Skip to main content

Abstract

This chapter reviews the advances made in our knowledge of the effects of termites on the physical, chemical and biological properties of soils. Emphasis has been placed on more recent contributions, particularly those that explore new concepts in the ecology of termites and soils. There are sections dealing with the effects of termite activity on soil profile development, soil physical properties, soil chemical properties, soil microbiology and plant growth. The physical effects of termites on soils range from micromorphological to soil profile evolution and structure. Recent evidence points to the substantial positive influence of termites on soil hydraulic conductivity and infiltration rates. Their influence on organic matter decomposition and nutrient recycling rates are well recognized and in some landscapes termite mounds act as foci for nutrient redistribution. New information on the microbiology of termite mounds suggests that most are sites of diverse bacterial and fungal activity. Furthermore, the association between mound-building termites and the microbial population present in the structures has a synergistic effect on organic matter decomposition and hence nutrient cycling and availability. Examination of the effects of termite activity on plant production generally indicates a positive influence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbadie, L. and Lepage, M. (1989) The role of subterranean fungus comb chambers (Isoptera, Macrotermitinae) in soil nitrogen cycling in a preforest savanna (Côte d’Ivoire). Soil Biology and Biochemistry 8, 1067–1071.

    Article  Google Scholar 

  2. Akamigbo, F. (1984) The role of the nasute termites in the genesis and fertility of Nigerian soils. Pedologie 34, 179–189.

    Google Scholar 

  3. Aloni, K. and Soyer, J. (1987) Cycle des materiaux de construction des termitières d’humivores en savane au Shaba meridional (Zaire). Revue de Zoologie Africaine 101, 329–357.

    Google Scholar 

  4. Anderson, A. (1994) Studies on termite excretory nitrogen. In Proceedings of the 5th Workshop on Tropical Entomology, pp. 249–253, Townsville, July 1991.

    Google Scholar 

  5. Arshad, M.A. (1981) Physical and chemical properties of termite mounds of two species of Macrotermes (Isoptera, Termitidae) and the surrounding soils of the semiarid savanna of Kenya. Soil Science 132, 161–174.

    Article  Google Scholar 

  6. Arshad, M.A. (1982) Influence of the termite Macrotermes michaelseni (Sjost) on soil fertility and vegetation in a semi-arid savanna ecosystem. Agro-Ecosystems 8, 47–58.

    Article  Google Scholar 

  7. Arshad, M.A., Mureria, N.K. and Keya, S.O. (1982) Effect of termite activities on the soil microflora. Pedobiologia 24, 161–167.

    Google Scholar 

  8. Badawi, A., Faragalla, A.A. and Dabbour, A. (1982) The role of termites in changing certain chemical characteristics of the soil. Sociobiology 7, 135–144.

    Google Scholar 

  9. Bagine, R.K.N. (1984) Soil translocation by termites of the genus Odontotermes (Holmgren) (Isoptera: Macrotermitinae) in an arid area of Northern Kenya. Oecologia 64, 263–266.

    Article  Google Scholar 

  10. Becker, G. (1975) Termites and fungi Material und Organismen 30, 465–478.

    Google Scholar 

  11. Black, H.I.J. and Okwakol, M.J.N. (1997) Agricultural intensification, soil biodiversity and agroecosystem function in the tropics: the role of termites. Applied Soil Ecology 6, 37–53.

    Article  Google Scholar 

  12. Bonell, M., Coventry, R.J. and Holt, J.A. (1986) Erosion of termite mounds under natural rainfall in semi-arid tropical Northeastern Australia. Catena 13, 11–28.

    Article  Google Scholar 

  13. Boyer, P. (1975) Les différents aspects de l’action des termites sur les sols tropicaux. Annals de Sciences naturelles et Zoologie 17, 447–504.

    Google Scholar 

  14. Boyer, P. (1982) Quelques aspects de l’action des termites su sol sur les argiles. Clay Minerals 17, 453462.

    Google Scholar 

  15. Brouwer, J. And Bouma, J (1997) Soil and crop growth variability in the Sahel: highlights of research (1990–95) at ICRISAT Sahelian Center. Information Bulletin no. 49, Patancheru 502 324, Andhra Pradesh, India.

    Google Scholar 

  16. Congdon, R.A., Holt, J.A. and Hicks, W.S. (1993) The role of mound-building termites in the nitrogen economy of semi-arid ecosystems. In Proceedings of the 6th Australasian Conference on Grassland Invertebrate Ecology, (R.A. Prestidge, Ed.), pp.100–106, Hamilton, New Zealand, Feb. 1993. AgResearch, Hamilton, New Zealand.

    Google Scholar 

  17. Coventry, R.J., Holt, J.A. and Sinclair, D.F. (1988) Nutrient cycling by mound-building termites in low-fertility soils of semi-arid tropical Australia. Australian Journal of Soil Research 26, 375–390.

    Article  Google Scholar 

  18. Darlington, J.P.E.C. (1982) The underground passages and storage pits used in foraging by a nest of the termite Macrotermes michaelseni in Kajiado, Kenya. Journal of Zoology (London) 198, 237–247.

    Article  Google Scholar 

  19. Darlington, J.P.E.C. (1984) Two types of mound built by the termite Macrotermes subhyalinus in Kenya. Insect Science and its Application 5, 481–492.

    Google Scholar 

  20. Darlington, J.P.E.C. (1985) The structure of mature mounds of the termite Macrotermes michaelseni in Kenya. Insect Science and its Application 6 149–156.

    Google Scholar 

  21. Eldridge, D.J. (1994) Nests of ants and termites influence infiltration in a semi-arid woodland. Pedobiologia 38, 481–492.

    Google Scholar 

  22. Elkins, N.Z., et al. (1986) The influence of subterranean termites on the hydrological characteristics of a Chihuahuan desert ecosystem. Oecologia 68, 521–528.

    Article  Google Scholar 

  23. Eschenbrenner, V. (1986) Contribution des termites a la micro-agregation des sols tropicaux. ORSTOM, ser. Pedologie 22, 397–408.

    Google Scholar 

  24. Eschenbrenner, V. (1988) Les glébules des sols de Côte d’Ivoire. Nature et origine en milieu ferrallitique; modalités de leur concentration; rôle des termites. Tomes 1 and 2, ORSTOM, Paris.

    Google Scholar 

  25. Folster, H. (1964) The pedisediments of the southern Sudanese pediplane. Origin and soil formation. Pedologie 14, 64–84.

    Google Scholar 

  26. Garnier-Sillam, E. and Harry, M. (1995) Distribution of humic compounds in mounds of some soil-feeding termite species of tropical rainforests: its influence on soil structure stability. Insectes Sociaux 42, 167–185.

    Article  Google Scholar 

  27. Garnier-Sillam, E. and Toutain, F. (1995) Distribution of polysaccharides within the humic compounds of soils subjected to a humiverous termite Thoracotermes macrothorax Sjostedt. Pedobiologia 39, 462–469.

    CAS  Google Scholar 

  28. Garnier-Sillam, E., Toutain, F. and Renoux J. (1988) Comparison de l’influence de deux termitieres (humivore et champignonniste) sur la stabilite structurale des sols forestiers tropicaux. Pedobiologia 32, 89–97.

    Google Scholar 

  29. Gillman, L.R., Jefferies, M.K. and Richards, G.N. (1972) Non-soil constituents of termite (Coptotermes acinaciformis) mounds. Australian Journal of Biological Sciences 25, 1005–1013.

    CAS  Google Scholar 

  30. Grasse, P.P. (1958) Sur le nid et la biologie de Cornitermes cumulans (Kollar), termites Bresilien. Insectes Sociaux 2 189–199.

    Google Scholar 

  31. Greaves, T. (1962) Studies of foraging galleries and the invasion of living trees by Coptotermes acinaciformis and C. brunneus. Australian Journal of Zoology 10, 630–651.

    Article  Google Scholar 

  32. Gupta, S.R., Rajvanshi, R. and Singh, J.S. (1981) The role of the termite Odontotermes gurdaspurensis (Isoptera: Termidae) in plant decomposition in a tropical grassland. Pedobiologia 22, 254–261.

    CAS  Google Scholar 

  33. Hemandez, D.L. and Febres, A. (1989) Cambios quimicos en suelos de Sabana de costa de marfil introducidos por la presencia de termitas. Acta Biologia Venezuela 12, 64–71.

    Google Scholar 

  34. Holt, J.A. (1987) Carbon mineralization in Northeastern Australia: the role of termites. Journal of Tropical Ecology 3, 255–263.

    Article  Google Scholar 

  35. Holt, J.A. (1998) Microbial activity in the mounds of some Australian termites. Applied Soil Ecology 9, 183187.

    Google Scholar 

  36. Holt, J. A. and Coventry, R.J. (1990) Nutrient cycling in Australian savannas. Journal of Biogeography 17, 427–432.

    Article  Google Scholar 

  37. Holt, J.A., Abe, T. and Kirtibutr, N. (1998) Microbial biomass and some chemical properties of Macrotermes carbonarius (Hagen) mounds near Korat, Thailand. Sociobiology 31, 1–8.

    Google Scholar 

  38. Holt, J.A., Bristow, K.L. and Mclvor, J.G. (1996) The effects of grazing pressure on soil and litter animals and some hydraulic properties of two soils in semi-arid tropical Australia. Australian Journal of Soil Research 34, 69–79.

    Article  Google Scholar 

  39. Holt, J.A., Coventry, RJ. and Sinclair, D.F. (1980) Some aspects of the biology and pedological significance of mound-building termites in a red and yellow earth landscape near Charters Towers, North Queensland. Australian Journal of Soil Research 18, 97–109.

    Article  Google Scholar 

  40. Holt, J.A., Robertson, L.N. and Radford, B.J. (1993) Effects of tillage and residue treatments on the termite population of a central Queensland vertosol. Australian Journal of Soil Research 31, 311–317.

    Article  Google Scholar 

  41. Kang, B.T. (1978) Effect of some biological factors on soil variability in the tropics III. Effect of Macrotermes mounds. Plant and Soil 50, 241–251.

    Article  CAS  Google Scholar 

  42. Keya, S.O., Mureria, N.K. and Arshad, M.A. (1982) Population dynamics of soil microorganisms in relation to proximity of termite mounds in Kenya. Journal of Arid Environments 5, 353–359.

    Google Scholar 

  43. Khalil, M.A.K., et al. (1990) The influence of termites on atmospheric trace gases: CH4, CO2, CHCl3, N20, CO, H2, and light hydrocarbons. Journal of Geophysical Research 95, 3619–3634.

    Article  Google Scholar 

  44. Konaté, S., et al. (1999) Evidence for the influence of termites in interstratified clay minerals formation in tropical soils. Comptes Rendus de l’Académie des Sciences, Paris,in press.

    Google Scholar 

  45. Kooyman, C.H..R. and Onck, R.F.M. (1987) The interactions between termite activity, agricultural practices and soil characteristics in Kisii district, Kenya. Agricultural University Wageningen Papers, 87–3.

    Google Scholar 

  46. Laker, M., et al. (1982) Effects of the termite Trinervitermes trinervoides Sjostedt on the organic carbon and nitrogen contents and particle size distribution of soils. Revue d’ Ecologie et Biologie du Sol 19, 27–39.

    CAS  Google Scholar 

  47. Lal, R. (1987) Tropical Ecology and Physical Edaphology. John Wiley and Sons, Chichester.

    Google Scholar 

  48. Lee, K.E. and Wood, T.G. (1971) Termites and Soils. Academic Press, London.

    Google Scholar 

  49. Lenz, M. (1994) Food resources, colony growth and caste development in wood-feeding termites. In Nourishment and Evolution in Insect Societies ( J.H. Hunt and C.A. Nalepa, Eds.), pp. 131–157, Westview Press, Boulder.

    Google Scholar 

  50. Lepage, M. (1974) Les termites d’une savane sahelienne (Ferlo Septentrional, Senegal): peuplements, consommation, role dans I’ecosysteme. Doctoral Thesis, Université de Dijon, Dijon, France.

    Google Scholar 

  51. Lepage, M., Morel, G. and Resplandino, C. (1974) Découverte de galeries de termites atteignant la nappe phréatique profonde dans le nord du Senegal. Comptes Rendues de 1 Académie des Sciences, Paris 278, 1855 1859.

    Google Scholar 

  52. Leprun, J.C. and Roy-Noel, J. (1976) Minéralogie des argiles et répartition des nids épigés de deux espèces du genre Macrotermes au Sénégal occidental (presquile du Cap-Vert). Insectes Sociaux 23, 535–547.

    Article  Google Scholar 

  53. Lobry de Bruyn, L.A. and Conacher, A.J. (1990) The role of termites and ants in soil modification: a review. Australian Journal of Soil Research 28, 55–93.

    Google Scholar 

  54. Lobry de Bruyn, L. and Conacher, A.J. (1995) Soil modification by termites in the central wheatbelt of Western Australia. Australian Journal of Soil Research 33, 179–193.

    Google Scholar 

  55. Logan, J.W.M. (1992) Termites (Isoptera): a pest or resource for small farmers in Africa. Tropical Science 32, 71–79.

    Google Scholar 

  56. McComie, L.D. and Dhanarajan, G. (1993) The physical and chemical composition of mounds of Macrotermes carbonarius (Hagen) (Termitidae, Macrotermitinae), in Penang, Malaysia Journal of Soil Science 44, 427–433.

    Google Scholar 

  57. Mackay, W.P. and Whitford, W.G. (1988) Spatial variability of termite gallery production in Chihuahuan desert plant communities. Sociobiology 14, 281–289.

    Google Scholar 

  58. Maduakor, H.O., Okere, A.N. and Onyeanuforo, C.C. (1995) Termite mounds in relation to the surrounding soils in the forest and derived savanna zones of southeastern Nigeria. Biology and Fertility of Soils 20, 157–162.

    Article  Google Scholar 

  59. Mando, A. (1997) The impact of termites and mulch on the water balance of crusted Sahelian soil. Soil Technology 11, 121–138.

    Article  Google Scholar 

  60. Mando, A. (1997) The role of termites and mulch in the rehabilitation of crusted Sahelian soils. Tropical Resource Management Papers No. 16. Wageningen Agricultural University, Netherlands.

    Google Scholar 

  61. Mando, A. (1997) Effect of termites and mulch on the physical rehabilitation of structurally crusted soils in the Sahel. Land Degradation and Development 8, 269278.

    Google Scholar 

  62. Mando, A. and Miedema, R. (1997) Termite-induced change in soil structure after mulching degraded (crusted) soil in the Sahel. Applied Soil Ecology 6, 241249.

    Google Scholar 

  63. Mando, A., Stroosnijder, L. and Brussaard, L. (1996) Effects of termites on infiltration into crusted soil. Geoderma 74, 107–113.

    Article  Google Scholar 

  64. Martius, C. (1994) Diversity and ecology of termites in Amazonian forests. Pedobiologia 38, 407–428.

    Google Scholar 

  65. Meiklejohn, J. (1965) Microbiological studies on large termite mounds Rhodesia, Zambia and Malawi Journal of Agricultural Research 3, 67–79.

    Google Scholar 

  66. Miedema, R., et al. (1994) Variability in the growth of Faidherbia albida near Niamey, Niger, Africa: micromorphological aspects of termite activity. In Soil Micromorphology: Studies in Management and Genesis. Proceedings of the.IX International Working Meeting on Soil Micromorphology (A.J. RingroseVoase and G.S. Humphreys, Eds.), pp. 411–419, Townsville, Australia, July 1992. Developments in Soil Science 22, Elsevier, Amsterdam,.

    Google Scholar 

  67. Mielke, H.W. and Mielke, P.W. (1982) Termite mounds and chitemene agriculture: a statistical analysis of their association in southwestern Tanzania. Journal of Biogeography 9, 499–504.

    Article  Google Scholar 

  68. Mohindra, P. and Mukerji, K.G. (1982) Fungal ecology of termite mounds. Revue d’ Ecologie et Biologie du Sol 19, 351–361.

    Google Scholar 

  69. Nazaroff, P.S. (1931) Note on the spongey ironstone of Angola. Geological Magazine 68, 443–446.

    Article  CAS  Google Scholar 

  70. Nutting, W.L., Haverty, M.I. and LaFage, J.P. (1987) Physical and chemical alteration of soil by two subterranean termite species in Sonoran Desert grassland. Journal of Arid Environments 12, 233–239.

    Google Scholar 

  71. Nyamapfene, K.W. (1986) The use of termite mounds in Zimbabwe peasant agriculture. Tropical Agriculture 63, 191–192.

    Google Scholar 

  72. Oades, J.M. (1984) Soil organic matter and structural stability: mechanisms and implications for management. Plant and Soil 76, 319–337.

    Article  CAS  Google Scholar 

  73. Okwakol, M.J.N. (1987) Effects of Cubitermes testaceus (Williams) on some physical and chemical properties of soil in a grassland area of Uganda. African Journal of Ecology 25, 147–153.

    Article  Google Scholar 

  74. Omo-Malaka, S.L. (1977) A note on the bulk density of termite mounds. Australian Journal of Soil Research 15, 93–94.

    Article  Google Scholar 

  75. Ouedraogo, P. and Lepage, M. (1997) Rôle des termitières de Macrotermes subhyalinus dans une brousse tigrée (Yatenga, Burkina Faso). In Fonctionnement et gestion des écosystèmes forestiers contractés sahéliens, ( M. d’Herbés, J.M.K. Ambouta and R. Peltier, Eds.), pp. 91–94, John Libbey Eurotext, Paris.

    Google Scholar 

  76. Paul, E.A. and Clark, F.E. (1996) Soil Microbiology and Biochemistry 2 nd Edn. Academic Press, London.

    Google Scholar 

  77. Paul, J. and Vanna, A.J. (1993) Characterization of cellulose and hemicellulose degrading Bacillus sp. from termite infested soil. Current Science 64, 262265.

    Google Scholar 

  78. Paul, J., Sarkar, A. and Vanna, A. (1985) Cellulose digesting bacteria from live termite mound soils. Current Science 54, 1098–1101.

    Google Scholar 

  79. Raunet, M. (1979) Importance et interactions des processus géochimiques, hydrologiques et biologiques (termites) sur les surfaces d’aplanissement tropicales granito-gneissiques. Agronomie Tropicale 34, 40–53.

    Google Scholar 

  80. Rohrmann, G.F. (1978) The origin, structure, and nutritional importance of the comb in two species of Macrotermitinae (Insects, Isoptera). Pedobiologia 18, 89–98.

    CAS  Google Scholar 

  81. Rohrmann, G.F. and Rossman, A.Y. (1980) Nutrient strategies of Macrotermes ukuzii (Isoptera: Termitidae). Pedobiologia 20, 61–73.

    CAS  Google Scholar 

  82. Salick, J., Herrera, R. and Jordan, C.F. (1983) Tennitaria: nutrient patchiness in nutrient-deficient rain forests. Biotropica 15, 1–7.

    Article  Google Scholar 

  83. Sannasi, A. and Sundara-Rajulu, G. (1967) Occurrence of antimicrobial substance in the exudate of physogastric queen termite, Termes redemanni Wasmann. Current Science 16, 436–437.

    Google Scholar 

  84. Sands, W.A. (1961) Nest structure and size distribution in the genus Trinervitermes (Isoptera, Termitidae, Nasutitermitinae) in West Africa. Insectes Sociaux 8, 177–187.

    Article  Google Scholar 

  85. Sands, W.A. (1969) The association of termites and fungi. In Biology of Termites, Vol 1 ( K. Krishna and F.M. Weesner, Eds.), pp. 495–524, Academic Press, London.

    Google Scholar 

  86. Sarkar, A. (1991) Isolation and characterization of thermophylic, alkaliphilic, cellulose-degrading Bacillus the rmoalcaliphilus sp. nov. from termite (Odontotermes obesus) mound soil of a semiarid area. Geomicrobiology Journal 9, 225–232.

    Article  CAS  Google Scholar 

  87. Sarkar, A., Vanna, A. and Sarkar, A. (1988) Influence of cellulolytic organisms associated with a termite, Odontotermes obesus, on carbon mobility in a semiarid ecosystem. Arid Soil Research and Rehabilitation 2, 75–84.

    Google Scholar 

  88. Saxena, S., Bahadur, J. and Vanna, A. (1993) Cellulose and hemicellulose degrading bacteria from termite gut and mound soils of India. Indian Journal of Microbiology 33, 55–60.

    Google Scholar 

  89. Singh, U.R., Singh, J. and Singh, I.D. (1978) Microbial association with termites in a tropical deciduous forest at Varanasi. Tropical Ecology 19, 163–173.

    Google Scholar 

  90. Slaytor, M. and Chappell, D.J. (1994) Nitrogen metabolism in termites. Comparative Biochemistry and Physiology 107B, 1–10.

    Article  Google Scholar 

  91. Smeathman, H. (1781) Of the termites in Africa and other hot climates. Philosophical Transactions of the Royal Society of London 71, 60–85.

    Article  Google Scholar 

  92. Soyer, J. (1987) Role des termites dans la formation du complexe de la stone-line. Geo-Eco-Crop 11, 97–108.

    Google Scholar 

  93. Spain, A.V. and Mclvor, J.G. (1988) The nature of herbaceous vegetation associated with termitaria in north-eastern Australian Journal of Ecology 76, 18 1191.

    Google Scholar 

  94. Spain, A.V. and Reddell, P. (1996) 613C values of selected termites (Isoptera) and termite-modifed materials. Soil Biology and Biochemistry 28, 1585 1593.

    Google Scholar 

  95. Steinke, T.D. and Nel, L.O. (1989) Some effects of termitaria on veld in the eastern Cape. Journal of the Grassland Society of South Africa 6, 152–155.

    Article  Google Scholar 

  96. Stoops, G. (1989) Relict properties of soils in humid tropical regions with special reference to central Africa. Catena Supplement 16, 95–106.

    Google Scholar 

  97. Tardy, Y. and Roquin, C. (1992) Geochemistry and evolution of lateritic landscapes. In Weathering, Soils and Paleosols ( I.P. Martini and W. Chesworth, Eds.), pp. 407–443, Elsevier, London.

    Google Scholar 

  98. Thomas, R.J. (1987) Distribution of Termitomyces Heim and other fungi in the nests and major workers of Macrotermes bellicosus (Smeathman) in Nigeria. Soil Biology and Biochemistry 19, 329–333.

    Article  Google Scholar 

  99. Trapnell, C.G. and Webster, R. (1986) Microaggregates in red earths and related soils in East and Central Africa, their classification and occurrence. Journal of Soil Science 37, 109–123.

    Article  Google Scholar 

  100. Truckenbrodt, W., Kotschoubey, B. and Schellmann, W. (1991) Composition and origin of the clay cover on North Brazilian laterites. Geologische Rundschau 80, 591–610.

    Article  CAS  Google Scholar 

  101. Varma, A. et al. (1994) Lignocellulose degradation by microorganisms from termite hills and termite guts: a survey on the present state of art FEMS Microbiology Reviews 15, 9–28.

    Article  CAS  Google Scholar 

  102. Watson, J.P. (1977) The use of mounds of the termite Macrotermes falciger (Gerstacker) as a soil amendment. Journal of Soil Science 28, 664–672.

    Article  CAS  Google Scholar 

  103. Watson, J.P. (1960) Some observations on soil horizons and insect activity in granite soils. Proceedings of the 1st Federal Science Congress of Rhodesia and Nyasaland, pp. 271–276.

    Google Scholar 

  104. Whitford, W.G., Ludwig, J.A. and Noble, J.C. (1992) The importance of subterranean termites in semi-arid ecosystems in south-eastern Australia. Journal of Arid Environments 22, 87–91.

    Google Scholar 

  105. Wiesner, E. (1990) Elevated permeabilities caused by termites. Bulletin of the International Association of Engineering Geology 42, 117–121.

    Article  Google Scholar 

  106. Williams, M.A.J. (1968) Termites and soil development near Brocks Creek, Northern Territory. Australian Journal of Science 31, 153–154.

    Google Scholar 

  107. Wood, T.G. (1996) The agricultural importance of termites in the tropics. Agricultural Zoology Reviews 7, 117–155.

    Google Scholar 

  108. Wood, T.G. and Johnson, R.A. (1983) Modification of soils in Nigerian savanna by soil-feeding Cubitermes (Isoptera, Termitidae). Soil Biology and Biochemistry 15, 575–579.

    Article  Google Scholar 

  109. Zoberi, M.H. (1979) The ecology of some fungi in a termite hill. Mycologia 71, 537–545.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Holt, J.A., Lepage, M. (2000). Termites and Soil Properties. In: Abe, T., Bignell, D.E., Higashi, M. (eds) Termites: Evolution, Sociality, Symbioses, Ecology. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3223-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3223-9_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5476-0

  • Online ISBN: 978-94-017-3223-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics