Skip to main content

Peritoneal inflammation and long-term changes in peritoneal structure and function

  • Chapter
Textbook of Peritoneal Dialysis

Abstract

Peritoneal dialysis (PD) is now an established and acceptable mode of treatment for end-stage renal failure. Whilst in short-term studies PD (3–5 years) has been shown to have a comparable outcome in terms of patient survival on haemodialysis [1–3], there are still concerns as to whether this mode of therapy can provide adequate treatment for end-stage renal disease in the longer term. Within the first 3–5 years, however, there is a considerable dropout rate from PD. This is principally due to episodes of peritonitis, loss of ultrafiltration or inadequate solute clearance [2–5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Maiorca R, Cancarini GC, Camerini C et al. Is CAPD competitive with haemodialysis for long-term treatment of uraemic patients? Nephrol Dial Transplant 1989; 4: 244–53.

    PubMed  CAS  Google Scholar 

  2. Maiorca R, Vonesh E, Cavalli PL et al. A multi-centre, selection adjusted comparison of patient and technique survivals on CAPD and hemodialysis. Petit Dial Int 1990; 11: 118–27.

    Google Scholar 

  3. Fenton, SSA, Schaubel DE, Desmeules M et al. Hemodialysis versus peritoneal dialysis: a comparison of adjusted mortality rates. Am J Kidney Dis 1997; 30: 334–42.

    PubMed  CAS  Google Scholar 

  4. Lupo A, Tarchini R, Cancarini GC et al. Long-term outcome in continuous ambulatory peritoneal dialysis: a 10-year survey by the Italian Cooperative Peritoneal Dialysis Study Group. Am J Kidney Dis 1994; 24: 826–37.

    PubMed  CAS  Google Scholar 

  5. Davies SJ, Phillips L, Griffiths AM et al. What really happens to people on long-term peritoneal dialysis? Kidney Int 1998; 54: 2207–17.

    PubMed  CAS  Google Scholar 

  6. Gotloib L, Shostack A. Ultrastructural morphology of the peritoneum: new findings and speculations on transfer of solutes and water during peritoneal dialysis. Perit Dial Bull 1987; 7: 119–29.

    Google Scholar 

  7. Gotloib L, Shostack A. The functional anatomy of the peritoneum as a dialysing membrane. In: Twardowski ZJ, Nolph KD, Khanna R, eds. Peritoneal Dialysis. New York: Churchill Livingstone, 1990, pp. 1–27.

    Google Scholar 

  8. Di Paolo N, Sacchi G, De Mia M et al. Morphology of the peritoneal membrane during continuous ambulatory peritoneal dialysis. Nephron 1986; 44: 204–11.

    PubMed  Google Scholar 

  9. Di Paolo N, Sacchi G, Buoncristiani V. The morphology of the human peritoneum in CAPD patients. In: Maher J, ed. Frontiers in Peritoneal Dialysis. New York: Field Rich, 1985, pp. 11–19.

    Google Scholar 

  10. Satoh K, Prescott SM. Culture of mesothelial cells from bovine pericardium and characterisation of their arachidonate metabolism. Biochim Biophys Acta 1987; 930: 283–96.

    PubMed  CAS  Google Scholar 

  11. Rennard SI, Jaurand M-C, Bignon J et al. Role of pleural mesothelial cells in the production of the submesothelial connective tissue matrix of lung. Am Rev Respir Dis 1984; 130: 267–74.

    PubMed  CAS  Google Scholar 

  12. Gotloib L, Shostack A, Jaichenko J. Ruthenium-red-stained anionic charges of rat and mice mesothelial cells and basal lamina: the peritoneum is a negatively charged dialyzing membrane. Nephron 1988; 48: 65–70.

    PubMed  CAS  Google Scholar 

  13. Gotloib L, Shostack A, Jaichenko J. Loss of mesothelial electronegative fixed charges during murine septic peritonitis. Nephron 1989; 51: 77–83.

    PubMed  CAS  Google Scholar 

  14. Beavis J, Harwood JL, Coles GA, Williams JD. Intraperitoneal phosphatidyl choline levels in patients on continuous ambulatory peritoneal dialysis do not correlate with adequacy of ultrafiltration. J Am Soc Nephrol 1993; 3: 1954–60.

    PubMed  CAS  Google Scholar 

  15. Beavis MJ, Harwood JL, Coles GA, Williams JD. Synthesis of phospholipids by human peritoneal mesothelial cells. Perit Dial Int 1994; 14: 348–55.

    PubMed  CAS  Google Scholar 

  16. Dobbie JW, Pavlina T, Lloyd J, Johnson RC. Phosphatidylcholine synthesis by peritoneal mesothelium: its implication for peritoneal dialysis. Am J Kidney Dis 1988; 12: 31–6.

    PubMed  CAS  Google Scholar 

  17. Stylianou E, Jenner LA, Davies M, Coles GA, Williams JD. Isolation, culture and characterisation of human peritoneal mesothelial cells. Kidney Int 1990; 37: 1563–70.

    PubMed  CAS  Google Scholar 

  18. Topley N, Jörres A, Luttmann W et al. Human peritoneal mesothelial cells synthesize IL-6: induction by IL-113 and TNFa. Kidney Int 1993; 43: 226–33.

    PubMed  CAS  Google Scholar 

  19. Topley N, Brown Z, Jörres A et al. Human peritoneal mesothelial cells synthesize IL-8: synergistic induction by interleukin-113 and tumor necrosis factor a. Am J Pathol 1993; 142: 1876–86.

    PubMed  CAS  Google Scholar 

  20. Betjes MGH, Tuk CW, Struijk DG et al. Interleukin-8 production by human peritoneal mesothelial cells in response to tumor necrosis factor a, interleukin-1, and medium conditioned by macrophages co-cultured with Staphylococcus epidermidis. J Infect Dis 1993; 168: 1202–10.

    PubMed  CAS  Google Scholar 

  21. Douvdevani A, Rapoport J, Konforty A et al. Human peritoneal mesothelial cells synthesize IL-la and 13. Kidney Int 1994; 46: 993–1001.

    PubMed  CAS  Google Scholar 

  22. Andreoli SP, Mallett C, Williams K et al. Mechanisms of polymorphonuclear leukocyte mediated peritoneal mesothelial cell injury. Kidney Int 1994; 46: 1100–9.

    PubMed  CAS  Google Scholar 

  23. Bermudez E, Everitt J, Walker C. Expression of growth factor and growth factor receptor RNA in rat pleural mesothelial cells in culture. Exp Cell Res 1990; 190: 91–8.

    PubMed  CAS  Google Scholar 

  24. Bittinger F, Klein CL, Skarke C et al. PECAM-1 expression in human mesothelial cells: an in vitro study. Pathobiology 1996; 64: 320–7.

    PubMed  CAS  Google Scholar 

  25. Boylan AM, Rüegg C, Jin KK et al. Evidence of a role for mesothelial cell-derived interleukin 8 in the pathogenesis of asbestos-induced pleurisy in rabbits. J Clin Invest 1992; 89: 1257–67.

    PubMed  CAS  Google Scholar 

  26. Bult H, Coene MC, Rampart M, Herman AG. Complement derived factors and prostacyclin formation by isolated rabbit peritoneum and cultured mesothelial cells. Agents Actions 1984; 14: 237–47.

    PubMed  CAS  Google Scholar 

  27. Cannistra SA, Ottensmeier C, Tidy J, DeFranzo B. Vascular cell adhesion molecule-1 expressed by peritoneal mesothelial partly mediates the binding of activated human T lymphocytes. Exp Haem 1994; 22: 996–1002.

    CAS  Google Scholar 

  28. Cantor J, Willhite M, Bray B et al. Synthesis of crosslinked elastin by a mesothelial cell culture. Proc Soc Exp Biol Med 1986; 181: 387–91.

    PubMed  CAS  Google Scholar 

  29. Coene MC, Solheid C, Claeys M, Herman AG. Prostaglandin production by cultured mesothelial cells. Arch Int Pharmacodyn 1981; 249: 316–18.

    PubMed  CAS  Google Scholar 

  30. Douvdevani A, Yulzari R, Zilberman M, Rukshin V, Chaimovitz C. TNF receptor in human peritoneal mesothelial cells: shedding of soluble TNF receptor after exposure to interleukin-la. J Am Soc Nephrol 1995; 5: 444.

    Google Scholar 

  31. Harvey W, Amlot PL. Collagen production by human mesothelial cells in vitro. J Pathol 1983; 139: 337–47.

    PubMed  CAS  Google Scholar 

  32. Jonjic N, Pen G, Bernasconi S et al. Expression of adhesion molecules and chemotactic cytokines in cultured human mesothelial cells. J Exp Med 1992; 176: 1165–74.

    PubMed  CAS  Google Scholar 

  33. Kumano K, Schiller B, Hjelle JT, Moran J. Effect of osmotic solutes on fibronectin mRNA expression in rat peritoneal mesothelial cells. Blood Purif 1996; 14: 165–9.

    PubMed  CAS  Google Scholar 

  34. Leavesley DI, Stanley JM, Faull RJ. Epidermal growth factor modifies the expression and function of extracellular matrix adhesion receptors expressed by peritoneal mesothelial cells from patients on CAPD. Nephrol Dial Transplant 1999; 14: 1208–16.

    PubMed  CAS  Google Scholar 

  35. Liberek T, Topley N, Luttmann W, Williams JD. Adherence of neutrophils to human peritoneal mesothelial cells: role of intercellular adhesion molecule-1. J Am Soc Nephrol 1996; 7: 208–17.

    PubMed  CAS  Google Scholar 

  36. Mackay AM, Tracy RP, Craighead JE, Cytokeratin expression in rat mesothelial cells in vitro is controlled by the extra-cellular matrix. J Cell Sci 1990; 95: 97–107.

    PubMed  Google Scholar 

  37. Marshall BC, Santana A, Xu Q-P et al. Metalloproteinases and tissue inhibitor of metalloproteinases in mesothelial cells: cellular differentiation influences expression. J Clin Invest 1993; 91: 1792–9.

    PubMed  CAS  Google Scholar 

  38. Topley N, Jörres A, Petersen MM et al. Human peritoneal mesothelial cell prostaglandin (PG) metabolism: induction by cytokines and peritoneal macrophage conditioned medium. J Am Soc Nephrol 1991; 2: 432.

    Google Scholar 

  39. Visser CE, Tekstra J, Brouwer-Steenbergen JJE et al. Chemokines produced by mesothelial cells: huGRO-a, IFN-y inducible protein-10, monocyte chemotactic protein-1 and RANTES. Clin Exp Immunol 1998; 112: 270–5.

    PubMed  CAS  Google Scholar 

  40. Witowski J, Jörres A, Williams JD, Topley N. Superinduction of IL-6 synthesis in human peritoneal mesothelial cells is related to induction and stabilization of IL-6 mRNA. Kidney Int 1996; 50: 1212–23.

    PubMed  CAS  Google Scholar 

  41. Yung S, Thomas GJ, Stylianou E et al. Source of peritoneal proteoglycans: human peritoneal mesothelial cells synthesize and secrete mainly small dermatan sulphate proteoglycans. Am J Pathol 1995; 146: 520–9.

    PubMed  CAS  Google Scholar 

  42. Yung S, Coles GA, Davies M. IL-113, a major stimulator of hyaluronan synthesis in vitro of human peritoneal mesothelial cells: relevance to peritonitis in CAPD. Kidney Int 1996; 50: 1337–43.

    PubMed  CAS  Google Scholar 

  43. Zeillemaker AM, Mul FPJ, Hoynck van Papendrecht AAGM et al. Polarized secretion of interleukin-8 by human mesothelial cells: a role in neutrophil migration Immunology 1995; 84: 227–32.

    CAS  Google Scholar 

  44. Jörres A, Ludat K, Lang J et al. Establishment and functional characterisation of human peritoneal fibroblasts in culture: regulation of interleukin-6 production by proinflammatory cytokines. J Am Soc Nephrol 1996; 7: 2192–201.

    PubMed  Google Scholar 

  45. Beavis MJ, Williams JD, Hoppe J, Topley N. Human peritoneal fibroblast proliferation in 3-dimensional culture: modulation by cytokines, growth factors and peritoneal dialysis effluent. Kidney Int 1997; 51: 205–15.

    PubMed  CAS  Google Scholar 

  46. Honda K, Nitta K, Horita H, Yumura W, Nihei H. Morphological changes in the peritoneal vasculature of patients on CAPD with ultrafiltration failure. Nephron 1996; 72: 171–6.

    PubMed  CAS  Google Scholar 

  47. Honda K, Nitta K, Horita S et al. Accumulation of advanced glycation end products in the peritoneal vasculature of continuous ambulatory peritoneal dialysis patients with low ultrafiltration. Nephrol Dial Transplant 1999; 14: 1541–9.

    PubMed  CAS  Google Scholar 

  48. Mateijsen MAM, van der Wal AC, Hendriks PMEM et al. Vascular and interstitial changes in the peritoneum of CAPD patients with peritoneal sclerosis. J Am Soc Nephrol 1997; 8: 268–9.

    Google Scholar 

  49. Topley N, Craig JJ, Fallon M et al. Morphological changes in the peritoneal membrane of patients on peritoneal dialysis (PD) are related to time on treatment. J Am Soc Nephrol 1999; 10: 324A.

    Google Scholar 

  50. Rubin J, Herrara GA, Collins D. An autopsy study of the peritoneal cavity from patients on continuous ambulatory peritoneal dialysis. Am J Kidney Dis 1991; 17: 97–102.

    Google Scholar 

  51. Verger C, Luger A, Moore HL, Nolph KD. Acute changes in peritoneal morphology and transport properties with infectious peritonitis and mechanical injury. Kidney Int 1983; 23: 823–31.

    PubMed  CAS  Google Scholar 

  52. Di Paolo N, Sacchi G. Peritoneal vascular changes in continuous ambulatory peritoneal dialysis (CAPD): an in vivo model for the study of the diabetic microangiopathy. Petit Dial Int 1989; 9: 41–5.

    Google Scholar 

  53. Gotloib L, bar-Sella P, Shostack A. Reduplicated basal lamina of small venules and mesothelium of human parietal peritoneum: ultrastructural changes of reduplicated peritoneal basement membrane. Petit Dial Bull 1985; 5: 212–14.

    Google Scholar 

  54. Dobbie J, Zaki M, Wilson L. Ultrafiltration studies on the peritoneum with special reference to chronic ambulatory peritoneal dialysis. Scott Med J 1981; 26: 213–23.

    PubMed  CAS  Google Scholar 

  55. Dobbie JW, Lloyd JK, Gall CA. Categorization of ultrastructural changes in peritoneal mesothelium, stroma and blood vessels in uremia and CAPD patients. Adv Petit Dial 1990; 6: 3–12.

    CAS  Google Scholar 

  56. Dobbie JW. Pathogenesis of peritoneal fibrosing syndromes (sclerosing peritonitis) in peritoneal dialysis. Petit Dial Int 1992; 12: 14–27.

    CAS  Google Scholar 

  57. Dobbie JW. Peritoneal ultrastructure and changes with continuous ambulatory peritoneal dialysis. Petit Dial Int 1993; 13: S585–7.

    Google Scholar 

  58. Dobbie JW, Anderson JD, Hind C. Long-term effects of peritoneal dialysis on peritoneal morphology. Petit Dial Int 1994; 14: S16–20.

    Google Scholar 

  59. Dobbie JW. Ultrastructure and pathology of the peritoneum in peritoneal dialysis. In: Gokal R, Nolph KD, eds. The Textbook of Peritoneal Dialysis. Lancaster: Kluwer, 1994, pp. 17–44.

    Google Scholar 

  60. Pollock CA, Ibels LS, Eckstein RP et al. Peritoneal morphology on maintenance dialysis. Am J Nephrol 1989; 9: 198–204.

    PubMed  CAS  Google Scholar 

  61. Selgas R, Fernandez-Reyes MJ, Bosque E et al. Functional longevity of the human peritoneum: how long is continuous peritoneal dialysis possible? Results of a prospective medium long-term study. Am J Kidney Dis 1994; 23: 64–73.

    PubMed  CAS  Google Scholar 

  62. Davies S.1, Bryan J, Phillips L, Russell GI. Longitudinal changes in peritoneal kinetics: the effects of peritoneal dialysis and peritonitis. Nephrol Dial Transplant 1996; 11: 498–506.

    Google Scholar 

  63. Dobbie JW. Morphology of the peritoneum in CAPD. Blood Purif 1989; 7: 74–85.

    PubMed  CAS  Google Scholar 

  64. Rigby RJ, Hawley CM. Sclerosing peritonitis: the experience in Australia. Nephrol Dial Transplant 1998; 13: 154–9.

    PubMed  CAS  Google Scholar 

  65. Holland P. Sclerosing encapsulating peritonitis in chronic ambulatory peritoneal dialysis. Clin Radiol 1990; 41: 19–23.

    PubMed  CAS  Google Scholar 

  66. Nomoto Y, Kawaguchi Y, Kubo H et al. Sclerosing encapsulating peritonitis in patients undergoing continuous ambulatory peritoneal dialysis: a report on the Japanese sclerosing encapsulating peritonitis study group. Am J Kidney Dis 1996; 28: 420–7.

    PubMed  CAS  Google Scholar 

  67. Campbell S, Clarke P, Hawley C et al. Sclerosing peritonitis: identification of diagnostic, clinical, and radiological features. Am J Kidney Dis 1994; 24: 819–25.

    PubMed  CAS  Google Scholar 

  68. Peltonen J, Kähäri L, Jaakkola S et al. Evaluation of transforming growth factor-I3 and type I procollagen gene expression in fibrotic skin diseases by in situ hybridisation. J Invest Dermatol 1990; 94: 365–71.

    PubMed  CAS  Google Scholar 

  69. Wahl SM. Fibrosis: bacterial cell wall induced hepatic granulomas. In: Gallin JI, Goldstein IM, Snyderman R, eds. Basic Principles and Clinical Correlates. New York: Raven Press, 1988; pp. 841–59.

    Google Scholar 

  70. Elias JA, Freundlich B, Kern JA, Rosenbloom J. Cytokine networks in the regulation of inflammation and fibrosis in the lung. Chest 1990; 97: 1439–45.

    PubMed  CAS  Google Scholar 

  71. Mauch C, Krieg T. Fibroblast-matrix interactions and their role in the pathogenesis of fibrosis. Rheum Dis Clin N Am 1990; 16: 93–107.

    CAS  Google Scholar 

  72. Mauch C, Hatamachi A, Scharffetter K, Kreig T. Regulation of collagen synthesis in fibroblasts within a three-dimensional collagen gel. Exp Cell Res 1988; 178: 493–503.

    PubMed  CAS  Google Scholar 

  73. Kunico GS, Neilson EG, Haverty T. Mechanisms of tubulointerstitial fibrosis. Kidney Int 1991; 39: 550–6.

    Google Scholar 

  74. Freundlich B, Bomalaski JS, Neilson E, Jiminez SA. Regulation of fibroblast proliferation and collagen synthesis by cytokines. Immunol Today 1986; 7: 303–7.

    CAS  Google Scholar 

  75. Beavis MJ, Williams JD, Topley N. Repeated activation of human peritoneal fibroblasts results in sustained cell proliferation and collagen III mRNA expression. J Am Soc Nephrol 1997; 8: 512.

    Google Scholar 

  76. Selgas R, Bajo MA, Paiva A et al. Stability of the peritoneal membrane in long-term peritoneal dialysis patients. Adv Renal Replace Ther 1998; 5: 168–78.

    CAS  Google Scholar 

  77. Churchill DN, Thorpe KE, Nolph KD et al. Increased peritoneal membrane transport is associated with decreased patient and technique survival for continuous peritoneal dialysis patients. The Canada-USA (CANUSA) Peritoneal Dialysis Study Group. J Am Soc Nephrol 1998; 9: 1285–92.

    PubMed  CAS  Google Scholar 

  78. Wang T, Heimburger O, Waniewski J, Bergstrom J, Lindholm B. Increased peritoneal permeability is associated with decreased fluid and small-solute removal and higher mortality in CAPD patients. Nephrol Dial Transplant 1998; 13: 1242–9.

    PubMed  CAS  Google Scholar 

  79. Davies SJ, Brown B, Bryan J, Russell GI, Clinical evaluation of the peritoneal equilibration test: a population-based study. Nephrol Dial Transplant 1993; 8: 64–70.

    PubMed  CAS  Google Scholar 

  80. Heimburger O, Waniewski J, Werynski A, Tranaeus A, Lindholm B. Peritoneal transport in CAPD patients with permanent loss of ultrafiltration capacity. Kidney Int 1990; 38: 495–506.

    PubMed  CAS  Google Scholar 

  81. Kawaguchi Y, Hasegawa T, Nakayama M, Kubo H, Shigematu T. Issues affecting the longevity of the continuous dialysis therapy. Kidney Int Suppl 1997; 62: S105–7.

    PubMed  CAS  Google Scholar 

  82. Bos WJW, Struijk DG, van Olden RW, Arisz, L, Krediet RT. Elevated ambulatory blood pressure in patients with ultrafiltration failure. Petit Dial Int 1998; 18: S12.

    Google Scholar 

  83. Ho-dac-Pannekeet MM, Atasever B, Struijk DG, Krediet RT. Analysis of ultrafiltration failure in peritoneal dialysis patients by means of standard peritoneal permeability analysis. Petit Dial Int 1997; 17: 144–50.

    CAS  Google Scholar 

  84. Monquil MC, Imholz AL, Struijk DG, Krediet RT. Does impaired transcellular water transport contribute to net ultrafiltration failure during CAPD? Petit Dial Int 1995; 15: 42–8.

    CAS  Google Scholar 

  85. Ho-dac-Pannekeet MM, Koopmans JG, Struijk DG, Krediet RT. Restriction coefficients of low molecular weight solutes and macromolecules during peritoneal dialysis. Adv Petit Dial 1997; 13: 72–6.

    CAS  Google Scholar 

  86. NKF-DOQI clinical practice guidelines for peritoneal dialysis adequacy. National Kidney Foundation. Am J Kidney Dis 1997; 30: S67–136.

    Google Scholar 

  87. Twardowski ZJ, Nolph KD, Khanna R et al. Peritoneal equilibration test. Petit Dial Bull 1987; 6: 131–7.

    Google Scholar 

  88. Garred LJ, Canaud B, Farrell PC. A simple kinetic model for assessing peritoneal mass transfer in continuous ambulatory peritoneal dialysis. J Artif Intern Org 1983; 6: 131–7.

    Google Scholar 

  89. Pannekeet MM, Imholz AL, Struijk DG et al. The standard peritoneal permeability analysis: a tool for the assessment of peritoneal permeability characteristics in CAPD patients. Kidney Int 1995; 48: 866–75.

    PubMed  CAS  Google Scholar 

  90. Haraldsson B. Assessing the peritoneal dialysis capacities of individual patients. Kidney Int 1995; 47: 1187–98.

    PubMed  CAS  Google Scholar 

  91. Verger C, Larpent L, Veniez BM. Mathematical determination of PET. Petit Dial Int 1990; 10: S181.

    Google Scholar 

  92. Cichocki T, Hanicki Z, Sulowicz W et al. Output of peritoneal cells into peritoneal dialysate. Nephron 1983; 35: 175–82.

    PubMed  CAS  Google Scholar 

  93. Alobaidi H. Host defence in CAPD: a laboratory and clinical investigation. PhD thesis, University of Wales, 1986.

    Google Scholar 

  94. Visser CE, Steenbergen JJE, Betjes MGH et al. Interleukin8 production by human mesothelial cells after direct stimulation with staphylococci. Infect Immun 1995; 10: 4206–9.

    Google Scholar 

  95. Visser CE, Brouer-Steenbergen JJE, Schadee-Eestermans IL et al. Ingestion of Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli by human peritoneal mesothelial cells. Infect Immun 1996; 64: 3425–8.

    PubMed  CAS  Google Scholar 

  96. Topley N, Petersen MM, Mackenzie R et al. Human peritoneal mesothelial cell prostaglandin synthesis: induction of cyclooxygenase mRNA by peritoneal macrophage derived cytokines. Kidney Int 1994; 46: 900–9.

    PubMed  CAS  Google Scholar 

  97. Suassuna JHR, Das Neves FC, Hartley RB, Ogg CS, Cameron JS. Immunohistochemical studies of the peritoneal membrane and infiltrating cells in normal subjects and in patients on CAPD. Kidney Int 1994; 46: 443–54.

    PubMed  CAS  Google Scholar 

  98. Brauner A, Hylander B, Wretlind B. Interleukin-6 and interleukin-8 in dialysate and serum from patients on continuous ambulatory peritoneal dialysis. Am J Kidney Dis 1993; 22: 430–5.

    PubMed  CAS  Google Scholar 

  99. Robson RL, Witowski J, Loetscher P, Topley N. Differential regulation of C-C and C-x-C chemokine synthesis in cytokine-activated human peritoneal mesothelial cells by INF-y. Kidney Int 1997; 52: 1123.

    Google Scholar 

  100. Holmes CJ. Peritoneal host defense mechanisms in peritoneal dialysis. Kidney Int 1994; 46: S58–70.

    Google Scholar 

  101. Hollman AS, McMillan MA, Briggs JD, Junor BJ, Morley P. Ultrasound changes in sclerosing peritonitis following continuous ambulatory peritoneal dialysis. Clin Radiol 1991; 43: 176–9.

    PubMed  CAS  Google Scholar 

  102. Krestin GP, Kacl G, Hauser M et al. Imaging diagnosis of sclerosing peritonitis and relation of radiologic signs to the extent of the disease. Abdom Imaging 1995; 20: 414–20.

    PubMed  CAS  Google Scholar 

  103. Faller U, Stegen P, Klaus G, Mehls O, Troger J. Sonographic determination of the thickness of the peritoneum in healthy children and paediatric patients on CAPD. Nephrol Dial Transplant 1998; 13: 3172–7.

    PubMed  CAS  Google Scholar 

  104. Zemel D, Betjes MGH, Dinkla C, Struijk DG, Krediet RT. Analysis of inflammatory mediators and peritoneal permeability to macromolecules shortly before the onset of overt peritonitis in patients treated with CAPD. Petit Dial Int 1994; 15: 134–41.

    Google Scholar 

  105. Zemel D, Koomen GCM, Hart AAM et al. Relationship of TNFa, interleukin-6, and prostaglandins to peritoneal permeability for macromolecules during longitudinal follow-up of peritonitis in continuous ambulatory peritoneal dialysis. J Lab Clin Med 1994; 122: 686–96.

    Google Scholar 

  106. Zemel D, Imholz ALT, de Wart DR et al. The appearance of tumor necrosis factor-a and soluble TNF-receptors I and II in peritoneal effluent during stable and infectious CAPD. Kidney Int 1994; 46: 1422–30.

    PubMed  CAS  Google Scholar 

  107. Zemel D, ten Berge RJM, Struijk DG et al. Interleukin-6 in CAPD patients without peritonitis: relationship to the intrinsic permeability of the peritoneal membrane. Clin Nephrol 1992; 37: 97–103.

    PubMed  CAS  Google Scholar 

  108. Zemel D, ten Berge RJM, Koomen GCM, Struijk DG, Krediet RT. Serum interleukin-6 in continuous ambulatory peritoneal dialysis patients. Nephron 1993; 64: 320–1.

    PubMed  CAS  Google Scholar 

  109. Brauner A, Hylander B, Wretlind B. Tumor necrosis factor-a, interleukin-1 ß, and interleukin-1 receptor antagonist in dialysate and serum from patients on continuous ambulatory peritoneal dialysis. Am J Kidney Dis 1996; 27: 402–8.

    PubMed  CAS  Google Scholar 

  110. Goldman M, Vandenabeele P, Moulart J et al. Intraperitoneal secretion of interleukin-6 during continuous ambulatory peritoneal dialysis. Nephron 1990; 56: 277–80.

    PubMed  CAS  Google Scholar 

  111. Moutabarrik A, Nakanishi I, Namiki M, Tsubakihara Y. Interleukin-1 and its naturally occurring inhibitor in peritoneal dialysis patients. Clin Nephrol 1995; 43: 243–8.

    PubMed  CAS  Google Scholar 

  112. Visser CE, Brouwer-Steenbergen JJE, Betjes MGH et al. Cancer antigen 125: a bulk marker for mesothelial cell mass in stable peritoneal dialysis patients. Nephrol Dial Transplant 1995; 10: 64–9.

    PubMed  CAS  Google Scholar 

  113. Ho-dac-Pannekeet MM, Hiralall JK, Struijk DG, Krediet RT. Longitudinal follow-up of CAl25 in peritoneal effluent. Kidney Int 1997; 51: 888–93.

    PubMed  CAS  Google Scholar 

  114. Pannekeet MM, Koomen GCM, Struijk DG, Krediet RT. Dialysate CAl25 in stable CAPD patients: no relation to transport parameters. Clin Nephrol 1995; 44: 248–54.

    PubMed  CAS  Google Scholar 

  115. Yamagata K, Tomida C, Koyama A. Intraperitoneal hyaluronan production in stable continuous ambulatory peritoneal dialysis patients. Petit Dial Int 1999; 19: 131–7.

    CAS  Google Scholar 

  116. Pannekeet MM, Zemel D, Koomen GCM, Struijk DG, Krediet RT. Dialysate markers of peritoneal tissue during peritonitis and in stable CAPD. Petit Dial Int 1995; 15: 217–25.

    CAS  Google Scholar 

  117. Zweers MM, de Waart DR, Smit W, Struijk DG, Krediet RT. Growth factors VEGF and TGF-betal in peritoneal dialysis [see comments]. J Lab Clin Med 1999; 134: 124–32.

    PubMed  CAS  Google Scholar 

  118. Lai KN, Lai KB, Szeto CC et al. Dialysate cell population and cancer antigen 125 in stable continuous ambulatory peritoneal dialysis patients: their relationship with transport parameters. Am J Kidney Dis 1997; 29: 699–705.

    PubMed  CAS  Google Scholar 

  119. Simonsen O, Rippe B, Christensson A et al. Long-term clinical effects of a peritoneal dialysis fluid with less glucose degradation products. J Am Soc Nephrol 1999; 10: 322A.

    Google Scholar 

  120. Topley N, Krediet RT, Jones S et al. Peritoneal dialysate CAl25, hyaluronan, TGF-bl and pro-collagen I peptide in a randomized, controlled study of bicarbonate/lactate based CAPD solution. J Am Soc Nephrol 1999; 10: 230A.

    Google Scholar 

  121. Topley N, Alobaidi HM, Davies M et al. The effect of dialysate on peritoneal phagocyte oxidative metabolism. Kidney Int 1988; 34: 404–11.

    PubMed  CAS  Google Scholar 

  122. Topley N, Coles GA, Williams JD. Biocompatibility studies on peritoneal cells. Petit Dial Int 1994; 14: S21–8.

    Google Scholar 

  123. Topley N. What is the ideal technique for testing the biocompatibility of peritoneal dialysis solutions? Petit Dial Int 1995; 205–9.

    Google Scholar 

  124. Topley N. Biocompatibility of peritoneal dialysis solutions and host defence. Adv Renal Rep Ther 1996; 3: 1–3.

    Google Scholar 

  125. Topley N, Davenport A, Li F-K, Fear H, Williams JD. Peritoneal defence in peritoneal dialysis. Nephrology 1996; 2: 5167–72.

    Google Scholar 

  126. Jörres A, Williams JD, Topley N. Peritoneal dialysis solution biocompatibility: inhibitory mechanisms and recent studies with bicarbonate-buffered peritoneal dialysis solutions. Peril Dial Int 1997; 17: S42–6.

    Google Scholar 

  127. Jörres A, Gahl GM, Frei U. Peritoneal dialysis fluid biocompatibility: does it really matter? Kidney Int 1994; 46: S79–86.

    Google Scholar 

  128. Topley N, Williams JD. Effect of peritoneal dialysis on cytokine production by peritoneal cells. Blood Purif 1996; 14: 188–97.

    PubMed  CAS  Google Scholar 

  129. Gotloib L, Waisbrut V, Shostak A, Kushnier R. Biocompatibility of dialysis solutions evaluated by histochemical techniques applied to mesothelial cell imprints. Petit Dial Int 1993; 13: 201–7.

    Google Scholar 

  130. Gotloib L, Waisbrut V, Shostak A, Kushnier R. Acute and long-term changes observed in imprints of mouse mesothe- hum exposed to glucose-enriched, lactated, buffered dialysis solutions. Nephron 1995; 70: 466–77.

    PubMed  CAS  Google Scholar 

  131. Gotloib L, Wajsbrot V, Shostak A, Kushnier R. Population analysis of mesothelium in situ and in vivo exposed to bicarbonate-buffered peritoneal dialysis fluid. Nephron 1996; 73: 219–27.

    PubMed  CAS  Google Scholar 

  132. de Fijter CWH, Oe LP, Heezius ECJM, Donker AJM, Verbrugh HA. Low-calcium peritoneal dialysis fluid should not impact peritonitis rates in continuous ambulatory peritoneal dialysis. Am J Kidney Dis 1996; 27: 409–15.

    PubMed  CAS  Google Scholar 

  133. de Fijter CWH, Verbrugh HA, Peters EDJ et al. In vivo exposure to the currently available peritoneal dialysis fluids decreases the function of peritoneal macrophages in CAPD. Clin Nephrol 1993; 39: 75–80.

    PubMed  CAS  Google Scholar 

  134. de Fijter CWH, Verbrugh HA, Oe LP et al. Biocompatibility of a glucose polymer-containing peritoneal dialysis fluid. Am J Kidney Dis 1993; 4: 411–18.

    Google Scholar 

  135. Griffin JC, Marie SC. Glucose degradation in the presence of sodium lactate during autoclaving at 121 °C. Am J Hosp Pharm 1958; 15: 893–5.

    CAS  Google Scholar 

  136. Taylor RB, Jappy BM, Neil JM. Kinetics of dextrose degradation under autoclaving conditions. J Pharm Pharmacol 1971; 23: 121–9.

    Google Scholar 

  137. Heimlich KR, Martin AN. A kinetic study of glucose degradation in acid solution. J Am Pharm Assoc 1960; 49: 592–7.

    CAS  Google Scholar 

  138. Webb NE, Sperandio GJ, Martin AN. A study of the composition of glucose solutions. J Am Pharm Assoc 1958; 47: 101–3.

    CAS  Google Scholar 

  139. Weislander AP, Nordin MK, Kjellstrand PTT, Boberg UC. Toxicity of peritoneal dialysis fluids on cultured fibroblasts, L-929. Kidney Int 1991; 40: 77–9.

    Google Scholar 

  140. Wieslander AP, Nordin MK, Martinson E, Kjellstrand PTT, Boberg UC. Heat sterilised PD-fluids impair growth and inflammatory responses of cultured cell lines and human leukocytes. Clin Nephrol 1993; 39: 343–8.

    PubMed  CAS  Google Scholar 

  141. Mistry CD, Gokal R, Peers A and the Midas Study Group. A randomised multicentre clinical trial comparing isoosmolar Icodextrin with hyperosmolar glucose solutions in CAPD. Kidney Int 1994; 46: 496–503.

    Google Scholar 

  142. Ruderman NB, Williamson JR, Brownlee M. Glucose and diabetic vascular disease. FASEB J 1992; 6: 2905–14.

    PubMed  CAS  Google Scholar 

  143. Tilton RG, Baier LD, Harlow JE et al. Diabetes-induced glomerular dysfunction: links to a more reduced cytosolic ratio of NADH/NAD+. Kidney Int 1992; 41: 778–88.

    PubMed  CAS  Google Scholar 

  144. Breborowicz A, Rodela H, Oreopoulos DG. Toxicity of osmotic solutes on human mesothelial cells in vitro. Kidney Int 1992; 41: 1280–5.

    PubMed  CAS  Google Scholar 

  145. Liberek T, Topley N, Jörres A et al. Peritoneal dialysis fluid inhibition of phagocyte function: effects of osmolality and glucose concentration. J Am Soc Nephrol 1993; 3: 1508–15.

    PubMed  CAS  Google Scholar 

  146. Kang DH, Hong YS, Lim HJ et al. High glucose solution and spent dialysate stimulate the synthesis of transforming growth factor-betal of human peritoneal mesothelial cells: effect of cytokine costimulation. Petit Dial Int 1999; 19: 221–30.

    CAS  Google Scholar 

  147. Phillips AO. Diabetic nephropathy: the modulation influence of glucose on transforming growth factor ß production. Histol Histopathol 1998; 13: 565–74.

    PubMed  CAS  Google Scholar 

  148. Fujimori A, Naito H, Miyazaki T et al. Elevation of interleukin-6 in the dialysate reflects peritoneal stimuli and deteriation of peritoneal function. Nephron 1996; 74: 471–2.

    PubMed  CAS  Google Scholar 

  149. Lamb EJ, Cattell WR, Dawnay ABSJ. In vitro formation of advanced glycation end products in peritoneal dialysis fluid. Kidney Int 1995; 47: 1768–74.

    PubMed  CAS  Google Scholar 

  150. Yamada K, Miyahara Y, Hamaguchi K et al Immunohistochemical study of human advanced glycosylation end-products (AGE) in chronic renal failure. Clin Nephrol 1994; 42: 354–61.

    PubMed  CAS  Google Scholar 

  151. Friedlander MA, Wu YC, Elgawish A, Monnier VM. Early and advanced glycosylation end products: kinetics of formation and clearance in peritoneal dialysis. J Clin Invest 1996; 97: 728–35.

    PubMed  CAS  Google Scholar 

  152. Vlassara H. Recent progress on the biologic and clinical significance of advanced glycosylation end products. J Lab Clin Med 1994; 124: 19–30.

    PubMed  CAS  Google Scholar 

  153. Miyata T, van Ypersele de Strihou C, Kurokawa K, Baynes JW. Alterations in nonenzymatic biochemistry in uremia: origin and significance of `carbonyl stress’ in long-term uremic complications. Kidney Int 1999; 55: 389–99.

    PubMed  CAS  Google Scholar 

  154. Miyata T, Kurokawa K. Carbonyl stress: increased carbonyl modification of proteins by autoxidation products of carbohydrates and lipids in uremia [editorial]. Int J Artif Organs 1999; 22: 195–8.

    PubMed  CAS  Google Scholar 

  155. Nakayama M, Kawaguchi M, Yamada K et al. Immunolological detection of advanced glycosylation end products in the peritoneum and its possible pathophysiological role in CAPD. Kidney Int 1997; 51: 182–8.

    PubMed  CAS  Google Scholar 

  156. Musi B, Carlsson 0, Rippe A, Wieslander A, Rippe B. Effects of acidity, glucose degradation products, and dialysis fluid buffer choice on peritoneal solute and fluid transport in rats. Peril Dial Int 1998; 18: 303–10.

    CAS  Google Scholar 

  157. Rippe B, Simonsen O, Wieslander A, Landgren C. Clinical and physiological effects of a new, less toxic and less acidic fluid for peritoneal dialysis. Petit Dial Int 1997; 17: 27–34.

    CAS  Google Scholar 

  158. Wieslander A, Andren AHG, Nilsson-Thorell C et al. Are aldehydes in heat-sterilised peritoneal dialysis fluids toxic in vitro. Petit Dial Int 1995; 15: 348–52.

    CAS  Google Scholar 

  159. Wieslander A. Cytotoxicity of glucose degradation products in PD-fluids. PhD thesis, Lund: University of Lund, Sweden, 1995.

    Google Scholar 

  160. Wieslander AP, Andren AHG, Nilsson-Thorell C et al. Are aldehydes in heat sterilised peritoneal dialysis fluids toxic in vitro? Petit Dial Int 1995; 15: 348–52.

    CAS  Google Scholar 

  161. Wieslander AP. Cytotoxicity of peritoneal dialysis fluids–is it related to glucose breakdown products? Nephrol Dial Transplant 1996; 11: 958–9.

    PubMed  CAS  Google Scholar 

  162. Cooker LA, Luneburg P, Faict D, Choo C, Holmes CJ. Reduced glucose degradation products in bicarbonate/ lactate-buffered peritoneal dialysis solutions produced in two-chambered bags. Petit Dial Int 1997; 17: 373–8.

    CAS  Google Scholar 

  163. de Fijter CWH, Verbrugh HA, Oe LP et al. Peritoneal defence in continuous ambulatory versus continuous cyclic peritoneal dialysis. Kidney Int 1992; 42: 947–50.

    PubMed  CAS  Google Scholar 

  164. Mackenzie RK, Jones S, Moseley A et al. In vivo exposure to bicarbonate/lactate and bicarbonate-buffered-peritoneal dialysis fluids (PDF) improves ex vivo peritoneal macrophage (PMO) function. Am J Kidney Dis (In press).

    Google Scholar 

  165. Topley N, Kaur D, Petersen MM et al. In vivo effects of bicarbonate and bicarbonate-lactate buffered peritoneal dialysis solutions on mesothelial cell and neutrophil function. J Am Soc Nephrol 1996; 7: 218–24.

    PubMed  CAS  Google Scholar 

  166. Topley N, Kaur D, Petersen MM et al. Bio-compatibility of bicarbonate-buffered peritoneal dialysis fluids: influence on mesothelial cell and neutrophil function. Kidney Int 1996; 49: 1447–56.

    PubMed  CAS  Google Scholar 

  167. Fischer H-P, Schenk U, Kiefer T et al. In vitro effects of bicarbonate-versus lactate-buffered continuous ambulatory peritoneal dialysis fluids on peritoneal macrophage function. Am J Kidney Dis 1995; 26: 924–33.

    PubMed  CAS  Google Scholar 

  168. Dobos GJ, Böhler J, Kuhlmann J et al. Bicarbonate-based dialysis solutions preserves granulocyte functions. Petit Dial Int 1994; 14: 366–70.

    CAS  Google Scholar 

  169. Jörres A, Gahl GM, Topley N et al. In vitro biocompatibility of alternative CAPD fluids; comparison of bicarbonate buffered and glucose polymer based solutions. Nephrol Dial Transplant 1994; 9: 785–90.

    PubMed  Google Scholar 

  170. Manahan FJ, Int BL, Chan JC et al. Effects of bicarbonate-containing versus lactate-containing peritoneal dialysis solutions on superoxide production by human neutrophils. Artif Organs 1989; 13: 495–7.

    PubMed  CAS  Google Scholar 

  171. Plum J, Fusshöller A, Schoenicke G et al. In vivo and in vitro effects of amino-acid-based and bicarbonate-buffered peritoneal dialysis solutions with regard to peritoneal transport and cytokines/prostanoids dialysate concentrations. Nephrol Dial Transplant 1997; 12: 1625–60.

    Google Scholar 

  172. Schambye HT, Flesner P, Pedersen RB et al. Bicarbonate-versus lactate-based CAPD fluids: a biocompatibility study in rabbits. Petit Dial Int 1992; 12: 281–6.

    CAS  Google Scholar 

  173. Yatzidis H. Enhanced ultrafiltration in rabbits with bicarbonate glycylglycine peritoneal dialysis solution. Petit Dial Int 1993; 13: 302–6.

    CAS  Google Scholar 

  174. Thodis E, Bhaskaran S, Pasadakis P et al. Decrease in Staphylococcus aureus exit-site infections and peritonitis in CAPD patients by local application of mupirocin ointment at the catheter exit site [see comments]. Petit Dial Int 1998; 18: 261–70.

    CAS  Google Scholar 

  175. Ho-dac-Pannekeet MM, Struijk DG, Krediet RT. Improvement of transcellular water transport by treatment with glucose free dialysate in patients with ultrafiltration failure. Nephrol Dial Transplant 1996; 11: A255.

    Google Scholar 

  176. Rippe B, Simonsen O, Wieslander A, Landgren C. Clinical and physiological effects of a new, less toxic and less acidic fluid for peritoneal dialysis [see comments]. Petit Dial Int 1997; 17: 27–34.

    CAS  Google Scholar 

  177. Coles GA. Are solutions presently used bioincompatible? Petit Dial Int 1995; 15: S109–10.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Coles, G.A., Williams, J.D., Topley, N. (2000). Peritoneal inflammation and long-term changes in peritoneal structure and function. In: Gokal, R., Khanna, R., Krediet, R.T., Nolph, K.D. (eds) Textbook of Peritoneal Dialysis. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3225-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3225-3_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-3227-7

  • Online ISBN: 978-94-017-3225-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics