Skip to main content

Calcium, phosphate and renal osteodystrophy

  • Chapter
  • 254 Accesses

Abstract

The first association between uraemia and bone disease was made by Lucas and reported in Lancet of 1883 [1]. However, it was not until nearly 40 years later that the major clinical and radiological manifestations of the skeletal changes were accurately defined [2, 3]. In 1943 the histopathology of osteitis fibrosa and osteomalacia was described [4], and in the same year the term ‘renal osteodystrophy’ was coined by Liu and Chu [5]. Subsequently the abnormalities of bone mass that occur in osteopenia and osteosclerosis were also described [6]. Following the research of Stanbury and Lumb [7, 8], there began a period of rapid advance in the understanding of the processes behind altered divalent ion metabolism, and the abnormalities of parathyroid hormone and vitamin D3 production that are seen in end-stage renal disease. Despite these advances, and the introduction of vitamin D3 replacement therapy, osteodystrophy remains a common complication of end-stage renal failure, and continues to pose diagnostic and therapeutic dilemmas for clinical nephrologists. It has become apparent that the spectrum of bone lesions seen in dialysis patients is changing, with hyperparathyroid disease becoming less common [9, 10], and furthermore, a different pattern of bone lesions is found in CAPD and haemodialysis patients [9–11]. In a histological study of 259 chronic dialysis patients in Canada the commonest bone lesion was found to be hyperparathyroid disease (50%) in haemodialysis patients, and adynamic bone (61%) in peritoneal dialysis patients [10]. In contrast, Malluche and Monier-Faugere (Kentucky, USA) reported that in a retrospective survey of 602 patients from 1982 to 1991 the mixed lesion was the commonest diagnosis [9], regardless of mode of dialysis (56% in CAPD and 49% in haemodialysis). The difference between these reports is noteworthy in itself, since both are large and reliable studies, but from centres many hundreds of miles apart. Whilst differing diagnostic criteria may account for some of the difference, it emphasizes the fact that, in dialysis patients, histomorphometric data represent the result of pathological processes, treatment regimes and environmental effects that have been on-going for many years.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lucas R. On a form of late rickets associated with albuminuria, rickets of adolescence. Lancet 1883; 1: 993–4.

    Google Scholar 

  2. Fletcher H. Case of infantilism with polyuria and chronic renal disease. Proc R Soc Med Lond 1911; 95–7.

    Google Scholar 

  3. Barber H. The bone deformities of renal dwarfism. Lancet 1920; 1: 18–20.

    Google Scholar 

  4. Follis R, Jackson D. Renal osteomalacia and osteitis fibrosa. Bull Johns Hopkins Hosp 1943; 72: 232–4.

    Google Scholar 

  5. Liu S, Chu H. Studies of calcium and phosphorus metabolism with special reference to pathogenesis and effects of dihydrotachysterol (A.T. 10) and iron. Medicine 1943; 22: 103–7.

    CAS  Google Scholar 

  6. Garner A, Ball J. Quantitative observations on mineralised and unmineralised bone in chronic renal azotaemia and intestinal malabsorption syndrome. J Pathol Bacteriol 1966; 91: 545–9.

    PubMed  CAS  Google Scholar 

  7. Stanbury S, Lumb G. Metabolic studies of renal osteodystrophy. Medicine 1962; 41: 1–28.

    PubMed  CAS  Google Scholar 

  8. Stanbury S, Lumb G. Parathyroid function in chronic renal failure: a statistical survey of the plasma biochemistry in azotaemic renal osteodystrophy. Q J Med 1966; 35: 1–12.

    PubMed  CAS  Google Scholar 

  9. Malluche H, Monier-Faugere M. Risk of adynamic bone disease in dialyzed patients. Kidney Int 1992; 42 (suppl. 38): S62–7.

    Google Scholar 

  10. Sherrard D, Hercz G, Pei Y et al. The spectrum of bone disease in end-stage renal failure–an evolving disorder. Kidney Int 1993; 43: 436–42.

    PubMed  CAS  Google Scholar 

  11. Coburn J. Mineral metabolism and renal bone disease: effects of CAPD versus hemodialysis. Kidney Int 1993; 43 (suppl. 40): S92–100.

    Google Scholar 

  12. Llach F, Massry S, Singer F, Yurokawa K, Kaye J, Coburn J. Skeletal resistance to endogenous parathyroid hormone in patients with early renal failure. A possible cause of secondary hyperparathyroidism. J Clin Endocrinol Metab 1975; 41: 339–45.

    PubMed  CAS  Google Scholar 

  13. Avioli L. The renal osteodystrophies. In: Brenner BFCR, ed. The Kidney. Philadelphia: Saunders, 1986, pp. 1542–80.

    Google Scholar 

  14. Malluche H, Ritz E, Kutschera J et al. Calcium metabolism and impaired mineralization in various stages or renal insufficiency. In: Normal A, Schaeffer K, Grigoleit H, Herrath D, Ritz E, eds. Vitamin D and Problems Related to Uremic Bone Disease. Berlin: Walter de Gruyter, 1975, pp. 513–22.

    Google Scholar 

  15. Malluche H, Faugere M. Renal bone disease 1990: an unmet challenge for the nephrologist. Kidney Int 1990; 38: 193–211.

    PubMed  CAS  Google Scholar 

  16. Baker L, Abrams S, Roe C, Faugere M, Fanti P, Subayti Y, Malluche H. 1,25-dihydroxyvitamin D3 administration in moderate renal failure: a prospective double-blind trial. Kidney Int 1989; 35: 661–9.

    PubMed  CAS  Google Scholar 

  17. Ward M, Feest T, Ellis H et al. Osteomalacic dialysis osteodystrophy: evidence for a water-borne aetiological agent, probably aluminium. Lancet 1978; 1: 841–5.

    PubMed  CAS  Google Scholar 

  18. Cournot-Witmer G, Plachot J, Borudeau A et al. Effect of aluminum on bone and cell localization. Kidney Int 1986; 29 (suppl. 18): S37–40.

    Google Scholar 

  19. Ott S, Maloney N, Coburn J, Alfrey A, Sherrard D. The prevalence of bone aluminum deposition in renal osteodystrophy and its relation to the response to calcitriol therapy. N Engl J Med 1982; 307: 709–14.

    PubMed  CAS  Google Scholar 

  20. Posner A, Blumenthal N, Boskey A. Model of aluminum-induced osteomalacia: inhibition of apatite formation and growth. Kidney Int 1986; 29 (suppl. 18): S17–19.

    Google Scholar 

  21. Fournier A, Moriniere P, Cohen-Solal M et al. Adynamic bone disease in uremia: may it be idiopathic? Is it an actual disease? Nephron 1991; 58: 1–12.

    PubMed  CAS  Google Scholar 

  22. Cuevas X, Aubia J, Bosch J et al. Histomorphometric bone patterns of diabetic-uremic patients on dialysis are established in pre-dialysis stage already. Nephrol Dial Transplant 1992; 7: 756 (abstract).

    Google Scholar 

  23. Hutchison A, Whitehouse R, Boulton H et al. Histological, radiological and biochemical features of the adynamic bone lesion in CAPD patients. Am J Nephrol 1994; 14: 19–29.

    PubMed  CAS  Google Scholar 

  24. Coburn J. Renal osteodystrophy. Kidney Int 1980; 17: 677–93.

    PubMed  CAS  Google Scholar 

  25. Fassbinder W, Brunner F, Brynger H et al. Combined report on regular dialysis and transplantation in Europe, XX, 1989. Nephrol Dial Transplant 1991; 6 (suppl. 1): 5–35.

    Google Scholar 

  26. Dunstan C, Evans R, Hills E, Wong S, Alfrey A. Effect of aluminum and parathyroid hormone on osteoblasts and bone mineralization in chronic renal failure. Calc Tissue Int 1984; 36: 133–8.

    CAS  Google Scholar 

  27. Charhon S, Chavassieux P, Chapuy M, Boivin G, Meunier P. Low rate of bone formation with or without histologic appearance of osteomalacia in patients with aluminum intoxication. J Lab Clin Med 1985; 106: 123–31.

    PubMed  CAS  Google Scholar 

  28. Hercz G, Pei Y, Manuel A et al. Aplastic osteodystrophy without aluminum staining in dialysis patients. Kidney Int 1990; 37: 449 (abstract).

    Google Scholar 

  29. Keutmann H, Sauer M, Hendry G et al. Complete amino-acid sequence of human parathyroid hormone. Biochemistry 1978; 17: 5723–9.

    PubMed  CAS  Google Scholar 

  30. Chu L, MacGregor R, Hamilton J et al. Conversion of pro-parathyroid hormone to parathyroid hormone: the use of amines as specific inhibitors. Endocrinology 1974; 95: 1431–8.

    PubMed  CAS  Google Scholar 

  31. Arnaud C. Hyperparathyroidism and renal failure. Kidney Int 1973; 4: 89–92.

    PubMed  CAS  Google Scholar 

  32. Slatopolsky E, Martin K, Morrissey J, Hruska K. Parathyroid hormone: alterations in chronic renal failure. In: Robinson R, ed. Nephrology. New York: Springer, 1985, pp. 1292–304.

    Google Scholar 

  33. Sherwood L, Mayer G, Ramberg C et al. Regulation of parathyroid hormone secretion: proportional control by calcium, lack of effect of phosphate. Endocrinology 1968; 83: 1043–51.

    PubMed  CAS  Google Scholar 

  34. Slatopolsky E, Lopez-Hilker S, Dusso A et al. The interrelationship between vitamin D and parathyroid hormone secretion in health and disease. In: Davison, A, ed. Nephrology. London: Baillière Tindall, 1988, vol. 2, pp. 1067–75.

    Google Scholar 

  35. Felsenfeld A, Ross D, Rodriguez M. Hysteresis of the parathyroid hormone response to hypocalcemia in haemodialysis patients with low turnover aluminum bone disease. J Am Soc Nephrol 1991; 6: 1136–43.

    Google Scholar 

  36. Dunlay R, Rodriguez M, Felsenfeld A, Llach F. Direct inhibitory effect of calcitriol on parathyroid function (sigmoidal curve) in dialysis patients. Kidney Int 1989; 36: 1093–8.

    PubMed  CAS  Google Scholar 

  37. Cunningham J, Altmann P, Gleed J, Butter K, Marsh F, O’Riordan J. Effect of direction and rate of change of calcium on parathyroid hormone secretion in uraemia. Nephrol Dial Transplant 1989; 4: 339–44.

    PubMed  CAS  Google Scholar 

  38. Brown E, Gardener D, Windeck R et al. Relationship of intracellular 3’,5’-adenosine monophosphate accumulation to parathyroid hormone release from dispersed bovine parathyroid cells. Endocrinology 1978; 103: 2323–33.

    PubMed  CAS  Google Scholar 

  39. Kitaoka M, Fukagawa M, Tanaka Y, Ogata E, Kurokawa K. Parathyroid gland size is critical for long-term prognosis of calcitriol pulse therapy in chronic dialysis patients. J Am Soc Nephrol 1991; 2: 637 (abstract).

    Google Scholar 

  40. Fukagawa M, Kaname S, Igarashi T, Ogata E, Kurokawa K. Regulation of parathyroid hormone synthesis in chronic renal failure in rats. Kidney Int 1991; 39: 874–81.

    PubMed  CAS  Google Scholar 

  41. Slatopolsky E, Weerts C, Thielan J et al. Marked suppression of secondary hyperparathyroidism by intravenous administration of 1,25-dihydroxycholecalciferol in uremic patients. J Clin Invest 1984; 74: 2136–43.

    PubMed  CAS  Google Scholar 

  42. Salusky I, Goodman W, Norris K, Horst N, Fine R, Coburn J. Bioavailability of calcitriol after oral, intravenous, and intraperitoneal doses in dialysis patients. In: Norman A, Schaefer K, Griroleit H, Herrath D, eds. Vitamin D. Molecular, Cellular and Clinical Endocrinology. Berlin: Walter de Gruyter, 1988, pp. 783–4.

    Google Scholar 

  43. Chase L, Slatopolsky E. Secretion and metabolic efficiency of parathyroid hormone in patients with severe hypomagnesemia. J Endocrinol Metab 1974; 38: 363–71.

    CAS  Google Scholar 

  44. Cohen-Solal M, Sebert J, Boudailliez B et al. Comparison of intact, midregion, and carboxy terminal assays of parathyroid hormone for the diagnosis of bone disease in hemodialyzed patients. J Clin Endocrinol Metab 1991; 73: 516–24.

    Google Scholar 

  45. Hutchison A, Whitehouse R, Boulton H et al. Correlation of bone histology with parathyroid hormone, vitamin D, and radiology in end-stage renal disease. Kidney Int 1994; 44: 1071–7.

    Google Scholar 

  46. Mawer E, Taylor C, Backhouse J, Lumb G, Stanbury S. Failure of formation of 1,25-dihydroxycholecalciferol in chronic renal insufficiency. Lancet 1973; 1: 626–8.

    PubMed  CAS  Google Scholar 

  47. Rapoport J, Shany S, Chaimovitz C. Continuous ambulatory peritoneal dialysis and vitamin D. Nephron 1988; 48: 1–3.

    PubMed  CAS  Google Scholar 

  48. Hayes M, O’Donoghue D, Ballardie F, Mawer E. Peritonitis induces the synthesis of 1-a-25, dihydroxyvitamin D3 in macrophages from CAPD patients. FEBS 1987; 220: 307–10.

    CAS  Google Scholar 

  49. Lind L, Wengle B, Wide L, Wrege U, Ljunghall S. Suppression of serum parathyroid hormone levels by intravenous alphacalcidol in uremic patients on maintenance hemodialysis. Nephron 1988; 48: 296–9.

    PubMed  CAS  Google Scholar 

  50. Andress D, Norris K, Coburn J, Saltopolsky E, Sherrard D. Intravenous calcitriol in the treatment of refractory osteitis fibrosa of chronic renal failure. N Engl J Med 1989; 321: 274–9.

    PubMed  CAS  Google Scholar 

  51. Ljunghall S, Althoff P, Fellstrom B et al. Effects on serum parathyroid hormone of intravenous treatment with alphacalcidol in patients on chronic hemodialysis. Nephron 1990; 55: 380–5.

    PubMed  CAS  Google Scholar 

  52. Tsukamoto Y, Nomura M, Takahashi Y et al. The `oral 1,25dihydroxyvitamin D3 pulse therapy’ in hemodialysis patients with severe secondary hyperparathyroidism. Nephron 1991; 57: 23–8.

    PubMed  CAS  Google Scholar 

  53. Gallieni M, Brancaccio D, Padovese P et al. Low-dose intravenous calcitriol treatment of secondary hyperparathyroidism in hemodialysis patients. Kidney Int 1992; 42: 1191–8.

    PubMed  CAS  Google Scholar 

  54. Moriniere P, Maurouard C, Boudailiez B et al. Prevention of hyperparathyroidism in patients on maintenance dialysis by intravenous 1-alpha-hydroxyvitamin D3 in association with Mg(OH)Z as sole phosphate binder. Nephron 1992; 60: 154–63.

    Google Scholar 

  55. Martin K, Ballai H, Domoto D, Blalock S, Weindel M. Pulse oral calcitriol for the treatment of hyperparathyroidism in patients on continuous ambulatory peritoneal dialysis: preliminary observations. Am J Kidney Dis 1992; 19: 540–5.

    PubMed  CAS  Google Scholar 

  56. Holick M. Vitamin D and the kidney. Kidney Int 1987; 32: 912–29.

    PubMed  CAS  Google Scholar 

  57. Mak R, Wong J. The vitamin D-parathyroid hormone axis in the pathogenesis of hypertension and insulin resistance in uremia. Miner Electrolyte Metab 1992; 18: 156–9.

    PubMed  CAS  Google Scholar 

  58. Bricker N. On the pathogenesis of the uremic state. An exposition of the `trade-off’ hypothesis. N Engl J Med 1972; 286: 1093–9.

    PubMed  CAS  Google Scholar 

  59. Faugere MC, Friedler R, Fanti P, Malluche H. Lack of histologic signs of Vit D deficiency in early development of renal osteodystrophy. J Bone Miner Res 1988; 3 (suppl. 1): S95.

    Google Scholar 

  60. Lopez-Hilker S, Galceran T, Chan UL, Rapp N, Martin K, Slatopolsky E. Hypocalcaemia may not be essential for the development of secondary hyperparathyroidism in chronic renal failure. J Clin Invest 1986; 78: 1097–102.

    PubMed  CAS  Google Scholar 

  61. Ritz E, Matthias S, Seidel A, Reichel H, Szabo A, Horl W. Disturbed calcium metabolism in renal failure–pathogenesis and therapeutic strategies. Kidney Int 1992; 42 (suppl. 38): S37–42.

    Google Scholar 

  62. Nielsen PK, Feldt-Rasmussen U, Olgaard K. A direct effect in vitro of phosphate on PTH release from bovine parathyroid tissue slices but not from dispersed parathyroid cells. Nephrol Dial Transplant 1996; 9: 1762–9.

    Google Scholar 

  63. Massry S, Tuma S, Dua S, Goldstein D. Reversal of skeletal resistance to parathyroid hormone in uremia by vitamin D metabolites. J Lab Clin Med 1979; 94: 152–7.

    PubMed  CAS  Google Scholar 

  64. Brookfield R. The magnesium content of serum in renal insufficiency. Q J Med 1937; 6: 87–90.

    CAS  Google Scholar 

  65. Randall R, Cohen M, Spray C, Rossmeisl E. Hypermagnesaemia in renal failure. Ann Internal Med 1964; 61: 73–88.

    CAS  Google Scholar 

  66. Moriniere P, Vinatier I, Westeel P et al. Magnesium hydroxide as a complementary aluminium-free phosphate binder to moderate doses of oral calcium carbonate in uraemic patients on chronic haemodialysis: lack of deleterious effect on bone mineralization. Nephrol Dial Transplant 1988; 3: 651–6.

    PubMed  CAS  Google Scholar 

  67. Alfrey A, Solomons C. Bone pyrophosphate in uremia and its association with extraosseous calcification. J Clin Invest 1976; 57: 700–5.

    PubMed  CAS  Google Scholar 

  68. Maclntyre I, Davidsson D. The production of secondary potassium depletion, sodium retention, nephrocalcinosis and hypercalcaemia by magnesium deficiency. Biochem J 1958; 70: 456–62.

    Google Scholar 

  69. Kaehny W, Hegg A, Alfrey A. Gastrointestinal absorption of aluminium from aluminium-containing antacids. N Engl J Med 1977; 296: 1389–90.

    PubMed  CAS  Google Scholar 

  70. de Broe M, D’Hasse P, Elseviers M, Clement J, Visser W, van de Vyver F. Aluminium and end-stage renal failure. In: Davidson A, ed. Nephrology: Proceedings of the X ICN. Cambridge: Baillière Tindall, 1988, vol. 2, pp. 1086–116.

    Google Scholar 

  71. Litzow J, Lemann J, Lennon E. The effect of treatment of acidosis on calcium balance in patients with chronic azotemic renal disease. J Clin Invest 1967; 46: 280–4.

    PubMed  CAS  Google Scholar 

  72. Kuster S, Ritz E, Horl W. A role for metabolic acidosis in the genesis of renal secondary hyperparathyroidism. In: Israel Eliahou H, Iaina A, Bar-Khayim Y, eds. Abstract Book, XIIth International Congress of Nephrology, Jerusalem, 1993, p. 467.

    Google Scholar 

  73. Lee J, Parthemore J, Deftos L. Immunochemical heterogeneity of calcitonin in renal failure. J Clin Endocrinol Metab 1977; 45: 528–33.

    PubMed  CAS  Google Scholar 

  74. Marcus R. Endocrine control of bone and mineral metabolism. In: Olefsky M, ed. Metabolic Bone and Mineral Disorders. Contemporary Issues in Endocrinology and Metabolism; vol. 5. New York: Churchill Livingstone, 1988, pp. 21–2.

    Google Scholar 

  75. Block GA, Hulbert-Shearon TE, Levin NW, Port FK. Association of serum phosphorus and calcium x phosphate product with mortality risk in chronic hemodialysis patients: a national study. Am J Kidney Dis 1998; 31: 607–17.

    PubMed  CAS  Google Scholar 

  76. Goldsmith DJ, Covic A, Sambrook PA, Ackrill P. Vascular calcification in long-term haemodialysis patients in a single unit: a retrospective analysis. Nephron 1997; 77: 37–43.

    PubMed  CAS  Google Scholar 

  77. Gokal R, Ramos J, Ellis H, Parkinson I, Sweetman V, Dewar J, Ward M, Kerr D. Histological renal osteodystrophy, and 25-hydroxycholecalciferol and aluminium levels in patients on CAPD. Kidney Int 1983; 23: 15–21.

    PubMed  CAS  Google Scholar 

  78. Calderaro V, Oreopoulos D, Meema H et al. The evolution of renal osteodystrophy in patients undergoing continuous ambulatory peritoneal dialysis. Proc EDTA 1980; 533–42.

    Google Scholar 

  79. Owen J, Parnell A,Keir M et al. Critical analysis of the use of skeletal surveys in patients with chronic renal failure. Clin Radiol 1988; 39: 578–82.

    PubMed  CAS  Google Scholar 

  80. Adams J, Chen S, Adams P, Isherwood I. Measurement of trabecular bone mineral by dual energy computed tomography. J Comput Assist Tomogr 1982; 6: 601–7.

    PubMed  CAS  Google Scholar 

  81. Genant H, Block J, Steiger P, Glueer C, Ettinger B, Harris S. Appropriate use of bone densitometry. Radiology 1989; 170: 817–22.

    PubMed  CAS  Google Scholar 

  82. Rahman R, Heaton A, Goodship T et al. Renal osteodystrophy in patients on CAPD: a five year study. Perit Dial Bull 1987; 7: 1–4.

    Google Scholar 

  83. Delmez J, Dougan C, Gearing B et al. effects of intraperitoneal calcitriol on calcium and parathyroid hormone. Kidney Int 1987; 31: 795–9.

    PubMed  CAS  Google Scholar 

  84. Digenis G, Khanna R, Pierratos A et al. Renal osteodystrophy in patients managed on CAPD for more than three years. Petit Dial Bull 1983; 3: 81–6.

    Google Scholar 

  85. Kurtz S. Clinical parameters of renal bone disease: a comparison of CAPD and haemodialysis. Dial Transplant 1985; 14: 30–6.

    Google Scholar 

  86. Bucciante G, Biachi M, Valenti G. Progress of renal osteodystrophy during CAPD. Clin Nephrol 1984; 6: 279–83.

    Google Scholar 

  87. Pei Y, Hercz G, Greenwood C et al. Renal osteodystrophy in diabetic patients. Kidney Int 1993; 44: 159–64.

    PubMed  CAS  Google Scholar 

  88. Gokal R, Fryer R, McHugh M et al. Calcium and phosphate control in CAPD patients. In: Legrain M, ed. Amsterdam. Excerpta Medica, 1980, pp. 283–91.

    Google Scholar 

  89. Recker R, Saville P. Calcium absorption in renal failure: its relationship to blood urea nitrogen, dietary calcium intake, time on dialysis, and other variables. J Lab Clin Med 1971; 78: 380–8.

    PubMed  CAS  Google Scholar 

  90. Clarkson E, Eastwood J, Koutsaimanis K et al. Net intestinal absorption of calcium in patients with chronic renal failure. Kidney Int 1973; 3: 258–63.

    PubMed  CAS  Google Scholar 

  91. Ramirez J, Emmett M, White M et al. The absorption of dietary phosphorus and calcium in haemodialysis patients. Kidney Int 1986; 30: 753–9.

    PubMed  CAS  Google Scholar 

  92. Hutchison A, Boulton H, Herman K, Prescott M, Gokal R. The use of oral stable strontium to provide an index of intestinal calcium absorption in chronic ambulatory peritoneal dialysis patients. Miner Electrolyte Metab 1992; 18: 160–5.

    PubMed  CAS  Google Scholar 

  93. Blumenkrantz M, Kopple J, Moran J, Coburn J. Metabolic balance studies and dietary protein requirements in patients undergoing CAPD. Kidney Int 1982; 21: 849–61.

    PubMed  CAS  Google Scholar 

  94. Lindholm B, Bergstrom J. Nutritional aspects of CAPD. In: Gokal R, ed. Continuous Ambulatory Peritoneal Dialysis. Edinburgh: Churchill Livingstone, 1986, pp. 228–55.

    Google Scholar 

  95. Nolph K, Prowant B, Serkes K et al. Multicenter evaluation of a new peritoneal dialysis solution with a high lactate and a low magnesium concentration. Petit Dial Bull 1983; 3: 63–6.

    Google Scholar 

  96. Hercz G, Coburn J. Prevention of phosphate retention and hyperphosphatemia in uremia. Kidney Int 1987; 32 (suppl. 22): S215–20.

    Google Scholar 

  97. Delmez J, Fallon M, Bergfeld M, Gearing B, Dougan C, Teitelbaum S. Continuous ambulatory peritoneal dialysis and bone. Kidney Int 1986; 30: 379–84.

    PubMed  CAS  Google Scholar 

  98. Martis L, Serkes K, Nolph K. Calcium carbonate as a phosphate binder: is there a need to adjust peritoneal calcium concentrations for patients using calcium carbonate? Petit Dial Int 1989; 9: 325–8.

    CAS  Google Scholar 

  99. Bro S, Rasmussen RA, Handberg J, Olgaard K, Feldt-Rasmussen B. Randomized crossover study comparing the phosphate binding efficacy of calcium ketoglutarate versus calcium carbonate in patients on chronic hemodialysis. Am J Kidney Dis 1998; 31: 257–62.

    PubMed  CAS  Google Scholar 

  100. Andreoli S, Briggs J, Junor B. Aluminium intoxication from aluminium-containing phosphate binders in children with azotemia not undergoing dialysis. N Engl J Med 1984; 310: 1079–84.

    PubMed  CAS  Google Scholar 

  101. Salusky I, Coburn J, Foley J, Nelson P, Fine R. Effects of oral calcium carbonate on control of serum phosphorus and changes in plasma aluminium levels after discontinuation of aluminium-containing gels in children receiving dialysis. J Pediatr 1986; 108: 767–70.

    PubMed  CAS  Google Scholar 

  102. Slatopolsky E, Weerts C, Lopez-Hilker S et al. Calcium carbonate as a phosphate binder in patients with chronic renal failure undergoing dialysis. N Engl J Med 1986; 315: 157–61.

    PubMed  CAS  Google Scholar 

  103. Stein H, Yudis M, Sirota R. Calcium carbonate as a phosphate binder. N Engl J Med 1987; 316: 109–10.

    Google Scholar 

  104. Ott S. Aluminum accumulation in individuals with normal renal function. Am J Kidney Dis 1985; 4: 297–301.

    Google Scholar 

  105. Joffe P, Olsen F, Heaf J, Gammelgaard B, Podenphant J. Aluminium concentrations in serum, dialysate, urine and bone among patients undergoing continuous ambulatory peritoneal dialysis. Clin Nephrol 1989; 32: 133–8.

    PubMed  CAS  Google Scholar 

  106. Slatopolsky E, Weerts C, Norwood K et al. Long-term effects of calcium carbonate and 2.5 mEq/liter calcium dialysate on mineral metabolism. Kidney Int 1989; 36: 897–903.

    PubMed  CAS  Google Scholar 

  107. Van der Merwe W, Rodger R, Grant A et al. Low calcium dialysate and high-dose oral calcitriol in the treatment of secondary hyperparathyroidism in haemodialysis patients. Nephrol Dial Transplant 1990; 5: 874–7.

    PubMed  Google Scholar 

  108. Gokal R, Hutchison A. Calcium, phosphorus, aluminium and bone disease in continuous ambulatory peritoneal dialysis patients. In: Hatano M, ed. Nephrology. Tokyo: Spinger, 1991, vol. 2, pp. 1602–9.

    Google Scholar 

  109. Hutchison A, Gokal R. Towards tailored dialysis fluids in CAPD: the role of reduced calcium and magnesium dialysis fluids. Petit Dial Int 1992; 12: 199–203.

    CAS  Google Scholar 

  110. Hutchison A, Were A, Boulton H, Mawer E, Laing I, Gokal R. Control of hypercalcaemia, hyperphosphataemia and hyperaluminaemia in CAPD by reduction in dialysate calcium concentration. Nephrol Dial Transplant 1992; 7: 1143 (abstract).

    Google Scholar 

  111. Hutchison A, Freemont A, Boulton H, Gokal R. Low-calcium dialysis fluid and oral calcium carbonate in CAPD: a method of controlling hyperphosphataemia whilst minimizing aluminium exposure and hypercalcaemia. Nephrol Dial Transplant 1992; 7: 1219–25.

    PubMed  CAS  Google Scholar 

  112. Hutchison A, Gokal R. Improved solutions for peritoneal dialysis: physiological calcium solutions, osmotic agents and buffers. Kidney Int 1992; 42 (suppl. 38): S152–9.

    Google Scholar 

  113. Piraino B, Perlmutter J, Holley J, Johnston J, Bernardini J. The use of dialysate containing 2.5 mEq/L calcium in peritoneal dialysis patients. Peril Dial Int 1992; 12: 75–6.

    CAS  Google Scholar 

  114. Cunningham J, Beer J, Coldwell R, Noonan K, Sawyer N, Makin H. Dialysate calcium reduction in CAPD patients treated with calcium carbonate and alfacalcidol. Nephrol Dial Transplant 1992; 7: 63–8.

    PubMed  CAS  Google Scholar 

  115. McGary TJ, Nolph KD, Moore HL, Kartinos NJ. Poly-cation as an alternative osmotic agent and phosphate binder in peritoneal dialysis. Uremia Invest 1984–5; 8: 79–84.

    Google Scholar 

  116. Hutchison AJ. Calcitriol, lanthanum carbonate and other new phosphate binders in the management of renal osteodystrophy. Petit Dial Int 1999; 19 (suppl. 2): S408–12.

    Google Scholar 

  117. Chertow GM, Burke SK, Lazarus JM et al. Poly [allyamine hydrochloride] (RenaGel): a noncalcaemic phosphate binder for the treatment of hyperphosphatemia in chronic renal failure. Am J Kidney Dis 1997; 29: 66–71.

    PubMed  CAS  Google Scholar 

  118. Graff L, Burnel D. A possible non-aluminum oral phosphate binder? A comparative study on dietary phosphorus absorption. Res Commun Mol Pathol Pharmacol 1995; 90: 373–88.

    Google Scholar 

  119. Dewberry K, Fox JS, Stewart J, Murray JR, Hutchison AJ. Lanthanum carbonate: a novel non-calcium containing phosphate binder. J Am Soc Nephrol 1997; 8: A2610.

    Google Scholar 

  120. Hergesell O, Ritz E. Stabilized polynuclear iron hydroxide is an efficient oral phosphate binder in uraemic patients. Nephrol Dial Transplant 1999; 14: 863–7.

    PubMed  CAS  Google Scholar 

  121. Parker A, Nolph K. Magnesium and calcium transfer during continuous ambulatory peritoneal dialysis. Trans Am Soc Artif Intern Organs 1980; 26: 194–6.

    PubMed  CAS  Google Scholar 

  122. Delmez J, Slatopolsky E, Martin K, Gearing B, Herschel R. Minerals, vitamin D, and parathyroid hormone in continuous ambulatory peritoneal dialysis. Kidney Int 1982; 21: 862–7.

    PubMed  CAS  Google Scholar 

  123. Kwong M, Lee J, Chan M. Transperitoneal calcium and magnesium transfer during an eight hour dialysis. Petit Dial Bull 1987; 7: 85–9.

    Google Scholar 

  124. Hutchison A, Merchant M, Boulton H, Hinchcliffe R, Gokal R. Calcium and magnesium mass transfer in peritoneal dialysis patients using 1.25 mmol/L calcium, 0.25 mmol/ L magnesium dialysis fluid. Petit Dial Int 1993; 13: 219–23.

    CAS  Google Scholar 

  125. Hutchison A, Boulton H, Freemont A, Gokal R. Effective control of phosphate, intact PTH and osteodystrophy by low-calcium dialysate and oral CaCO3 in CAPD. (Abstract). Nephrol Dial Transplant 1992; 7: 759.

    Google Scholar 

  126. Hamdy N, Brown C, Boletis J et al. Mineral metabolism in CAPD. In: Berlyne G, Giovanetti S, eds. CAPD: Host Defence, Nutrition and Ultrafiltration. Contributions to Nephrology, vol. 85. Basel: Karger, 1990, pp. 73–8.

    Google Scholar 

  127. Meema H, Oreopoulos D, Rapoport A. Serum magnesium level and arterial calcification in end-stage renal disease. Kidney Int 1987; 32: 388–94.

    PubMed  CAS  Google Scholar 

  128. Gonella M, Ballanti P, Della Rocca C et al. Improved bone morphology by normalizing serum magnesium in chronically hemodialyzed patients. Miner Electrolyte Metab 1988; 14: 240–5.

    PubMed  CAS  Google Scholar 

  129. Breuer J, Moniz C, Baldwin D, Parsons V. The effects of zero magnesium dialysate and magnesium supplements on ionized calcium concentration in patients on regular dialysis treatment. Nephrol Dial Transplant 1987; 2; 347–50.

    PubMed  CAS  Google Scholar 

  130. Parsons V, Baldwin D, Moniz C, Marsden J, Ball E, Rifkin I. Successful control of hyperparathyroidism in patients on continuous ambulatory peritoneal dialysis using magnesium carbonate and calcium carbonate as phosphate binders. Nephron 1993; 63: 379–83.

    PubMed  CAS  Google Scholar 

  131. Shah G, Winer R, Cutler R et al. Effects of a magnesium-free dialysate on magnesium metabolism during continuous ambulatory peritoneal dialysis. Am J Kidney Dis 1987; 10: 268–75.

    PubMed  CAS  Google Scholar 

  132. Aitken J, Allison S, Arkell D et al. Gastro-intestinal system. In: Mehta D, ed. British National Formulary. Published by the British Medical Association, London, 1999, p. 52.

    Google Scholar 

  133. Dyckner T, Wester P. Relation between potassium and magnesium in cardiac arrhythmias. Acta Med Scand 1981; 647 (suppl.): 163–9.

    CAS  Google Scholar 

  134. Whang R. Magnesium deficiency: pathogenesis, prevalence, and clinical implications. Am J Med 1987; 82 (suppl. 3A): 24–9.

    PubMed  CAS  Google Scholar 

  135. Hollifield J. Magnesium depletion, diuretics, and arrhythmias. Am J Med 1987; 82 (suppl. 3A): 30–7.

    PubMed  CAS  Google Scholar 

  136. Seelig M. Electrocardiographic patterns of magnesium depletion appearing in alcoholic heart disease. Ann NY Acad Sci 1969; 162: 906–17.

    PubMed  CAS  Google Scholar 

  137. Lemann J, Lennon E. Role of diet, gastrointestinal tract and bone in acid-base homeostasis. Kidney Int 1972; 1: 275–9.

    PubMed  CAS  Google Scholar 

  138. Kaye M, Frueh A, Silverman M. A study of vertebral bone powder from patients with chronic renal failure. J Clin Invest 1978; 49: 442–53.

    Google Scholar 

  139. De Marchi S, Cecchin E. Severe metabolic acidosis and disturbances of calcium metabolism induced by acetazolamide in patients on haemodialysis. Clin Sci 1990; 78: 295–302.

    PubMed  Google Scholar 

  140. Maren T. Carbonic anhydrase. N Engl J Med 1985; 313: 179–81.

    PubMed  CAS  Google Scholar 

  141. Waite L. Carbonic anhydrase inhibitors, parathyroid hormone and calcium metabolism. Endocrinology 1972; 91: 1160–5.

    PubMed  CAS  Google Scholar 

  142. Nolph K, Sorkin M, Rubin J et al. Continuous ambulatory peritoneal dialysis: three-year experience at one center. Ann Intern Med 1980; 92: 609–13.

    PubMed  CAS  Google Scholar 

  143. Lefebvre A, de Vernejoul M, Gueris J, Goldfarb B, Graulet A, Morieux C. Optimal correction of acidosis changes progression of dialysis osteodystrophy. Kidney Int 1989; 36: 1112–8.

    PubMed  CAS  Google Scholar 

  144. Mawer E, Hann J, Berry J, Davies M. Vitamin D metabolism in patients intoxicated with ergocalciferol. Clin Sci 1985; 68: 135–41.

    PubMed  CAS  Google Scholar 

  145. de Fremont J, Moriniere P, Roussel J. Control of hyperparathyroidism by CAPD. Kidney Int 1982; 21: 122–6.

    Google Scholar 

  146. Teitelbaum S, Fallon M, Gearing G, Dougan C, Delmez J. The effects of CAPD on bone histomorphometry. Kidney Int 1982; 21: 180–4.

    Google Scholar 

  147. Loschiavo C, Fabris A, Adami S et al. The effects of CAPD on renal osteodystrophy. Petit Dial Bull 1985; 5: 53–5.

    Google Scholar 

  148. Nolph K, Ryan L, Prowant B, Twardowski Z. A cross sectional assessment of serum vitamin D and triglycerides in a CAPD population. Petit Dial Bull 1984; 4: 232.

    Google Scholar 

  149. Aloni Y, Shany S, Chaimovitz C. Losses of 25-hydroxyvitamin D in peritoneal fluid: possible mechanism for bone disease in uraemic patients treated with CAPD. Miner Electrolyte Metab 1983; 9: 82–6.

    PubMed  CAS  Google Scholar 

  150. Cassidy M, Owen J, Ellis H et al. Renal osteodystrophy and metastatic calcification in long term CAPD. Q J Med 1983; 213: 29–48.

    Google Scholar 

  151. Dunstan C, Hills E, Norman A et al. Treatment of haemodialysis bone disease with 24,25-dihydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 alone or in combination. Miner Electrolyte Metab 1985; 11: 358–68.

    PubMed  CAS  Google Scholar 

  152. Burbea Z, Gibor Y, Ladkani D et al. Combined oral treatment with 24,25(OH)2D3 and lalpha(OH)D3 regulates PTH level in secondary HPT of hemodialysis patients. Nephrol Dial Transplant 1992; 7: 755.

    Google Scholar 

  153. Gonzalez E, Bander S, Thieland B, Martin K. Comparison of intravenous and pulse oral calcitriol for suppression of PTH in patients on haemodialysis. J Am Soc Nephrol 1991; 2: 636 (abstract).

    Google Scholar 

  154. Schaefer K, Umlauf E, von Herrath D. Reduced risk of hypercalcaemia for hemodialysis patients by administering calcitriol at night. Am J Kidney Dis 1992; 19: 460–4.

    PubMed  CAS  Google Scholar 

  155. Korkor A. Reduced binding of [3H] 1,25-dihydroxyvitamin D3 in the parathyroid glands of patients with renal failure. N Engl J Med 1987; 316: 1573–7.

    PubMed  CAS  Google Scholar 

  156. Merke J, Hugel U, Zlotkowski A et al. Diminished parathyroid 1,25-(OH)2D3 receptors in experimental uremia. Kidney Int 1987; 32: 350–3.

    PubMed  CAS  Google Scholar 

  157. Brown A, Dusso A, Lopez-Hilker S, Lewis-Finch J, Grooms P, Slatopolsky E. 1,25-(OH)2D3 receptors are decreased in parathyroid glands from chronically uremic dogs. Kidney Int 1989; 35: 19–23.

    PubMed  CAS  Google Scholar 

  158. Scanziani R, Dozio B, Bonforte G, Surian M. Effects of calcitriol pulse therapy per os in CAPD patients. Adv Perit Dial 1994; 10: 270–4.

    PubMed  CAS  Google Scholar 

  159. Bechtel U, Mucke C, Feucht HE, Schiffl H, Sitter T, Held E. Limitations of pulse oral calcitriol therapy in CAPD. Am J Kidney Dis 1995; 25: 291–6/.

    Google Scholar 

  160. Romanini D, Gazo A, Bellazzi R, Vincenzi A, Nai M, Santagostino M. Long term effect of oral calcitriol single weekly pulse in CAPD and HD. Adv Petit Dial 1994; 10: 267–9.

    CAS  Google Scholar 

  161. Fockens P, Hillen P, van Boven W, van Buchem-Ramakers T, Juttman J. Treatment of secondary hyperparathyroidism in haemodialysis patients by intravenous administration of vitamin D one-alpha derivatives. Calcif Tissue Int 1986; 39: A117.

    Google Scholar 

  162. Shoji S, Nishizawa Y, Tabata T et al. Influence of serum phosphate on the efficacy of oral 1,25 dihydroxyvitamin D3 pulse therapy. Miner Electrolyte Metab 1995; 21: 223–8.

    PubMed  CAS  Google Scholar 

  163. Brown A, Ritter C, Finch J et al. The noncalcaemic analogue of vitamin D, 22-oxacalcitriol, suppresses parathyroid hormone synthesis and secretion. J Clin Invest 1989; 84: 728–32.

    PubMed  CAS  Google Scholar 

  164. Brown A, Finch J, Lopez-Hilker S et al. New active analogues of vitamin D with low calcemic activity. Kidney Int 1990; 38 (suppl. 29): S22–7.

    Google Scholar 

  165. Kubrusly M, Gagne E, Hanrotel C, Lacour B, Drueke T. Effect of calcitriol versus 22-oxa-calcitriol on intestinal calcium transport in rats with severe chronic renal failure. Nephrol Dial Transplant 1992; 7: 761.

    Google Scholar 

  166. Kurokawa K, Akizawa T, Suzuki M, Akiba T, Ogata E, Slatopolsky E. Suppression of PTH by 22-oxacalcitriol in hemodialysis patients with secondary hyperparathyroidism. J Am Soc Nephrol 1995; 6: 966 (abstract).

    Google Scholar 

  167. Kurokawa K, Akizawa T, Suzuki M, Akiba T, Ogata E, Slatopolsky E. Effect of 22-oxacalcitriol on hyperparathyroidism of dialysis patients: results of a preliminary study. Nephrol Dial Transplant 1996; 11 (suppl. 3): 121–4.

    PubMed  CAS  Google Scholar 

  168. Posner GH. New vitamin D analogues. Nephrol Dial Transplant 1996; 11 (suppl. 3): 32–6.

    PubMed  CAS  Google Scholar 

  169. Sherrard DJ. Calcimimetics in action. Kidney Int 1998; 53: 510–11.

    PubMed  CAS  Google Scholar 

  170. Ott SM. Calcimimetics–new drugs with the potential to control hyperparathyroidism. J Clin Endocrinol Metab 1998; 83: 1080–2.

    PubMed  CAS  Google Scholar 

  171. Nemeth EF, Bennett SA. Tricking the parathyroid gland with novel calcimimetic agents. Neprol Dial Transplant 1998; 13: 1923–5.

    CAS  Google Scholar 

  172. McNair P, Christensen M, Madsbad S, Christensen C, Transbol I. Hypoparathyroidism in diabetes mellitus. Acta Endocrinol 1981; 96: 81–6.

    PubMed  CAS  Google Scholar 

  173. Andress D, Hercz G, Kopp J et al. Bone histomorphometry of renal osteodystrophy in diabetic patients. J Bone Miner Res 1987; 2: 525–31.

    PubMed  CAS  Google Scholar 

  174. Heidbreder E, Gotz R, Schafferhans K, Heidland A. Diminished parathyroid gland responsiveness to hypocalcemia in diabetic patients with uremia. Nephron 1986; 42: 285–9.

    PubMed  CAS  Google Scholar 

  175. Cohen Solal M, Sebert J, Boudalliez B et al. Non-aluminic adynamic bone disease in non-dialyzed uremic patients: a new type of osteopathy due to over treatment? Bone 1992; 13: 1–5.

    Google Scholar 

  176. Fournier A, Moriniere P, Ben Hamidi F et al. Use of alkaline calcium salts as phosphate binder in uremic patients. Kidney Int 1992; 42 (suppl. 38): S50–61.

    Google Scholar 

  177. Mazzaferro S, Coen G, Ballanti P et al. Osteocalcin, iPTH, alkaline phosphatase and hand X-ray scores as predictive indices of histomorphometric parameters in renal osteodystrophy. Nephron 1990; 56: 261–6.

    PubMed  CAS  Google Scholar 

  178. Maruyama Y, Arai K, Yoshida K et al. Study of tartrate resistant acid phosphatase in patients with chronic renal failure on maintenance hemodialysis. Nippon Jinzo Gakkai Shi 1991; 33: 297–302.

    Google Scholar 

  179. Stamatiades D, Stathakis C, Boletis J et al. Serum tartrate resistant acid phosphatase: a simple index for the evaluation of secondary hyperparathyroidism of patients on hemodialysis and CAPD. Petit Dial Int 1992; 12 (suppl. 2): 82.

    Google Scholar 

  180. Mohini R, Dumler F, Rao D. Skeletal surveys in renal osteodystrophy. ASAIO Trans 1991; 37: 635–7.

    PubMed  CAS  Google Scholar 

  181. DeVita M, Rasenas L, Bansal M et al. Assessment of renal osteodystrophy in hemodialysis patients. Medicine 1992; 71: 284–90.

    PubMed  CAS  Google Scholar 

  182. Olgaard K, Heerfordt J, Madsen S. Scintigraphic skeletal changes in uremic patients on regular hemodialysis. Nephron 1976; 17: 325–34.

    PubMed  CAS  Google Scholar 

  183. Hodson E, Howman Giles R, Evans R et al. The diagnosis of renal osteodystrophy: a comparison of technetium 99m-pyrophosphate bone scintigraphy with other techniques. Clin Nephrol 1981; 16: 24–8.

    PubMed  CAS  Google Scholar 

  184. Karsenty G, Vigneron N, Jogetti V et al. Value of the 99mTcmethylene diphosphonate bone scan in renal osteodystrophy. Kidney Int 1986; 29: 1058–65.

    PubMed  CAS  Google Scholar 

  185. Heaf J, Nielsen L, Mogensen N. Use of bone mineral content determination in the evaluation of osteodystrophy among hemodialysis patients. Nephron 1983; 35: 103–7.

    PubMed  CAS  Google Scholar 

  186. Rickers H, Christensen M, Rodbro P. Bone mineral content in patients on prolonged maintenance hemodialysis: a three-year follow-up study. Clin Nephrol 1983; 20: 302–7.

    PubMed  CAS  Google Scholar 

  187. Lindergard B, Johnell 0, Nilsson B, Wiklund P. Studies of bone morphology, bone densitometry and laboratory data in patients on maintenance hemodialysis treatment. Nephron 1985; 39: 122–9.

    PubMed  CAS  Google Scholar 

  188. Piraino B, Chen T, Cooperstein L, Segre G, Puschett J. Fractures and vertebral bone mineral density in patients with renal osteodystrophy. Clin Nephrol 1988; 30: 57–62.

    PubMed  CAS  Google Scholar 

  189. Funke M, Maurer J, Grabbe E, Scheler F. Comparitive studies with quantitative computed tomography and dual-energy X-ray absorptiometry on bone density in renal osteopathy. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 1992; 157: 145–9.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hutchison, A.J. (2000). Calcium, phosphate and renal osteodystrophy. In: Gokal, R., Khanna, R., Krediet, R.T., Nolph, K.D. (eds) Textbook of Peritoneal Dialysis. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3225-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3225-3_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-3227-7

  • Online ISBN: 978-94-017-3225-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics