Skip to main content

The peritoneal microcirculation in peritoneal dialysis

  • Chapter
Textbook of Peritoneal Dialysis

Abstract

The peritoneal microcirculation is an intricate microvascular network through which physiological interactions occur between the systemic vasculature and the peritoneal cavity. In peritoneal dialysis these dynamic interactions are of paramount importance in maintaining effective dialysis. The peritoneal microcirculation participates in numerous physiological functions including solute transfer and exchange, regulation of fluid dynamics and ultrafiltration, delivery of nutrients and hormones, delivery of leukocytes to areas of inflammation and distribution of drugs. Physiological and pathophysiological changes, as well as the process of peritoneal dialysis, may affect many of these microvascular functions. The emphasis of this chapter will be to review available information regarding the peritoneal microcirculation and to integrate this information into a general functional knowledge as it relates to peritoneal dialysis. The chapter will examine: (1) the functional anatomy and blood supply of the peritoneum, (2) components of the peritoneal microvascular network, (3) peritoneal microvascular haemodynamics and the effects of vasoactive agents on the microcirculation and (4) inflammation in the peritoneal microcirculation with emphasis on leukocyte—endothelial interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Williams PL, Warwick R, eds. Gray’s Textbook of Anatomy. Philadelphia, PA: WB Saunders, 1980, pp. 1319–89.

    Google Scholar 

  2. Nance FC. Diseases of the peritoneum, retroperitoneum, mesentery and omentum. In: Haubrichus, Schaffner F, Berk JE, eds. Gastroenterology. Philadelphia, PA: WB Saunders, 1995, pp. 3061–3.

    Google Scholar 

  3. Nolph KD, Twardowski Z. The peritoneal dialysis system. In: Nolph KD, ed. Peritoneal Dialysis. Boston, MA: Martinus Nijhoff, 1985, pp. 23–50.

    Google Scholar 

  4. Verger C. Peritoneal ultrastructure. In: Nolph KD, ed. Peritoneal Dialysis. Boston, MA: Martinus Nijhoff, 1985, pp. 95–113.

    Google Scholar 

  5. Henderson LW. The problem of peritoneal membrane area and permeability. Kidney Int 1973; 3: 409–10.

    PubMed  CAS  Google Scholar 

  6. Mion CM, Boen ST. Analysis of factors responsible for the formation of adhesions during chronic peritoneal dialysis. Am J Med Sci 1965; 250: 675–9.

    PubMed  CAS  Google Scholar 

  7. Knapowski J, Feder E, Simon M, Zabel M. Evaluation of the participation of parietal peritoneum in dialysis: physiological morphological and pharmacological data. Proc Eur Dial Trans Assoc 1979; 16: 155–64.

    CAS  Google Scholar 

  8. Rubin J, Clawson M, Planch A, Jones Q. Measurements of peritoneal surface area in man and rats. Am J Med Sci 1988; 295: 453–8.

    PubMed  CAS  Google Scholar 

  9. Rubin J, Jones Q, Planch A, Stanek K. Systems of membranes involved in peritoneal dialysis. J Lab Clin Invest 1987; 110: 448–53.

    CAS  Google Scholar 

  10. Rubin J, Jones Q, Andrew M. An analysis of ultrafiltration during acute peritoneal dialysis in rats. Am J Med Sci 1989; 298: 383–9.

    PubMed  CAS  Google Scholar 

  11. Rubin J, Jones Q, Planch A, Rushton F, Bower J. The importance of the abdominal viscera to peritoneal transport during peritoneal dialysis in the dog. Am J Med Sci 1986; 292: 203–8.

    PubMed  CAS  Google Scholar 

  12. Rubin J, Jones Q, Planch A, Bower J. The minimal importance of the hollow viscera to peritoneal transport during peritoneal dialysis in the rat. Trans Am Soc Artif Intern Organs 1988; 34: 912–5.

    CAS  Google Scholar 

  13. Albert A, Takamatsu H, Fonkalsrud EW. Absorption of glucose solutions from the peritoneal cavity in rabbits. Arch Surg 1984; 119: 1247–51.

    PubMed  CAS  Google Scholar 

  14. Zakaria ER, Carlsson O, Sjunnesson H, Rippe B. Liver is not essential for solute transport during peritoneal diaysis. Kidney Int 1996; 50: 298–303.

    PubMed  CAS  Google Scholar 

  15. Zakaria ER, Carlsson O, Rippe B. Limitation of small solute exchange across the visceral peritoneum: effects of vibration. Petit Dial Int 1997, 17: 72–79.

    Google Scholar 

  16. Lukus G, Brindle SD, Greengard P. The route of absorption of intraperitoneally administered compounds. J Pharmacal Exp Ther 1971; 178: 562–6.

    Google Scholar 

  17. Nolph KD, Ghods AJ, Stone JV, Brown PA. The effects of intraperitoneally vasodilators on peritoneal clearances. Trans Am Soc Artif Intern Organs 1976; 22: 586–94.

    PubMed  CAS  Google Scholar 

  18. Hirszel P, Lameire N, Bogaert M. Pharmacologic alterations of peritoneal transport rates and pharmacokinetics of the peritoneum. In: Gokal R, Nolph K, eds. The Textbook of Peritoneal Dialysis. Dordrecht: Kluwer, 1994, pp. 161–232.

    Google Scholar 

  19. Wideroe TE, Dahl KJ, Smeby LC et al. Pharmacokinetics of transperitoneal insulin transport. Nephron 1996; 74: 283–90.

    PubMed  CAS  Google Scholar 

  20. Chambers R, Zwiefach BW. Functional activity of the blood capillary bed, with special reference to visceral tissue. Ann NY Acad Sci 1946; 46: 683–94.

    Google Scholar 

  21. Zweifach BW. The microcirculation of the blood. Sci Am 1959, January, pp. 54–60.

    Google Scholar 

  22. Richardson. Basic Circulatory Physiology. Boston, MA: Little, Brown, 1976, pp. 101–36.

    Google Scholar 

  23. Johnson PC, Wayland H. Regulation of blood flow in single capillaries. Am J Physiol 1967; 212: 1405–15.

    PubMed  CAS  Google Scholar 

  24. Miller FN. The peritoneal microcirculation. In: Nolph K, ed. Peritoneal Dialysis. Boston, MA: Martinus Nijhoff, 1985, pp. 51–93.

    Google Scholar 

  25. Buez S. An open cremaster muscle preparation for the study of blood vessels by in vivo microscopy. Microvasc Res 1973; 5: 384–94.

    Google Scholar 

  26. Smuje L, Zweifach BW, Intaglietta M. Micropressure and capillary filtration coefficients in single vessels of the cremaster muscle in the rat. Microvasc Res 1970; 2: 96–110.

    Google Scholar 

  27. Gabella G (section ed.) Cardiovascular. In: Williams PL, Bannister L, Berry M, Collins P, Dyson M, Dussek J, Ferguson M, eds. Grays Anatomy. New York: Churchill Livingstone, 1995, p. 1465.

    Google Scholar 

  28. Renkin EM. Microcirculation and exchange. In: Patton HD, Fuchs AF, Hille B, Scher AM, Steiner R, eds. Testbook of Physiology. Philadelphia, PA: WB Saunders, 1989, pp. 860–78.

    Google Scholar 

  29. Chambers R, Zweifach BW. Topography and function of the mesenteric capillary circulation. Am J Anat 1944; 75: 173–2.

    Google Scholar 

  30. Taylor AE, Granger DN. Exchange of macromolecules across the circulation. In: Renkin EM, Michel CC, eds. Handbook of Physiology, Microcirculation; Section, Chapter 11. Baltimore, MD: American Physiological Society, 1984, pp. 467–500.

    Google Scholar 

  31. Harper SL, Bohlen HG, Granger DN. Vasoactive agents and the mesenteric microcirculation. Am J Physiol 1985; 249: G309–15.

    PubMed  CAS  Google Scholar 

  32. Diana JN, Laughlin MH. Effect of ischemia on capillary pressure and equivalent pore radius in capillaries of the isolated dog hind limb. Circ Res 1974; 35: 77–101.

    PubMed  CAS  Google Scholar 

  33. Korthuis RJ, Granger DN. Peritoneal dialysis: an analysis of factors which influence peritoneal mass transport. In: Stigmark B, ed. Peritoneum and Peritoneal Access. London: John Wiley, 1988, pp. 24–41.

    Google Scholar 

  34. Rippe B, Haraldson B. Capillary permeability in rat hindquarters as determined by estimations of capillary reflection coefficients. Acta Physiol Scand 1986; 127: 289–303.

    PubMed  CAS  Google Scholar 

  35. Aune S. Transperitoneal exchange. IV. The effect of transperitoneal fluid transport on the transfer of solutes. Scand J Gastroenterol 1970; 5: 241–52.

    PubMed  CAS  Google Scholar 

  36. Curry FE, Mason JC, Michel CC. Osmotic reflection coefficients of capillary walls to low molecular weight hydrophilic solutes measured in single perfused capillaries of the frog mesentary. J Physiol 1976; 261: 319–36.

    PubMed  CAS  Google Scholar 

  37. Michel CC. Reflection coefficients in single capillaries compared with results from whole organs. Bibl Anat 1977; 15: 172–6.

    PubMed  Google Scholar 

  38. Michel CC. Filtration coefficients and osmotic reflection coefficients of the walls of single frog mesenteric capillaries. J Physiol 1980; 309: 341–55.

    PubMed  CAS  Google Scholar 

  39. Pyle WK, Moncrief JW, Popovich RP. Peritoneal transport evaluation in CAPD. In: Moncrief JW, Popovich RP, eds. Proc Second International Symposium on CAPD. New York: Masson, 1981, pp. 35–9.

    Google Scholar 

  40. Rippe B, Perry MA and Granger DN. Permselectivity of the peritoneal membrane. Microvasc Res 1985; 29: 89–102.

    PubMed  CAS  Google Scholar 

  41. Rippe B, Stelin G, Ahlmen J. Basal permeability of the peritoneal membrane during continuous ambulatory peritoneal dialysis (CAPD). In: Advances in Peritoneal Dialysis. Proc. Second International Symposium on Peritoneal Dialysis. Amsterdam: Excerpta Medica, 1981, pp. 5–9.

    Google Scholar 

  42. Nakamura Y, Watalnd H. Macromolecular transport in the cat mesentery. Microvasc Res 1975; 9: 1–21.

    PubMed  CAS  Google Scholar 

  43. Rippe B, Stelin G. Simulations of peritoneal solute transport during CAPD. Application of two pore formalism. Kidney Int 1989; 35: 1234–44.

    PubMed  CAS  Google Scholar 

  44. Stelin G, Rippe B. A phenomenologic interpretation of the variations in dialysate volume with dwell time in CAPD. Kidney Int 1990; 38: 465–72.

    PubMed  CAS  Google Scholar 

  45. Rippe B, Simonsen O, Stelin G. Clinical implications of a three-pore model of peritoneal transport. In: Khanna R, Nolph KD, Prowant BF, Twardowski ZJ, Oreopoulos D, eds. Advances in Peritoneal Dialysis, 1991, Vol. 7, Peritoneal Dialysis Bulletin, 1991, pp. 3–9.

    Google Scholar 

  46. Agree P, Preston GM, Smith BL et al. Aquaporin CHIP: the archetypal molecular water channel. Am J Physiol 1993; 265: F463–76.

    Google Scholar 

  47. Conolly DL, Shanahan CM, Weissberg PL. The aquaporins. A family of water channel proteins. Int J Biochem Cell Biol 1998, 30; 169–72.

    Google Scholar 

  48. Rippe B, Krediet R: Peritoneal physiology. Transport of solutes. In: Gokal R, Nolph K, eds. The Textbook of Peritoneal Dialysis. Dordrecht: Kluwer, 1994, pp. 68–132.

    Google Scholar 

  49. Akiba T, Ota T, Fushimi Ket al. Water channel AQP1, 3, and 4 in the human peritoneum and peritoneal dialysate. Adv Perit Dial 1977; 13: 3–6.

    Google Scholar 

  50. Carlsson O, Nielsen S, Zakaria E, Rippe B: In vivo inhibition of transcellular water channels (aquaporin-1) during acute peritoneal dialysis in rats. Am J Physiol 1996; 271 (Heart Circ Physiol 40): H2254–62.

    PubMed  CAS  Google Scholar 

  51. Gabella G (section ed.) Cardiovascular. In: Williams PL, Bannister L, Berry M, Collins P, Dyson M, Dussek J, Ferguson M, eds. Grays Anatomy. New York: Churchill Livingstone, 1995, 1466.

    Google Scholar 

  52. Granger DN. Richardson PDI, Taylor AE. The effects of isoprenaline and bradykinnin on capillary filtration in the cat small intestine. Br J Pharmacol 1979; 67: 361–6.

    PubMed  Google Scholar 

  53. Granger DN, Kvietys PR, Wilborn WH, Mortillaro NA, Taylor AE. Mechanisms of glucagon-induced intestinal secretion. Am J Physiol 1980; 239: G30–38.

    PubMed  CAS  Google Scholar 

  54. Mortillaro NA, Granger DN, Kvietys PR, Rutili G, Taylor AE. Effects of histamine and histamine antagonists on intestinal capillary permeability. Am J Pysiol 1981; 240: G381–6.

    CAS  Google Scholar 

  55. Bjork J, Lindbom L, Gerdin B, Smedegard G, Arfors KE, Benveniste J. PAF (platelet activating factor) increases micro-vascular permeability and affects endothelium-granulocyte interactions in microvascular beds. Acta Physiol Scand 1983; 119: 305–8.

    PubMed  CAS  Google Scholar 

  56. Dahlen SE, Bjork J, Hedqvist P et al. Leukotrienes promote plasma leakage and leukocyte adhesion in postcapillary venules: in vivo effects with relevance to the acute inflammatory response. Proc Natl Acad Sci USA 1981; 78: 3887–91.

    PubMed  CAS  Google Scholar 

  57. Bjork J, Hagli TE, Smedegard G. Microvascular effects of anaphylatoxin C3a and C5a. J Immunol 1985; 134: 1115–19.

    PubMed  CAS  Google Scholar 

  58. Miller FN, Joshua IG, Anderson GL. Quantitation of vasodilator-induced macromolecular leakage by in vivo fluorescent microscopy. Microvasc Res 1982; 24: 56–7.

    PubMed  CAS  Google Scholar 

  59. Roberts WG, Palade GE. Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J Cell Sci 1995; 108: 2369–79.

    PubMed  CAS  Google Scholar 

  60. Atherton A, Born GVR. Relationship between the velocity of rolling granulocytes and that of blood flow in venules. J Physiol 1973; 233: 157–65.

    PubMed  CAS  Google Scholar 

  61. Granger DN, Benoit JN, Suzuki M, Grisham MB. Leukocyte adherence to venular endothelium during ischemia-reperfusion. Am J Physiol 1989; 257: G683–8.

    PubMed  CAS  Google Scholar 

  62. Perry MA, Granger DN. Role of CD11/CD18 in shear rate-dependent leukocyte-endothelial cell interactions in cat mesenteric venules. J Clin Invest 1991; 87: 1798–804.

    PubMed  CAS  Google Scholar 

  63. Ley K, Gaehtyens P. Endothelial, not hemodynamic differences are responsible for preferential leukocyte rolling in rat mesenteric venules. Circ Res 1991; 69: 1034–41.

    PubMed  CAS  Google Scholar 

  64. Granger DN, Kubes P. The microcirculation and inflammation: modulation of leukocyte-endothelial cell adhesion. J Leuk Biol 1994; 55: 662–75.

    CAS  Google Scholar 

  65. Bienvenu K, Hernandez L, Granger DN. Leukocyte adhesion and emigration in inflammation. Ann NY Acad Sci 1992; 664: 388–99.

    PubMed  CAS  Google Scholar 

  66. Tonneson MG. Neutrophil-endothelial cell interactions: mechanisms of neutrophil adherence to vascular endothelium. J Invest Dermatol 1989; 93: 535–85.

    Google Scholar 

  67. Kishimoto TK, Jutila MA, Berry EL, Butcher EC. Neutrophil Mac-1 and MEL-14 adhesion proteins are inversely regulated by chemotactic factors. Science 1989; 45: 1238–41.

    Google Scholar 

  68. Bevilagua MP, Strengelin S, Gimbrone MA, Seed B. Endothelial leukocyte adhesion molecule 1: an inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science 1989; 243: 1160–65.

    Google Scholar 

  69. McEver RP. Selectins: novel adhesion receptors that mediate leukocyte adhesion during inflammation. Thromb Haemostas 1991; 65: 223–8.

    CAS  Google Scholar 

  70. Smith GW. Molecular determinants of neutrophil-endothelial cell adherence reactions. Am J Respir Cell Molec Biol 1990; 2: 487–99.

    CAS  Google Scholar 

  71. Springer T, Anderson DC, Rosenthal, Rothelein R. Leukocyte Adhesion Molecules. New York: Springer-Verlag, 1989.

    Google Scholar 

  72. Luscher TF, Barton M. Biology of the endothelium. Clin Cardiol 1997; 20 (suppl. Il): II-3-II-10.

    Google Scholar 

  73. Pepine CJ. Clinical implications of endothelial dysfunction. Clin Cardiol 1998; 21: 795–9.

    PubMed  CAS  Google Scholar 

  74. Valiance P. Endothelial regulation of vascular tone. Prostgrad Med J 1992; 68: 697–701.

    Google Scholar 

  75. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 299: 373–6.

    Google Scholar 

  76. Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 1988; 333: 664–6.

    PubMed  CAS  Google Scholar 

  77. Marietta MA. Nitric oxide synthase: aspects concerning structure and catalyst. Cell 1994; 78: 927–30.

    CAS  Google Scholar 

  78. Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med 1993; 329: 2002–12.

    PubMed  CAS  Google Scholar 

  79. Rees DD, Palmer RMJ, Schulz R, Hodson HF, Moncada S. Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br J Pharmacol 1990; 101: 746–52.

    PubMed  CAS  Google Scholar 

  80. Valiance P, Leone A, Calver A, Collier J, Moncada S. Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 1992; 339: 572–5.

    Google Scholar 

  81. Valiance P, Leone A, Calver A, Collier J, Moncada S. Endogenous dimethylarginine as an inhibitor of nitric oxide synthesis. J Cardiovasc Pharmacol 1992; 20 (suppl. 12): S60–2.

    Google Scholar 

  82. Gardiner SM, Kemp PA, Bennett T, Palmer RMJ, Moncada S. Regional and cardiac hemodynamic effects of NG, NGdimethyl-L-arginine and their reversibility by vasodilators in conscious rats. Br J Pharmacol 1993; 110: 1457–64.

    PubMed  CAS  Google Scholar 

  83. White R, Barefield D, Ram S, Work J. Peritoneal dialysis solutions reverse the hemodynamic effects of nitric oxide synthesis inhibitors. Kidney Int 1995; 48: 1986–93.

    PubMed  CAS  Google Scholar 

  84. Yanagisawa M. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988; 332: 411–15.

    PubMed  CAS  Google Scholar 

  85. Inoue A. The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc Natl Acad Sci 1989; 86: 2863–7.

    PubMed  CAS  Google Scholar 

  86. Battistini B, D’Orleans-Juste P, Sirois P. Biology of disease, endothelins: circulating plasma levels and presence in other biologic fluids. Lab Invest 1993; 68: 600–28.

    PubMed  CAS  Google Scholar 

  87. Hosoda K. Organization, structure, chromosomal assignment, and expression of the gene encoding the human endothelin-A receptor. J Biol Chem 1992; 267: 18797–804.

    PubMed  CAS  Google Scholar 

  88. Sakamoto A. Cloning and functional expression of human cDNA for the ETB endothelin receptor. Biochem Biophys Res Commun 1991; 178: 656–63.

    PubMed  CAS  Google Scholar 

  89. Luscher TF, Oemar BS, Boulanger CM, Hahn AW. Molecular and cellular biology of endothelin and its receptors, part 1. J Hypertens 1993; 11: 7–11.

    PubMed  CAS  Google Scholar 

  90. Luscher TF. Endothelin, endothelin receptors and endothelin antagonists. Curr Opin Nephrol Hypertens 1994; 3: 92–8.

    PubMed  CAS  Google Scholar 

  91. Riezebos J, Watts IS, Valiance P. Endothelin receptors mediating functional responses in human small arteries and veins. Br J Pharmacol 1994; 111: 609–15.

    PubMed  CAS  Google Scholar 

  92. Rohmeiss P, Photiadis J, Rohmeiss S, Unger T. Hemodynamic actions of intravenous endothelin in rats: comparison with sodium nitroprusside and methoxamine. Am J Physiol 1990; 258: H337–46.

    PubMed  CAS  Google Scholar 

  93. Gellai M. Physiologic role of endothelin in cardiovascular and renal hemodynamics: studies in animals. Curr Opin Nephrol and Hypertens 1997; 6: 64–8.

    CAS  Google Scholar 

  94. Lebel M, Moreau V, Grose JH, Kingma I, Langlois S. Plasma and peritoneal endothelin levels and blood pressure in CAPD patients with or without erythropoietin relacement therapy. Clin Nephrol 1998; 49: 313–8.

    PubMed  CAS  Google Scholar 

  95. Kubes P, Suzuki M, Granger DN. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 1991; 88: 4651–5.

    PubMed  CAS  Google Scholar 

  96. Lopez-Farre A, Reisco A, Espinosa G et al. Effect of endothelin-1 on neutrophil adhesion to endothelial cells and perfused heart. Circulation 1993; 88: 1166–71.

    PubMed  CAS  Google Scholar 

  97. McCarron RM, Wang L, Stanimirovic DB, Spatz M. Endothelin induction of adhesion molecule expression on human brain microvascular endothelial cells. Neurosci Lett 1993; 156: 31–4.

    PubMed  CAS  Google Scholar 

  98. Markewitz B, Palazzo M, Li Y, White RG. Endothelin-1 increases leukocyte rolling in mesenteric venules. Abstract. Chest 1998; 114; 2515.

    Google Scholar 

  99. Tsukita S, Furuse M, Itoh M. Molecular dissection of tight junctions. Cell Struct Funct 1996; 21: 381–5.

    PubMed  CAS  Google Scholar 

  100. Balda MS, Matter K. Tight junctions. J Cell Sci 1998; 111; 541–7.

    PubMed  CAS  Google Scholar 

  101. Stevenson BR, Siliciano JD, Mooseker MS, Goodenough DA. Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zona occludens) in a variety of epithelia. J Cell Biol 1986; 103: 755–66.

    PubMed  CAS  Google Scholar 

  102. Furuse M, Hirase T, Itoh M et al. Occludin: a novel integral protein localizing at tight junctions. J Cell Sci 1993; 123: 1777–88.

    CAS  Google Scholar 

  103. Anderson JM, Van Itallie CM. Tight junctions and the molecular basis for regulation of paracellular permeability. Am J Physiol 1995; 269: G467–75.

    PubMed  CAS  Google Scholar 

  104. Mitic LL, Anderson JM. Molecular architecture of tight junctions. Annu Rev Physiol 1998; 60: 121–42.

    PubMed  CAS  Google Scholar 

  105. Denker BM, Nigam SK. Molecular structure and assembly of the tight junction. Am J Physiol 1998; 274: Fl-9.

    Google Scholar 

  106. Hirase T, Staddon JM, Saitou M et al. Occludin as a possible determinant of tight junction permeability in endothelial cells. J Cell Sci 1997; 110: 1603–13.

    PubMed  CAS  Google Scholar 

  107. Kevil CG, Okayma N, Trocha SD et al. Expression of zona occludens and adherens junctional proteins in human venous and arterial endothelial cells: role of occludin in endothelial solute barriers. Microcirculation 1998; 5: 197–210.

    PubMed  CAS  Google Scholar 

  108. Martin-Padural, Lostaglio S, Schneemann M et al. Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol 1998; 142: 117–27.

    PubMed  Google Scholar 

  109. Kemler R. From cadherins to catenins: cytoplasmic protein interactions and regulation of cell adhesion. Trends Genet 1993; 9: 317–21.

    PubMed  CAS  Google Scholar 

  110. Klymkowsky MW, Parr B. The body language of the cells: the intimate connection between cell adhesion and behavior. Cell 1995; 83: 5–8.

    PubMed  CAS  Google Scholar 

  111. Gumbiner BM. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 1996; 84: 345–57.

    PubMed  CAS  Google Scholar 

  112. Ali J, Liao F, Martiens E, Muller WA. Vascular endothelial cadherin (VE-cadherin): cloning and the role in endothelial cell-cell adhesion. Microcirculation 1997; 4: 267–77.

    PubMed  CAS  Google Scholar 

  113. Kevil CG, Payne K, Mire E, Alexander JS. Vascular permeability factor/vascular endothelial cell growth factor-mediated permeability occurs through disorganization of endothelial junctional proteins. J Biol Chem 1998; 273: 15099–103.

    PubMed  CAS  Google Scholar 

  114. Alexander JS, Jackson SA, Chaney E, Kevil CG, Haselton FR. The role of cadherin endocytosis in endothelial barrier regulation: involvement of protein kinase C and actincadherin interactions. Inflammation 1998; 22: 419–33.

    PubMed  CAS  Google Scholar 

  115. Bernfield M. Introduction. In: Porter R et al. eds. Basement Membranes and Cell Movement. London: Pitman. Ciba foundation Symposium 108, 1984, pp. 1–5.

    Google Scholar 

  116. Clementi F, Palade GE. Intestinal capillaries. I. Permeability to peroxidases and ferritin. J Cell Biol 1969; 41: 33–58.

    Google Scholar 

  117. Fox JR, Wayland H. Interstitial diffusion of macro-molecules in the rat mesentery. Microvas Tes 1979; 18: 255–74.

    CAS  Google Scholar 

  118. Johansson BR. Permeability of muscle capillaries to interstitially microinjected ferritin. Microvasc Res 1978; 16: 362–8.

    PubMed  CAS  Google Scholar 

  119. Laurent TC. Interaction between proteins and glycosaminoglycans. Fed Proc 1977; 36: 24–7.

    PubMed  CAS  Google Scholar 

  120. Watson PD, Grodins FS. An analysis of the effects of the interstitial matrix on plasma-lymph transport. Microvasc Res 1978; 16: 19–41.

    PubMed  CAS  Google Scholar 

  121. Granger DN, Taylor AE. Permeability of intestinal capillaries to endogenous macromolecules. Am J Physiol 1980; 238: H457–64.

    PubMed  CAS  Google Scholar 

  122. Majno G. Ultrastructure of the vascular membrane. In: Handbook of Physiology-Circulation, Section 2, Vol. 3. Baltimore: MD: Williams and Wilkins, 1965, pp. 2293–376.

    Google Scholar 

  123. Majno G, Palade GE. Studies on inflammation. I. The effect of histamine and serotinin on vascular permeability: an electron microscopic study. J Biophys Biochem Cytol 1961; 11: 571–606.

    PubMed  CAS  Google Scholar 

  124. Nolph KD. Peritoneal anatomy and transport physiology. In: Maher JF, ed. Replacement of Renal Function by Dialysis, 3rd edn. Boston: MD: Kluwer, 1989, pp. 516–36.

    Google Scholar 

  125. Nolph KD, Miller F, Rubin J, Popovich R. New directions in peritoneal dialysis concepts and applications. Kidney Int 1980; 18: S111–16.

    Google Scholar 

  126. Flessner MF, Dedrick RL, Schultz JS. A distributed model of peritoneal-plasma transport: theoretical considerations. Am J Physiol 1984; 246: R597–607.

    PubMed  CAS  Google Scholar 

  127. Flessner MD, Dedrick RL, Schultz JS. A distributed model of peritoneal-plasma transport: analysis of experimental data in the rat. Am J Physiol 1985; 248: F413–24.

    PubMed  CAS  Google Scholar 

  128. Flessner MF, Fenstermacher JD, Dedrick RL, Blasberg RG. A distributed model of peritoneal-plasma transport: tissue concentration gradients. Am J Physiol 1985; 248: F425–35.

    PubMed  CAS  Google Scholar 

  129. Douma CE, De Waart DR, Struijk DG, Krediet R. The nitric oxide donor nitroprusside intraperitoneally affects peritoneal permeability in CAPD. Kidney Int 1997; 51: 1885–92.

    PubMed  CAS  Google Scholar 

  130. Flessner MF, Dedrick RL. Role of the liver in small-solute transport during peritoneal dialysis. J Am Soc Nephrol 1994; 5: 116–20.

    PubMed  CAS  Google Scholar 

  131. Flessner MF. Small-solute transport across specific peritoneal tissue surfaces in the rat. J Am Soc Nephrol 1996; 7: 225–33.

    PubMed  CAS  Google Scholar 

  132. Stephenson RB. Microcirculation and exchange. In: Patton HD, Fuchs AF, Hille B, Scher AM, Steiner R, eds. Textbook of Physiology. Philadelphia, PA: WB Saunders, 1989, pp. 911–923.

    Google Scholar 

  133. Wade OL, Combes B, Childes AW, Wheeler HO, Dournand D, Bradley SE. The effect of exercise on the splanchnic blood flow and splanchnic blood volume in normal man. Clin Sci 1956; 15: 457.

    PubMed  Google Scholar 

  134. Korthuis RJ, Granger DN. Role of the peritoneal microcirculation in peritoneal dialysis: In: Nolph KD, ed. Peritoneal Dialysis, 3rd edn. Boston, MA: Kluwer, 1989.

    Google Scholar 

  135. Aune S. Transperitoneal exchange II. Peritoneal blood flow estimated by hydrogen gas clearance. Scand J Gastroenterol 1970; 5: 99–104.

    PubMed  CAS  Google Scholar 

  136. Bulkey GB. Washout of intraperitoneal xenon: effective peritoneal perfusion as an estimateion of peritoneal blood glow. In: Granger DN, Bulkey GB, eds. Measurement of Blood Flow: Application to the Splanchnic Circulation. Baltimore, MD: Williams and Wilkins, 1981, pp. 441–53.

    Google Scholar 

  137. Nolph KD, Popovich RP, Ghods AJ, Twardowski Z. Determinants of low clearances of small solutes during peritoneal dialysis. Kidney Int 1978; 13: 117–23.

    PubMed  CAS  Google Scholar 

  138. Erb RW, Greene JA Jr, Weller JM. Peritoneal dialysis during hemorrhagic shock. J Appl Physiol 1967; 22: 131–5.

    Google Scholar 

  139. Texter E, Clinton JR. Small intestinal blood flow. Am J Dig Dis 1963; 8: 587–613.

    PubMed  Google Scholar 

  140. Miller FN, Nolph KD, Harris PD, Rubin J, Wiegman DL, Joshua IG. Effects of peritoneal dialysis solutions on human clearances and rat arterioles. Trans Am Soc Intern Organs 1978; 24: 131–2.

    CAS  Google Scholar 

  141. Miller FN, Nolph KD, Harris PD et al. Microvascular and clinical effects of altered peritoneal dialysis solutions. Kidney Int 1979; 15: 630–9.

    PubMed  CAS  Google Scholar 

  142. Nolph KD. Effects of intraperitoneal vasodilators on peritoneal clearances. Dial Transplant 1978; 7: 812.

    Google Scholar 

  143. Nolph KD, Ghods AJ, Brown PA, Twardowski ZJ. Effects of intraperitoneal nitroprusside on peritoneal clearances with variations in dose, frequency of administration, and dwell times. Nephron 1979; 24: 114–20.

    PubMed  CAS  Google Scholar 

  144. Nolph KD, Ghods AJ, Van Stone J, Brown PA. The effects of intraperitoneal vasodilators on peritoneal clearances. Trans Am Soc Artif Intern Organs 1976; 22: 586.

    PubMed  CAS  Google Scholar 

  145. Nolph KD, Ghods AJ, Brown PA et al. Effects of nitroprusside on peritoneal mass transfer coefficients and microvascular physiology. Trans Am Soc Artif Intern Organs 1977; 23: 210–18.

    PubMed  CAS  Google Scholar 

  146. Ronco C, Feriani M, Chiaramonte S, Brendolan A, Milan M, La Greca G. Peritoneal blood flow: does it matter? Perit Dial Int 1996; 16 (suppl. 1): S70–5.

    PubMed  Google Scholar 

  147. Kim M, Lofthouse J, Flessner MF. A method to test blood flow limitation of peritoneal-blood solute transport. J Am Soc Nephrol 1997; 8: 471–4.

    PubMed  CAS  Google Scholar 

  148. Kim M, Lofthouse J, Flessner MF. Blood flow limitations of solute transport across the visceral peritoneum. J Am Soc Nephrol 1997; 8: 1946–50.

    PubMed  CAS  Google Scholar 

  149. Rubin J, Nolph KD, Popovich RP, Moncrief JW, Prowant B. Drainage volume during continuous ambulatory peritoneal dialysis. Am Soc Artif Intern Org 1979; 22: 54–60.

    Google Scholar 

  150. Twardowski ZJ, Khanna R, Nolph KD. Osmotic agents and ultrafiltration in peritoneal dialysis. Nephron 1986; 42: 93–101.

    PubMed  CAS  Google Scholar 

  151. Maher JF, Hirszel P, Lasrich M. An experimental model for study of pharmacologic and hormonal influences on peritoneal dialysis. Contrib Nephrol 1979; 17: 131–8.

    PubMed  CAS  Google Scholar 

  152. Maher JF. Peritoneal transport rates: mechanisms, limitation and methods for augmentation. Kidney Int 1980; 18: 5117–21.

    Google Scholar 

  153. Nolph KD, Mactier R, Khanna R, Twardowski ZJ, Moore H, McGary T. The kinetics of ultrafiltration during peritoneal dialysis. Kidney Int 1987; 32: 219–26.

    PubMed  CAS  Google Scholar 

  154. Flessner MF, Schwab A. Pressure threshold for fluid loss from the peritoneal cavity. Am J Physol 1996; 270: F377–90.

    CAS  Google Scholar 

  155. Flessner MF. Osmotic barrier of the parietal peritoneum. Am J Physiol 1994; 267: F861–70.

    PubMed  CAS  Google Scholar 

  156. Grzegorzewska AE, Moore HL, Nolph KD, Chen TW. Ultrafiltration and effective peritoneal blood flow during peritoneal dialysis in the rat. Kidney Int 1991; 39: 608–17.

    PubMed  CAS  Google Scholar 

  157. Granger DN. Richardson PDI, Taylor AE. The effects of isoprenaline and bradykinnin on capillary filtration in the cat small intestine. Br J Pharmocol 1979; 67: 361–6.

    Google Scholar 

  158. Granger DN, Kvietys PR, Wilborn WH, Mortillaro NA, Taylor AE. Mechanisms of glucagon-induced intestinal secretion. Am J Physiol 1980; 239: G30–8.

    PubMed  CAS  Google Scholar 

  159. Mortillaro NA, Granger DN, Kvietys PR, Rutili G, Taylor AE. Effects of histamine and histamine antagonists on intestinal capillary permeability. Am J Pysiol 1981; 240: G381–6.

    CAS  Google Scholar 

  160. Granger DN, Perry MA, Kvietys PR, Taylor AE. Permeability of intestinal capillaries: effects of fat absorption and gastrointestinal hormones. Am J Physiol 1982; 242: G194–201.

    PubMed  CAS  Google Scholar 

  161. Campion DS, North JDK. Effect of protein binding of barbiturates on their rate of removal during peritoneal dialysis. J Lab Clin Med 1965; 66: 549–63.

    PubMed  CAS  Google Scholar 

  162. Cole DEC, Lirenman DS. Role of albumin enriched peritoneal dialysate in acute copper posioning. J Pediatr 1978; 92: 955–77.

    PubMed  CAS  Google Scholar 

  163. Etteldorf JM, Dobbins WT, Summitt RL, Rainwater WT, Fischer RI. Intermittent peritoneal dialysis using 5% albumin in the treatment of salicylate intoxication in children. J Pediatr 1961; 58: 226–36.

    PubMed  CAS  Google Scholar 

  164. Schultz JC, Crouder DG, Medart WS. Excretion of studies in ethylchlorovynol (placidil) intoxication. Arch Intern Med 1966; 117: 409–11.

    Google Scholar 

  165. El-Bassiouni EA, Mattocks AM. Acceleration of peritoneal dialysis with minimal N-myristyl-B-aminoproprionate. J Pharm Sci 1973; 62: 1314–16.

    PubMed  CAS  Google Scholar 

  166. Kudla RM, ElBassiouni EA, Mattocks AM. Accelerated peritoneal dialysis of barbituarates, and salicylate. J Pharm Sci 1971; 60: 1065–7.

    PubMed  CAS  Google Scholar 

  167. Mattocks AM. Accelerate removal of salicylate by additives in peritoneal dialysis fluid. J Pharm Sci 1969; 58: 595–9.

    PubMed  CAS  Google Scholar 

  168. Hirszel P, Lasrich M, Maher JF. Arachidonic acid increases peritoneal clearances. Trans Am Soc Artif Intern Organs 1981; 27: 61–3.

    PubMed  CAS  Google Scholar 

  169. Maher JF, Hirszel P, Lasrich M. Effects of gastrointestinal hormones on transport by peritoneal dialysis. Kidney Int 1979; 16: 130–6.

    PubMed  CAS  Google Scholar 

  170. Lal SM, Nolph KD, Moore HS, Khanna R. Calcium channel blockers enhance urea transport without increasing protein loss. Clin Res 1986; 34: 40.

    Google Scholar 

  171. Vargemezis V, Pasadakis P, Thodis E. Effect of a calcium antagonist (verapamil) on the permeability of the peritoneal membrane in patients on continuous ambulatory peritoneal dialysis. Blood Purif 1989; 7: 309–13.

    PubMed  CAS  Google Scholar 

  172. Penzotti SC, Mattocks MA. Acceleration of peritoneal dialysis by surface-acting agents. J Pharm Sci 1968; 57: 119–205.

    Google Scholar 

  173. Maher JF, Hirszel P, Lasrich M. Effects of gastrointestinal hormones on transport by peritoneal dialysis. Kidney Int 1979; 16: 130–6.

    PubMed  CAS  Google Scholar 

  174. Hirszel P, Dodge K, Maher JF. Acceleration of peritoneal transport by cytochalasin D. Uremia Invest 1984; 8: 85.

    PubMed  CAS  Google Scholar 

  175. Covey TJ. Ferous sulfate poisoning: a review, case summaries and therapeutic regimen. J Pediatr 1964; 64: 218–26.

    PubMed  CAS  Google Scholar 

  176. Stanbaugh GH Jr, Homes AW, Gillit D. Iron chelation therapy in CA PD: A new effective treatment for iron overload disease in ESRD patients. Perit Dial Bull 1983; 3: 99–103.

    Google Scholar 

  177. Williams P, Khanna R, Crapper McLachlan DR. Enhancement of aluminum removal by desferrioxamine in a patient on continuous ambulatory peritoneal dialysis with dementia. Perit Dial Bull 1981: 73–7.

    Google Scholar 

  178. Knochel JP, Clayton E, Smith WL, Barry KG. Intraperitoneal THAM: an effective method to enhance phenobarbital removal during peritoneal dialysis. J Lab Clin Med 1964; 64: 257–68.

    PubMed  CAS  Google Scholar 

  179. Knochel JP, Mason AD. Effect of alkalinization on peritoneal diffusion of uric acid. Am J Physiol 1966; 210: 1160–4.

    PubMed  CAS  Google Scholar 

  180. Nolph KD, Ghods AJ, Van Stone J, Brown PA. The effects of intraperitoneal vasodilators on peritoneal clearances. Trans Am Soc Artif Intern Organs 1976; 22: 586–94.

    PubMed  CAS  Google Scholar 

  181. Penzotti SC, Mattocks MA. Acceleration of peritoneal dialysis by surface-acting agents. J Pharm Sci 1968; 57: 1192–5.

    PubMed  CAS  Google Scholar 

  182. Mattocks AM, Penzotti SC. Acceleration of peritoneal dialysis with minimum amounts of dioctyl sodium sulfosuccinate. J Pharm Sci 1972; 61: 475–6.

    PubMed  CAS  Google Scholar 

  183. Maher JF, Hirszel P, Abraham JE. The effect of dipyridamole on peritoneal mass transport. Trans Am Soc Artif Intern Organs 1977; 23: 219–23.

    PubMed  CAS  Google Scholar 

  184. Hare HG, Valtin J, Gosselin RE. Effects of drugs on peritoneal dialysis in the dog. J Pharmacol Exp Ther 1964; 145: 122–9.

    PubMed  CAS  Google Scholar 

  185. Shear L, Harvey JD, Barry KG. Peritoneal sodium transport: enhancement by pharmological and physical agents. J Lab Clin Med 1966; 67: 181–8.

    PubMed  CAS  Google Scholar 

  186. Mehbod H. Treatment of lead intoxication. Combined use of peritoneal dialysis and edentate calcium disodium. JAMA 1967; 201: 972–4.

    PubMed  CAS  Google Scholar 

  187. Maher JF, Hohnadel DC, Shea C, Sisanzo F, Cassetts M. Effects of intraperitoneal diuretics on solute transport during hypertonic dialysis. Clin Nephrol 1977; 7: 96–100.

    PubMed  CAS  Google Scholar 

  188. Grzegorzewska A, Baczyk K. Furosemide-induced increase in urinary and peritoneal excretion of uric acid during peritoneal dialysis in patients with chronic uremia. Artif Organs 1982; 6: 220–4.

    PubMed  CAS  Google Scholar 

  189. Maher JF, Hirszel P, Lasrich M. Effects of gastrointestinal hormones on transport by peritoneal dialysis. Kidney Int 1979; 16: 130–6.

    PubMed  CAS  Google Scholar 

  190. Nolph KD, Ghods AJ, Brown P, Van Stone JC. Factors affecting peritoneal dialysis efficiency. Dial Transplant 1977; 6: 52–6.

    Google Scholar 

  191. Felt J, Richard C, McCaffrey C, Lefy M. Peritoneal clearance of creatinine and insulin during dialysis in dogs. Effect of splanchnic vasodilators. Kidney Int 1979; 16: 459–69.

    PubMed  CAS  Google Scholar 

  192. Hirszel P, Maher JF, Legrow W. Increased peritoneal mass transport with glucagon acting at the vascular surface. Trans Am Soc Artif Organs 1978; 24: 136–8.

    CAS  Google Scholar 

  193. Rasio EA. Metabolic control of permeability in isolated mesentery. Am J Physiol 1974; 226: 962–8.

    PubMed  CAS  Google Scholar 

  194. Brown EA, Kliger AS, Goffinet J, Finkelstein FO. Effect of hypertonic dialysate and vasodilators on peritoneal dialysis clearances in rats. Kidney Int 1978; 12: 271–7.

    Google Scholar 

  195. Granger DN, Richardson PDI, Kvietys PR, Mortillaro NA. Intestinal blood flow. Gastroenterology 1980; 78: 837–63.

    PubMed  CAS  Google Scholar 

  196. DeSanto NG, Capodicasa G, Capasso G. Development of means to augment peritoneal urea clearances: the synergic effects of combining high dialysate temperature and high dialysate flow rates with dextrose and nitroprusside. Artif Organs 1981; 5: 409–14.

    CAS  Google Scholar 

  197. Henderson LW, Nolph KD. Altered permeability of the peritoneal membrane after usng hypertonic peritoneal dialysis fluid. J Clin Invest 1969; 48: 992–1001.

    PubMed  CAS  Google Scholar 

  198. Rasio EA. Metabolic control of permeability in isolated mesentery. Am J physiol 1974; 226: 962–8.

    PubMed  CAS  Google Scholar 

  199. Brown ST, Aheran DJ, Nolph KD. Reduced peritoneal clearances in scleroderma increased by intraperitoneal isoproterenol. Ann Intern Med 1973; 78: 891–7.

    PubMed  CAS  Google Scholar 

  200. Maher JF, Shea C, Cassetta M, Hohnadel DC. Isoproterenol enhancement of permeability. J Dial 1977; 1: 319–31.

    PubMed  CAS  Google Scholar 

  201. Nolph KD, Miller L, Husted FC, Hirszel P. Peritoneal clearances in scleroderma and diabetes mellitus. Effects of intraperitoneal isoproterenol. Int Urol Nephrol 1976; 8: 154–61.

    Google Scholar 

  202. Shinaberger JH, Shear L, Clayton LE. Dialysis of intoxication with lipid soluble drugs: enhancement of glutethimide extraction with lipid dialysate. Trans Am Soc Artif Organs 1965; 11: 173–7.

    CAS  Google Scholar 

  203. Miller FN, Nolph KD, Harris PD. Effects of peritoneal dialysis solutions on human clearances and rat arterioles. Trans Am Soc Artif Intern Organs 1978; 24: 131–2.

    PubMed  CAS  Google Scholar 

  204. Nolph KD. Effects of intrraperitoneal vasodilators on peritoneal clearances. Dial Transpl 1978; 7: 812.

    Google Scholar 

  205. Nolph KD, Ghods AJ, Brown PA, Twardowski ZJ. Effects of intraperitoneal nitroprusside on peritoneal clearances with variations in dose, frequency of administration, and dwell times. Nephron 1979; 24: 114–20.

    PubMed  CAS  Google Scholar 

  206. Breborowicz A, Knapowski J. Augmentation of peritoneal dialysis clearances with procaine. Kidney Int 1984; 26: 392–6.

    PubMed  CAS  Google Scholar 

  207. Maher JF, Hirszel P, Lasrich M. Modulation of peritoneal transport rates by prostaglandins. Adv Prostagland Thrombox Res 1980; 7: 695–700.

    CAS  Google Scholar 

  208. Hirszel P, Lasrich M, Maher JF. Peritoneal transport rates and inhibition of prostaglandin synthetase by mefenamic acid. Abstr Am Soc Artif Intern Organs 1980; 9: 48.

    Google Scholar 

  209. Parker HR, Schroeder JP, Henderson LW. Influence of dopamine and Regitine on peritoneal dialysis in unanesthetized dogs. Abstr Am Soc Artif Intern Organs 1978; 7: 43.

    Google Scholar 

  210. Alavi N, Lianos E, Andres G. Effect of protamine on the permeability and structure of rat peritoneum. Kidney Int 1982; 21: 44–53.

    PubMed  CAS  Google Scholar 

  211. Avasthi PS. Effects of aminonucleoside on rat blood-peritoneal barrier permeability. J Lab Clin Med 1979; 94: 295–302.

    PubMed  CAS  Google Scholar 

  212. Gutman RA, Nixon WP, McRae RL, Spencer HW. Effect of intraperitoneal and intravenous vasoactive amines on peritoneal dialysis: Study in anephric dogs. Trans Am Soc Artif Intern Organs 1976; 22: 570–3.

    PubMed  CAS  Google Scholar 

  213. Hirszel P, Larisch M, Maher JF. Divergent effects of catecholamines on peritoneal mass transport. Trans Am Soc Artif Intern Organs 1979; 25: 110–13.

    PubMed  CAS  Google Scholar 

  214. Raja RM, Kramer MS, Rosenbaum JL. Enhanced clearance with intraperitoneal nitroprusside in high flow recirculation peritoneal dialysis. Trans Am Soc Artif Intern Organs 1978; 24: 133–5.

    PubMed  CAS  Google Scholar 

  215. Nolph KD, Rubin J, Wiegman DL, Harris PD, Miller FN. Peritoneal clearances with three types solutions. Nephron 1979; 24: 35–40.

    CAS  Google Scholar 

  216. Grzegorzewska A, Barcz M, Kriczi M, Antoniewicz K. Peritoneal blood flow and peritoneal transfer parameters during intermittent peritoneal dialyses performed with administration of sodium nitroprusside or chlorpromazine. Przegl Lek 1996; 53: 412–16.

    PubMed  CAS  Google Scholar 

  217. Carlsson O, Rippe B. Enhanced peritoneal diffusion capacity of 51Cr-EDTA during the initial phase of peritoneal dialysis: role of vasodilatation, dialysate `stirring’, and of interstitial factors. Blood Purif 1998; 16: 162–70.

    PubMed  CAS  Google Scholar 

  218. Brown ST, Aheran DJ, Nolph KD. Reduced peritoneal clearances in scleroderma increased by intraperitoneal isoproterenol. Ann Intern Med 1973; 78: 891–7.

    PubMed  CAS  Google Scholar 

  219. Miller FN, Nolph KD, Joshua IG, Rubin J. Effects of vasodilators and peritoneal dialysis solution on the microcirculation of the rat cecum. Proc Soc Exp Biol Med 1979; 161: 605–8.

    PubMed  CAS  Google Scholar 

  220. Miller FN, Nolph KD, Joshua IG, Weigman DL, Harris PD, Anderson DB. Hyperosmolality, acetate and lactate: dilatory factors during peritoneal dialysis. Kidney Int 1981; 20: 397–402.

    PubMed  CAS  Google Scholar 

  221. Miller FN, Joshua JG, Harris PD, Weigman DL, Jauchem JR. Peritoneal dialysis solutions and the microcirculation. Contrib Nephrol 1977; 17: 51–8.

    Google Scholar 

  222. Steenbergen JM, Bohlen HG. Sodium hyperosmolarity of intestinal lymph causes arteriolar vasodilation in part mediated by EDRF. Am J Physiol 1993; 265: H323–8.

    PubMed  CAS  Google Scholar 

  223. MacAllister R, Vallance P. Nitric oxide in essential in renal hypertension. J Am Soc Nephrol 1994; 5: 1057–65.

    PubMed  CAS  Google Scholar 

  224. Anderstam B, Katzarski K, Bergstrom J. Serum levels of NG,N°-dimethylarginine, a potential endogenous nitric oxide inhibitor in dialysis patients. J Am Soc Nephrol 1997; 8: 1437–9.

    PubMed  CAS  Google Scholar 

  225. Breborowicz A, Wieczorowska-Tobis K, Korybalska K, Polubinska A, Radowski M, Oreopoulos D. The effect of a nitric oxide inhibitor (L-NAME) on peritoneal transport during peritoneal dialysis. Petit Dial Int 1998; 18: 188–92.

    CAS  Google Scholar 

  226. Douma CE, de Waart DR, Struijk DG, Krediet RT. Effect of amino acid based dialysate on peritoneal blood flow and permeability in stable CAPD patients: a potential role for nitric oxide? Clin Nephrol 1996; 45: 295–302.

    PubMed  Google Scholar 

  227. Schmid-Schonbein GW, Usami S, Skalak R, Chien S. The interaction of leukocytes and erythrocytes in capillary and postcapillary vessels. Microvasc Res 1980; 19: 45–70.

    PubMed  CAS  Google Scholar 

  228. Kishimoto TK. A dynamic model for neutrophil localization to inflammatory sites. J NIH Res 1991.

    Google Scholar 

  229. House SD, Lipowsky JJ. Leukocyte-endothelium adhesion: microhemodynamics in mesentery of the cat. Microvasc Res 1987; 34: 363–79.

    PubMed  CAS  Google Scholar 

  230. Engler RL, Schmid-Schonbein, Pavelec RS. Leukocyte capillary plugging in myocardial ischemia and reperfusion in the dog. Am J Pathol 1983; 3: 98–111.

    Google Scholar 

  231. Worthen GS, Schwab B, Elson EL, Downey OP. Cellular mechanics of stimulated neutrophils: stiffening of cells induces retention in pores in vitro and long capillaries in vivo. Science 1989; 245: 183–6.

    PubMed  CAS  Google Scholar 

  232. Carden DL, Smith JK, Korthuis RJ. Neutrophil mediated microvascular dysfunction in postischemic canine skeletal muscle: role of granulocyte adherence. Circ Res 1990; 66: 1436–44.

    PubMed  CAS  Google Scholar 

  233. Harlan JM. Leukocyte-endothelial cell interactions. Blood 1985; 65: 513–25.

    PubMed  CAS  Google Scholar 

  234. Gaboury J, Woodman RC, Granger DN, Reinhardt P, Kubes P. Nitric oxide prevents leukocyte adherence: role of superoxide. Am J Physiol 1993; 265: H862–7.

    PubMed  CAS  Google Scholar 

  235. Gaboury J, Anderson D, Kubes P. Molecular mechanisms involved in superoxide-induced leukocyte-endothelial cell interactions in vivo. Am J Physiol 1994; 266: H637–42.

    PubMed  CAS  Google Scholar 

  236. Del Maestro RF, Planker, Arfors KE. Evidence for the participation of superoxide anion radical in altering the adhesive interaction between granulocytes and endothelium in vivo. Int J Microcirc Clin Exp 1982; 1: 105–20.

    PubMed  Google Scholar 

  237. Asako H, Kurose I, Wolf R et al. Role of HI-receptors and P-selectin in histamine-induced leukocyte rolling and adhesion in postcapillary venules. J Clin Invest 1994; 93: 1508–15.

    PubMed  CAS  Google Scholar 

  238. Olofsson AM, Von Andrian UH, Ranezani L, Wolitzky B, Arfors KE. E-selectin mediates leukocyte rolling in interleukin-1 treated rabbit mesentery venules. FASEB J 1993; 7: A342 (abstract).

    Google Scholar 

  239. Mayadas TN, Johnson R, Rayburn H, Hynes RO, Wagner DD. Leukocyte rolling and extravasation are severely compromised in P-selectin-deficient mice. Cell 1993; 74: 541–54.

    PubMed  CAS  Google Scholar 

  240. Wallace JL, McKnight W, Miyasaka M et al. Role of endothelial adhesion molecules in NSAID-induced gastric mucosal injury. Am J Physiol 1993; 265: G993–8.

    PubMed  CAS  Google Scholar 

  241. Eppihimer MJ, Granger DN. Ischemia/reperfusion-induced leukocyte-endothelial interactions in postcapillary venules. Shock 1997; 8: 16–25.

    PubMed  CAS  Google Scholar 

  242. Argenbright LW, Letts LG, Rothlein R. Monoclonal antibodies to the leukocyte membrane CD18 glycoprotein complex and to intercellular adhesion molecule-1 inhibit leukocyte-endothelial adhesion in rabbits J Leuk Biol 1991; 49: 253–7.

    CAS  Google Scholar 

  243. Kubes P, Suzuki M, Granger DN. Modulation of PAF-induced leukocyte adherence and increased microvascular permeability. Am J Physiol 1990: 259: G859–64.

    PubMed  CAS  Google Scholar 

  244. Dillon PK, Fitzpatrick MF, Ritter AB, Duran WN. Effect of platelet-activating factor on leukocyte adhesion to microvascular endothelium. Time course and dose-response relationships. Inflammation 1988; 12: 563–73.

    PubMed  CAS  Google Scholar 

  245. Bjork J, Hedqvist P, Arfors KE. Increase in vascular permeability induced by leukotriene B4; and the role of polymorphonuclear leukocytes. Inflammation 1982; 6: 189–200.

    PubMed  CAS  Google Scholar 

  246. Kubes P, Grisham MB, Barrowman JA, Gaginella T, Granger DN. Leukocyte-induced vascular protein leakage in cat mesentery. Am J Physiol 1991; 261: H 1872–9.

    Google Scholar 

  247. Asako H, Wolf R, Granger DN, Korthuis RJ. Phalloidin reduces leukocyte emigration and vascular permeability in postcapillary venules. Am J Physiol 1992; 263: H1637–42.

    PubMed  CAS  Google Scholar 

  248. Suzuki M, Asako H, Kubes P, Jennings S, Grisham MB, Granger DN. Neutrophil-derived oxidants promote leukocyte adherence in postcapillary venules. Microvasc Res 1991; 42: 125–38.

    PubMed  CAS  Google Scholar 

  249. Asako H, Kubes P, Wallace JL, Wolf RE, Granger DN. Indomethacin-induced leukocyte adhesion in mesenteric venules: role of lipoxygenase products. Am J Physiol 1992; 262: G903–8.

    PubMed  CAS  Google Scholar 

  250. Arndt H, Smith CW, Granger DN. Leukocyte-endothelial cell adhesion in spontaneously hypertensive and normal rats. Hypertension 1993; 21: 667–73.

    PubMed  CAS  Google Scholar 

  251. Granger DN, Kvietys PR, Perry MA. Leukocyte-endothelial cell adhesion induced by ischemia and reperfusion. Can J Physiol Pharmacol 1993; 71: 67–75.

    PubMed  CAS  Google Scholar 

  252. Lehr HA, Hubner C, Nolte D, Kohlscutter A, Messmer K. Dietary fish oil blocks the microcirculatory manifestations of ischemia-reperfusion injury in striated muscle in hamsters. Proc Natl Acad Sci USA 1991; 88: 6726–30.

    PubMed  CAS  Google Scholar 

  253. Miura S, Imaeda H, Shiozaki H, Suematsu M, Sekizuka E, Tsuchiya M. Attenuation of endotoxin-induced intestinal microcirculatory damage by eicosapentanoic acid. Am J Physiol 1993; 264: G828–34.

    PubMed  CAS  Google Scholar 

  254. Grisham MB, Hernandez LA, Granger DN. Adenosine inhibits ischemia/reperfusion-induced leukocyte adherence and extravasation. Am J Physiol 1989; 257: H1334–9.

    PubMed  CAS  Google Scholar 

  255. Asako H, Wolf R, Granger DN. Leukocyte adherence in rat mesenteric venules: effects of adenosine and methotrexate. Gastroenterology 1993; 104: 31–7.

    PubMed  CAS  Google Scholar 

  256. Asako H, Kubes P, Wallace JL, Wolf RE, Granger DN. Modulation of leukocyte adhesion in rat mesenteric venules by aspirin and salicylate. Gastroenterology 1992; 103: 149–52.

    Google Scholar 

  257. Erlansson M, Bergqvist D, Persson NH, Svensjo E. Modification of postischemic increase of leukocyte adhesion and vascular permeability in the hamster by iloprost. Prostaglandins 1991; 41: 157–68.

    PubMed  CAS  Google Scholar 

  258. Kubes P, Granger DN. Nitric oxide modulates microvascular permeability. Am J Physiol 1992; 262: H611–15.

    PubMed  CAS  Google Scholar 

  259. Kurose I, Kubes P, Wolf RE et al. Inhibition of nitric oxide production: mechanisms of vascular albumin leakage. Cire Res 1993; 73: 164–71.

    CAS  Google Scholar 

  260. Lehr HA, Kress E, Menger MD et al. Cigarette smoke elicits leukocyte adhesion to endothelium in hamsters: inhibition by CuZn-SOD. Free Radic Biol Med 1993; 14: 573–81.

    PubMed  CAS  Google Scholar 

  261. Suzuki M, Grisham MB, Granger DN. Leukocyte-endothelial cell interactions: role of xanthine oxidase-derived oxidants. J Leuk Biol 1991; 50: 488–94.

    CAS  Google Scholar 

  262. Arndt H, Russell JM, Kurose I, Kubes P, Granger DN. Mediators of leukocyte adhesion in rat mesenteric venules elicited by inhibition of nitric oxide sythesis. Gastroenterology 1993; 105: 675–80.

    PubMed  CAS  Google Scholar 

  263. Lehr HA, Guhlmann A, Nolte D, Keppler D, Messmer K. Leukotrienes as mediators in ischemia-reperfusion injury in a microcirculation model in the hamster. J Clin Invest 1991; 87: 2036–41.

    PubMed  CAS  Google Scholar 

  264. Asako H, Kubes P, Baethge BA, Wolf RE, Granger DN. Colchicine and methotrexate reduce leukocyte adherence and emigration in rat mesenteric venules. Inflammation 1992; 16: 45–56.

    PubMed  CAS  Google Scholar 

  265. Kubes P, Kanwar S, Niu XF, Gaboury J. Nitric oxide synthesis inhibition induces leukocyte adhesion via superoxide and mast cells. FASEB J 1993; 7: 1293–9.

    PubMed  CAS  Google Scholar 

  266. Kubes P, Suzuki M, Granger DN. Platelet activating factor-induced microvascular dysfunction: role of adherent leukocytes. Am J Physiol 1990; 258: G158–63.

    PubMed  CAS  Google Scholar 

  267. Weiss S. Oxygen, ischemia and inflammation. Acta Physiol Scand 1986; 126 (suppl. 584): 9–38.

    Google Scholar 

  268. Weiss SJ. Tissue destruction by neutrophils. N Engl J Med 1989; 320: 365–76.

    PubMed  CAS  Google Scholar 

  269. Reilly PM, Schiller HJ, Bulkley GB. Pharmacological approach to tissue injury by free radicals nd other reactive oxygen metabolites. Am J Surg 1991; 161: 488–503.

    PubMed  CAS  Google Scholar 

  270. Kubes P, Suzuki M, Granger DN. Modulation of PAF-induced leukocyte adherence and increased microvascular permeability. Am J Physiol 1990; 259: G858–64.

    Google Scholar 

  271. Kubes P, Granger DN. Nitric oxide modulates microvascular permeability. Am J Physiol 1992; 262: H611–15.

    PubMed  CAS  Google Scholar 

  272. Del Maschio A, Zanetti A, Corada M et al. Polymorphonuclear leukocyte adhesion triggers the disorganization of endothelial cell-to-cell adherens junctions. J Cell Biol 1996; 135: 497–510.

    PubMed  Google Scholar 

  273. Gotsch U, Borges E, Bosse R et al. VE-cadherin antibody accelerates neutrophil recruitment in vivo. J Cell Sci 1997; 110: 583–8.

    PubMed  CAS  Google Scholar 

  274. White R, Work J, Korthius R. The effect of a hypertonic peritoneal dialysis solution on leukocyte adhesion to post-capillary venules in the rat mesentery. FASEB J 1993; A343: 1985 (abstract).

    Google Scholar 

  275. Jonasson P, Bagge U, Wieslander A, Braide M. Heat sterilized PD fluid blocks leukocyte adhesion and increases flow velocity in rat peritoneal venules. Petit Dial Int 1996; 16 (suppl. 1): S137–40.

    Google Scholar 

  276. White R, Ram S. Peritoneal dialysis solution attenuates microvascular leukocyte adhesion induced by nitric oxide synthesis inhibition. Adv Petit Dial 1996; 53–6.

    Google Scholar 

  277. Kaupke CJ, Zhang J, Rajpoot D, Wang J, Zhou XJ, Vaziri ND. Effects of conventional peritoneal dialysates on leukocyte adhesion and CD11b, CD18 and CD14 expression. Kidney Int 1996; 50: 1676–83.

    PubMed  CAS  Google Scholar 

  278. Nolte D, Bayer M, Lehr H et al. Attenuation of postischemic microvascular disturbances in striated muscle by hyperosmolar saline dextran. Am J Physiol 1992; 263: H1411–16.

    PubMed  CAS  Google Scholar 

  279. White R, Work J, Korthuis R. The effect of a hyperosmolar non-glucose containing solution on leukocyte adhesion to postcapillary venules in the rat mesentery. FASEB J 1994; 1871 (abstract).

    Google Scholar 

  280. Duwe AK, Vas SI, Weatherhead JW. Effects of the composition of peritoneal dialysis fluid on chemiluminescence, phagocytosis, and bactericidal activity in vitro. Infect Immun 1981; 33: 130–5.

    PubMed  CAS  Google Scholar 

  281. H van Bronswijk, Verbrugh HA, Heezius HCJM, J van der Meulen, Oe PL, Verhoef J. Dialysis fluids and local host resistance in patients on continuous ambulatory peritoneal dialysis. Eur Clin Microbiol Infect Dis 1988; 7: 368–73.

    CAS  Google Scholar 

  282. Verbrugh HA, Keane WF, Hoidal JR, Freiberg MR, Elliott GR, Peterson PK. Peritoneal macrophages and opsonins: antibacterial defense in patients undergoing chronic peritoneal dialysis. J Infect Dis 1983; 6: 1018–29.

    Google Scholar 

  283. Granger DN, Ulrich M, Perry MA, Kvietys PR. Peritoneal dialysis solutions and splanchnic blood flow. Clin Exp Pharmacol Physiol 1984; 11: 473–83.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

White, R., Granger, D.N. (2000). The peritoneal microcirculation in peritoneal dialysis. In: Gokal, R., Khanna, R., Krediet, R.T., Nolph, K.D. (eds) Textbook of Peritoneal Dialysis. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3225-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3225-3_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-3227-7

  • Online ISBN: 978-94-017-3225-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics