311. Tran LP, Rodella H, Abernathy NJ et al. Lymphatic drainage of hypertonic solution from the peritoneal cavity of anesthetized and conscious sheep. J Appl Physiol 1993; 74: 859–67.

    PubMed  CAS  Google Scholar 

  312. Tran LP, Rodella H, Hay JB, Oreopoulos DG, Johnston MG. Quantitation of lymphatic drainage of the peritoneal cavity in sheep: comparison of direct cannulation techniques with indirect methods to estimate lymph flow. Petit Dial Int 1993; 13: 270–9.

    CAS  Google Scholar 

  313. Drake RE, Gabel JC. Diaphragmatic lymph vessel drainage of the peritoneal cavity. Blood Purif 1992; 10: 132–5.

    PubMed  CAS  Google Scholar 

  314. Shockley TR, Ofsthun NJ. Pathways for fluid loss from the peritoneal cavity. Blood Purif 1992; 10: 115–21.

    PubMed  CAS  Google Scholar 

  315. Tsilibary EC, Wissig SL. Lymphatic absorption from the peritoneal cavity: regulation of patency of mesothelial stomata. Microvasc Res 1983; 25: 22–9.

    PubMed  CAS  Google Scholar 

  316. Abensur H, Romao JE Jr, Brando de Almeida Prado E, Kakahaski E, Sabbaga E, Marcoudes M. Influence of the hydrostatic intraperitoneal pressure and the cardiac function on the lymphatic absorption rate of the peritoneal cavity in CAPD. Adv Petit Dial 1993; 9: 41–5.

    CAS  Google Scholar 

  317. Rippe B. How to measure ultrafiltration failure: 2.27% or 3.86% glucose? Petit Dial Int 1997; 17: 125–128.

    CAS  Google Scholar 

  318. Virga G, Amici G, DaRin G, Vianello A, Calconi G, Da Porto A, Bocci C. Comparison of fast peritoneal equilibration test with 1.36 and 3.86% dialysis solutions. Blood Purif 1994; 12: 113–20.

    PubMed  CAS  Google Scholar 

  319. Krediet RT, Boeschoten EW, Zuyderhoudt FMJ, Arisz L. Peritoneal transport characteristics of water, low molecular weight solutes and proteins during long-term continuous ambulatory peritoneal dialysis. Petit Dial Bull 1986; 6: 61–5.

    Google Scholar 

  320. Imholz ALT, Koomen GCM, Struijk DG, Arisz L, Krediet RT. Residual volume measurements in CAPD patients with exogenous and endogenous solutes. Adv Petit Dial 1992; 8: 33–8.

    CAS  Google Scholar 

  321. Verger C, Larpent L, Celicout B. Clinical significance of ultrafiltration failure on CAPD. In La Graeca G, Chiaramonte S, Fabris A, Feriani M, Ronco C, eds. Peritoneal Dialysis. Milan: Wichtig Ed., 1986, pp. 91–4.

    Google Scholar 

  322. Krediet RT, Struijk DG, Boeschoten EW et al. The time course of peritoneal transport kinetics in continuous ambulatory peritoneal dialysis patients who develop sclerosing peritonitis. Am J Kidney Dis 1989; 13: 299–307.

    PubMed  CAS  Google Scholar 

  323. Wang T, Heimbürger O, Waniewski J, Bergström J, Lindholm B. Increased peritoneal permeability is associated with decreased fluid and small-solute removal and higher mortality in CAPD patients. Nephrol Dial Transplant 1998; 13: 1242–49.

    PubMed  CAS  Google Scholar 

  324. Ho-dac-Pannekeet MM, Atasever B, Struijk DG, Krediet RT. Analysis of ultrafiltration failure in peritoneal dialysis patients by means of standard peritoneal permeability analysis. Petit Dial Int 1997; 17: 144–50.

    CAS  Google Scholar 

  325. Waniewski J, Heimbürger O, Werynski A, Lindholm B. Osmotic conductance of the peritoneum in CAPD patients with permanent loss of ultrafiltration capacity. Petit Dial Int 1996; 16: 488–96.

    Google Scholar 

  326. Wideree TE, Smeby LC, Mjâland S, Dahl K, Berg LJ, Aas TW. Long-term changes in transperitoneal water transport during continuous ambulatory peritoneal dialysis. Nephron 1984; 38: 238–47.

    Google Scholar 

  327. Struijk DG, Krediet RT, Koomen GCM et al. Functional characteristics of the peritoneal membrane in long-term continuous ambulatory peritoneal dialysis. Nephron 1991; 59: 213–20.

    PubMed  CAS  Google Scholar 

  328. Monquil MCJ, Imholz ALT, Struijk DG, Krediet RT. Does impaired transcellular water transport contribute to net ultrafiltration failure during CAPD? Petit Dial Int 1995; 15: 42–8.

    CAS  Google Scholar 

  329. Zweers MM, Struijk DG, Krediet RT. Correcting sodium sieving for diffusion from circulation. Petit Dial Int 1999; 15: 65–72.

    CAS  Google Scholar 

  330. Krediet RT. Loss of membrane permeability: a threat for CAPD. In: Andreucci VE, Fine LG, eds. International Yearbook of Nephrology, 1997. New York: Oxford University Press, 1997, pp. 153–62.

    Google Scholar 

  331. Verger C, Celicout B. Peritoneal permeability and encapsulating peritonitis. Lancet 1985; 1: 986–7.

    PubMed  CAS  Google Scholar 

  332. Crosbie WA, Snowden S, Parsons V. Changes in lung capillary permeability in chronic uremia. Br Med J 1972; 4: 388–90.

    PubMed  CAS  Google Scholar 

  333. Rubin J, Rust P, Brown P, Popovich RP, Nolph KD. A comparison of peritoneal transport in patients with psoriasis and uremia. Nephron 1981; 29: 185–9.

    PubMed  CAS  Google Scholar 

  334. Diaz-Buxo JA, Farmer CD, Walker PJ, Chandler JT, Holt KL. Effect of hyperparathyroidism on peritoneal clearances. Trans Am Soc Artif Intern Organs 1982; 28: 276–9.

    PubMed  CAS  Google Scholar 

  335. Nolph KD, Whitcomb ME, Schrier RW. Mechanisms for inefficient peritoneal dialysis in acute renal failure associated with heat stress and exercise. Ann Intern Med 1969; 71: 317–26.

    PubMed  CAS  Google Scholar 

  336. Osterby R. Basement membrane morphology in diabetes mellitus. In: Ellenberg M, Rifkin H, eds. Diabetes Mellitus, Theory and Practice, 3rd edn. New York: Medical Examination Publishing Co., 1983, pp. 323–42.

    Google Scholar 

  337. Parving H. Increased microvascular permeability to plasma proteins in short-and long-term juvenile diabetes. Diabetes 1976; 25 (suppl. 2): 884–9.

    PubMed  CAS  Google Scholar 

  338. Zimmerman AL, Sablay LB, Aynedjian HS, Bank N. Increased peritoneal permeability in rats with alloxaninduced diabetes mellitus. J Lab Clin Med 1984; 103: 720–30.

    PubMed  CAS  Google Scholar 

  339. Di Paolo N, Sacchi G. Peritoneal vascular changes in continuous ambulatory peritoneal dialysis (CAPD): an in vivo model for the study of diabetic microangiopathy. Petit Dial Int 1989; 9: 41–5.

    Google Scholar 

  340. Mateijsen MAM, van der Wal AC, Hendriks PMEM, Zweers MM, Mulder J, Krediet RT. Vascular and interstitial changes in the peritoneum of CAPD patients with peritoneal sclerosis. J Am Soc Nephrol 1997; 8: 268A - 9A.

    Google Scholar 

  341. Honda K, Nitta K, Horita S, Yumura W, Nikei W. Morphological changes in the peritoneal vasculature of patients on CAPD with ultrafiltration failure. Nephron 1996; 72: 171–6.

    PubMed  CAS  Google Scholar 

  342. Nolph KD, Stolz ML, Maher JF. Altered peritoneal permeability in patients with systemic vasculitis. Ann Intern Med 1971; 75: 753–5.

    PubMed  CAS  Google Scholar 

  343. Krediet RT. Peritoneal permeability in continuous ambulatory peritoneal dialysis. Dissertation, Amsterdam: University of Amsterdam, 1986.

    Google Scholar 

  344. Selgas R, Madero R, Munoz J, Huarte E, Rinon C, Miguel JL, Sanchez-Sécilia L. Functional peculiarities of the peritoneum in diabetes mellitus. Dial Transplant 1988; 17: 419–36.

    Google Scholar 

  345. Rubin J, Nolph KD, Arfania D, Brown P, Moore H, Rust P. Influence of patient characteristics on peritoneal clearances. Nephron 1981; 27: 118–21.

    PubMed  CAS  Google Scholar 

  346. Lamb EJ, Worrall J, Buhler R, Harwood S, Catell WR, Dawnay AB. Effect of diabetes and peritonitis on the peritoneal equilibration test. Kidney Int 1995; 47: 1760–7.

    PubMed  CAS  Google Scholar 

  347. Serlie MJM, Struijk DG, de Blok K, Krediet RT. Differences in fluid and solute transport between diabetic and non diabetic patients at the onset of CAPD. Adv Petit Dial 1997; 13: 29–32.

    CAS  Google Scholar 

  348. Rubin J, Nolph KD, Arfania D, Brown P, Moore H, Rust P. Influence of patients characteristics on peritoneal clearances. Nephron 1981; 27: 118–21.

    PubMed  CAS  Google Scholar 

  349. Rottembourg J, El Shahat Y, Agrafiotis A et al. Continuous ambulatory peritoneal dialysis in insulin-dependent diabetic patients: a 40-month experience. Kidney Int 1983; 23: 40–5.

    PubMed  CAS  Google Scholar 

  350. Rubin J, Walsh D, Bower JD, Diabetes, dialysate losses, and serum lipids during continuous ambulatory peritoneal dialysis. Am J Kidney Dis 1987; 10: 104–8.

    PubMed  CAS  Google Scholar 

  351. Fassbinder W, Brunner FP, Brynger H et al. Combined report on regular dialysis and transplantation in Europe 20, 1989. Nephrol Dial Transplant 1991; 6: 5–35.

    Google Scholar 

  352. Correia P, Cameron JS, Ogg CS, Williams DG, Bewick M, Hicks JA. End-stage renal failure in SLE with nephritis. Clin Nephrol 1984; 22: 293–302.

    PubMed  CAS  Google Scholar 

  353. Wu GG, Gelbast DR, Hasbargen JA, Inman R, McNamee P, Oreopoulos DG. Reactivation of systemic lupus in three patients undergoing CAPD. Petit Dial Bull 1986; 6: 6–9.

    Google Scholar 

  354. Cantaluppi A. CAPD and systemic diseases. Clin Nephrol 1988; 30 (suppl. 1): S8–12.

    PubMed  Google Scholar 

  355. Krediet RT, Boeschoten EW, Zuyderhoudt FMJ, Arisz L. Permeability of the peritoneum to proteins in CAPD patients with systemic disease. Proc Eur Dial Transplant Assoc 1985; 22: 405–9.

    Google Scholar 

  356. Brown ST, Ahearn DJ, Nolph KD. Reduced peritoneal clearances in scleroderma increased by intraperitoneal isoproterenol. Ann Intern Med 1973; 78: 891–4.

    PubMed  CAS  Google Scholar 

  357. Robson M, Oreopoulos DG. Dialysis in scleroderma. Ann Intern Med 1978; 88: 843.

    PubMed  CAS  Google Scholar 

  358. Winfield J, Khanna R, Reynolds WJ, Gordon DA, Finkelstein S, Oreopoulos DG. Management of end-stage scleroderma renal disease with continuous ambulatory peritoneal dialysis. Report of two cases. Perit Dial Bull 1982; 2: 174–7.

    Google Scholar 

  359. Copley JB, Smith BJ. Continuous ambulatory peritoneal dialysis and scleroderma. Nephron 1985; 40: 353–6.

    PubMed  CAS  Google Scholar 

  360. Browning MJ, Banks RA, Harrison P et al. Continuous ambulatory peritoneal dialysis in systemic amyloidosis and end-stage renal disease. J R Soc Med 1984; 77: 189–92.

    PubMed  CAS  Google Scholar 

  361. Rosansky SJ, Waddell PH. CAPD in the treatment of primary amyloidosis. Perit Dial Bull 1983; 3: 217–18.

    Google Scholar 

  362. Rosansky SJ, Richards FW. Use of peritoneal dialysis in the treatment of patients with renal failure and paraproteinemia. Am J Nephrol 1985; 5: 361–5.

    PubMed  CAS  Google Scholar 

  363. Heale WF, Letch KA, Dawborn JK, Evans SM. Long term complications of peritonitis. In: Atkins RC, Thomson NM, Farrell PC, eds. Peritoneal Dialysis. Edinburgh: Churchill Livingstone, 1981, pp. 284–90.

    Google Scholar 

  364. Rubin J, McFarland S, Hellems EW, Bower JD. Peritoneal dialysis during peritonitis. Kidney Int 1981; 19: 460–4.

    PubMed  CAS  Google Scholar 

  365. Prowant BF, Nolph KD. Clinical criteria for diagnosis of peritonitis. In: Atkins RC, Thomson NM, Farrell PC, eds. Peritoneal Dialysis. Edinburgh: Churchill Livingstone, 1981, pp. 257–63.

    Google Scholar 

  366. Smeby LC, Wideröe TE, Jörstad S. Individual differences in water transport during peritonitis. ASAIO J 1981; 4: 17–27.

    Google Scholar 

  367. Raja RM, Kramer MS, Rosenbaum JL, Bolisay C, Krug M. Contrasting changes in solute transport and ultrafiltration with peritonitis in CAPD patients. Trans Am Soc Artif Intern Organs 1981; 27: 68–70.

    PubMed  CAS  Google Scholar 

  368. Rubin J, Ray R, Barnes T, Bower J. Peritoneal abnormalities during infectious episodes of continuous ambulatory peritoneal dialysis. Nephron 1981; 29: 124–7.

    PubMed  CAS  Google Scholar 

  369. Smeby LC, Wideröe TE, Svartds TM, Jörstad S. Changes in water removal due to peritonitis during continuous ambulatory peritoneal dialysis. In: Gahl GM, Kessel M, Nolph KD, eds. Advances in Peritoneal Dialysis. Amsterdam: Excerpta Medica, 1981, pp. 287–92.

    Google Scholar 

  370. Raja RM, Kramer MS, Barber K. Solute transport and ultrafiltration during peritonitis in CAPD patients ASAIO J 1984; 7: 8–11.

    Google Scholar 

  371. Gokal R, Mistry CD, Peers EM, MIDAS Study Group. Peritonitis occurrence in a multicenter study of icodextrin and glucose in CAPD. Petit Dial Int 1995; 15: 226–30.

    Google Scholar 

  372. Krediet RT, Arisz L. Fluid and solute transport across the peritoneum during continuous ambulatory peritoneal dialysis (CAPD). Petit Dial Int 1989; 9: 15–25.

    CAS  Google Scholar 

  373. Blumenkrantz MJ, Gahl GM, Kopple JD et al. Protein losses during peritoneal dialysis. Kidney Int 1981; 19: 593–602.

    PubMed  CAS  Google Scholar 

  374. Dulaney JT, Hatch Jr FE. Peritoneal dialysis and loss of proteins: a review. Kidney Int 1984; 26: 253–62.

    PubMed  CAS  Google Scholar 

  375. Miller FN, Hammerschmidt DE, Anderson GL, Moore JN. Protein loss induced by complement activation during peritoneal dialysis. Kidney Int 1984; 25: 480–85.

    PubMed  CAS  Google Scholar 

  376. Gokal R, Jakubowski C, King J et al. Outcome in patients on continuous ambulatory peritoneal dialysis: 4 year analysis of a prospective multicenter study. Lancet 1987; 2: 1105–8.

    PubMed  CAS  Google Scholar 

  377. Canusa Peritoneal Dialysis Study Group. Adequacy of dialysis and nutrition in continuous ambulatory peritoneal dialysis: association with clinical outcomes. J Am Soc Nephrol 1996; 7: 198–207.

    Google Scholar 

  378. Genestier J, Hedelin G, Schaffer P, Faller B. Prognostic factors in CAPD patients: a retrospective study of a 10-year period. Nephrol Dial Transplant 1995; 10: 1905–11.

    PubMed  CAS  Google Scholar 

  379. Krediet RT, Douma CE, van Olden RW, Ho-dac-Pannekeet MM, Struijk DG. Augmenting solute clearance in peritoneal dialysis. Kidney Int 1998; 54: 2218–35.

    PubMed  CAS  Google Scholar 

  380. Kawaguchi Y, Hasegawa T, Nakayama M, Kubo H, Shigematu T. Issues affecting the longevity of the continuous peritoneal dialysis therapy. Kidney Int 1997; 52 (suppl. 62): S 105–7.

    Google Scholar 

  381. Selgas R, Rodrigues-Carmona A, Martinez ME et al. Peritoneal mass transfer in patients on long-term CAPD. Petit Dial Bull 1984; 4: 153–6.

    Google Scholar 

  382. Selgas R, Rodrigues-Carmona A, Martinez ME et al. Follow-up of peritoneal mass transfer properties in longterm CAPD patients. In: Maher JF, Winchester JF, eds. Frontiers in Peritoneal Dialysis. New York: Field, Rich, 1986, pp. 53–5.

    Google Scholar 

  383. Selgas R, Mutlos J, Cigarran S et al. Peritoneal functional parameters after five years on continuous ambulatory peritoneal dialysis (CAPD): the effect of late peritonitis. Petit Dial Int 1989; 9: 329–32.

    CAS  Google Scholar 

  384. Selgas R, Fernandez-Ryes M-J, Bosque E et al. Functional longevity of the human peritoneum: how long is continuous peritoneal dialysis possible? Results of a prospective medium long-term study. Am J Kidney Dis 1994; 23: 64–73.

    PubMed  CAS  Google Scholar 

  385. Selgas R, Bajo M-A, Paiva A et al. Stability of the peritoneal dialysis patients. Adv Renal Replacement Ther 1998; 5: 168–78.

    CAS  Google Scholar 

  386. Pollock CA, Ibels LS, Caterson RJ, Mahoney JF, Waugh DA, Cocksedge B. Continuous ambulatory peritoneal dialysis. Eight years of experience at a single center. Medicine 1989; 68: 293–308.

    PubMed  CAS  Google Scholar 

  387. Kush RD, Hallett MD, Ota K et al. Long-term continuous ambulatory peritoneal dialysis; mass transfer and nutritional and metabolic stability. Blood Purif 1990; 8: 1–13.

    PubMed  CAS  Google Scholar 

  388. Bordoni E, Lombardo V, Bibiano L et al. Peritoneal clearances, ultrafiltration and diuresis in long-term continuous ambulatory peritoneal dialysis. In: Avram MM, Giordano C, eds. Ambulatory Peritoneal Dialysis. New York: Plenum, 1990, pp. 87–90.

    Google Scholar 

  389. Chan PCK, Chan CY, Wu PG, Cheng IKP, Chan MK. Long-term peritoneal clearances in patients on continuous ambulatory peritoneal dialysis. Int J Artif Organs 1990; 13: 707–8.

    PubMed  CAS  Google Scholar 

  390. Lameire NH, Vanholder R, Veyt D, Lambert M-C, Ringoir S. A longitudinal, five year survey of urea kinetic parameters in CAPD patients. Kidney Int 1992; 42: 426–32.

    PubMed  CAS  Google Scholar 

  391. Faller B, Lameire N. Evaluation of clinical parameters and peritoneal function in a cohort of CAPD patients followed over 7 years. Nephrol Dial Transplant 1994; 9: 280–6.

    PubMed  CAS  Google Scholar 

  392. Davies SJ, Bryan J, Philips L, Russel GI. Longitudinal changes in peritoneal kinetics: the effects of peritoneal dialysis and peritonitis. Nephrol Dial Transplant 1996; 11: 498–506.

    PubMed  CAS  Google Scholar 

  393. Rubin J, Nolph KD, Arfania D, Brown P, Prowant B. Follow-up of peritoneal clearances in patients undergoing continuous ambulatory peritoneal dialysis. Kidney Int 1979; 16: 619–23.

    PubMed  CAS  Google Scholar 

  394. Park MS, Lee J, Lee MS, Baick SH, Hwang SD, Lee HB. Peritoneal solute clearances after four years of continuous ambulatory peritoneal dialysis (CAPD). Perit Dial Int 1989; 9: 75–8.

    PubMed  CAS  Google Scholar 

  395. Coronel F, Tornero F, Mucia M et al. Peritoneal clearances, protein losses and ultrafiltration in diabetic patients after four years on CAPD. Adv Perit Dial 1991; 7: 35–8.

    PubMed  CAS  Google Scholar 

  396. Struijk DG, Krediet RT, Koomen GCM, Boeschoten EW, Hoek FJ, Arisz L. A prospective study of peritoneal transport in CAPD patients. Kidney Int 1994; 45: 1739–44.

    PubMed  CAS  Google Scholar 

  397. Hendriks PMEM, Ho-dac-Pannekeet MM, van Gulik TM et al. Peritoneal sclerosis in chronic peritoneal dialysis patients: analysis of clinical presentation, risk factors and peritoneal transport kinetics. Perit Dial Int 1997; 17: 136–43.

    PubMed  CAS  Google Scholar 

  398. Krediet RT. The peritoneal membrane in chronic peritoneal dialysis. Kidney Int 1999; 55: 341–56.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Krediet, R.T. (2000). The physiology of peritoneal solute transport and ultrafiltration. In: Gokal, R., Khanna, R., Krediet, R.T., Nolph, K.D. (eds) Textbook of Peritoneal Dialysis. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3225-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3225-3_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-3227-7

  • Online ISBN: 978-94-017-3225-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics