Skip to main content

Techniques of AM Fungus Inoculum Production

  • Chapter
Book cover Techniques in Mycorrhizal Studies

Abstract

The broad applications of AM fungi has been limited by the difficulties of obtaining large quantities of pure inoculum of the obligate fungal symbiont. AM fungi have a variety of propagules (spores, hyphal fragments and hyphae within senesced and living roots). Resting spores extracted from soil are often used as inoculum. Aeroponic culture of AM fungi is a technique that enables efficient production of inoculum and soil free investigations of mycorrhizae. In recent years they have been cultivated in vitro. Root organ culture, whether with transformed or non-transformed roots is expensive, labour intensive and does not give sporulation equivalent to the traditional pot cultures. However it is a valuable tool to study AM fungi. Different techniques of AM fungal inoculum production are given in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, L. K., Robson, A. D. 1981. Infectivity and effectiveness of vesicular arbuscular mycorrhizal fungi: effect of inoculum type. Australian Journal of Agricultural Research, 32: 631–639.

    Article  Google Scholar 

  2. Abbott, L. K., Robson, A. D., Gazey, C. 1992. Selection of inoculant vesiculararbuscular mycorrhizal fungi. In, “Methods in microbiology”, (eds. Norris, J. R., Read, D. J. and Vanna, A. K.) Vol. 24, Academic Press, London, pp. 1–22.

    Google Scholar 

  3. Bago, B., Azcon-Aguilar, C. and Piche, Y. 1998a. Architecture and developmental dynamics ofthe external mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown under monoxenic conditions. Mycologia, 90: 52–62.

    Article  Google Scholar 

  4. Bago, B. Azcon-Aguilar, C. Goulet, A. and Piche, Y. 1998b. Branched absorbing structures (BAS): a feature of the extraradical mycelium of symbiotic arbuscularmycorrhizal fungi. New Phytologist, 139: 375–388.

    Google Scholar 

  5. Bago, B., Vierheilig, H., Piche, Y. and Azcon-Aguilar, C. 1996. Nitrate depletion and pH changes induced by the extraradical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown in monoaxenic culture. New Phytologist, 133: 273–280.

    Article  Google Scholar 

  6. Balaji, B., Poulin, M. J., Vierheilig, H. and Piche,Y. 1995. Responses of an arbuscular mycorrhizal fungus. Gigaspore margarita, to exudates and volatiles from the Ri T-DNAtransformed roots of nonmycorrhizal and mycorrhizal mutants ofPisum sativum L. Sparkle. Experimental Mycology, 19: 275–283.

    Article  CAS  Google Scholar 

  7. Becard, G. and Fortin, J. A. 1988. Early events ofvesicular arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytologist, 108: 211–218.

    Article  CAS  Google Scholar 

  8. Becard, G. and Piche, Y. 1989. Fungal growth stimulation by CO2 and root exudates in vesicular-arbuscular mycorrhizal symbiosis. Applied Envommental Microbiology, 55: 2320–2325.

    CAS  Google Scholar 

  9. Becard, G. and Piche, Y. 1990. Physiological factors determining vesiculararbuscular mycorrhizal formation in host and nonhost RiT-DNA-transformed roots. Candian Journal of Botany, 68: 1260–1264.

    Article  Google Scholar 

  10. Becard, G., Douds, D. D. and Pfeffer, P. E. 1992. Extensive in vitro hyphal growth of vesicular arbuscular mycorrhizal fungi in the presence of CO2 and flavonoids. Applied Envornmental Micobiology, 58: 821–825.

    CAS  Google Scholar 

  11. Biermann, B. and Linderman, RG. 1983, Use ofvesicular-arbuscular mycorrhizal roots, intraradical vesicles and extraradical vesicles as inoculum. New Phytologist, 95: 97–105.

    Article  Google Scholar 

  12. Bryan, H. H. 1984. Fluid drilling of vegetable crops, technique adaptable for mycorrhizal field inoculation. In “Applications of mycorrhizal fungi in crop production” (ed. Ferguson, J. J. ). University of Florida, Gainesville. pp. 46–47.

    Google Scholar 

  13. Burggraaf, A. J. P., Beringer, J. E. 1989. Absence of nuclear DNA synthesis in vesicular-arbuscular mycorrhizal fungi during in vitro development. New Phytologist, 111: 25–33.

    Article  Google Scholar 

  14. Carling, D. E., Brown, MF. and Brown, RA. 1979. Colonization rates and growth responses of soybean plants infected by Vesicular arbuscular mycorrhizal fungi. Canadian Journal of Botany, 57: 1769–1772.

    Article  Google Scholar 

  15. Chabot, S., Becard, G. and Piche, Y. 1992a, Life cycle of Glomus intraradices in root organ culture. Mycologia, 84: 315–21.

    Article  Google Scholar 

  16. Chabot, S., Bel-Rlid R. Chenevert, R. and Piche, Y. 1992b, Hyphal growth promotion in vitro of the VA mycorrhizal fungus, Gigaspora margarita Becker Hall by the activity of structurally specific flavonoid compounds under CO2 -enriched conditions. New Phytologist, 122: 461–467.

    CAS  Google Scholar 

  17. Crush, J. R. and Pattison, A. C., 1975, Preliminary results on the production of vesicular arbuscular mycorrhizal inoculum by freeze drying, in “Endomycorrhizas”, (eds. Sanders, F. E., Mosse, B. and Tinker, P. B.) Academic Press, Inc. New York. pp. 485–493.

    Google Scholar 

  18. Declerck, S., Strullu, D. G. and Plenchette, C. In vitromass production of arbuscular mycorrhizal fungus Glomus versiforme associated with Ri T-DNA transformed carrot roots. Mycological Research, 100:1237–1242.

    Google Scholar 

  19. Declerck, S, Strullu, D. G. Plenchette, C. 1998. Monoxenic culture of the intraradical forms of Glomus sp. isolated from a tropical ecosystem: a proposed methodology for germplasm collection. Mycologia, 90: 579–585.

    Article  Google Scholar 

  20. Dehne, H. W. 1982. Interaction between vesicular-arbuscular mycorrhizal fungi and plant pathogens. Phytopathology 72: 1115–1119.

    Google Scholar 

  21. Diem, H. G., Jung, G., Mugnier, T, Gamy, F. and Dommerguesi Y. 1981. Aiginate entraped Glomus mosseae for crop inoculation. In: Proceedings 5th North American Conference on Mycorrhizae. University Laval, Quebec.

    Google Scholar 

  22. Diop, T. A. 1995. Ecophysiologie des champignons mycorrhiziens avesicules et arbuscular associes a Acacia albida Del. dans les zones Sahelienne et Soudano-Guineenne du Senegal. These de Doctoral de T Universite d Angers.

    Google Scholar 

  23. Diop, T. A., Becard, G. and Piche, Y, 1992. Long term in vitro culture of an endomycorrhizal fungus Gigasopra margarita, on Ri-T-DNA transformed root of carrot. Symbiosis, 12: 249–259.

    Google Scholar 

  24. Diop, T. A., Plenchette, C., Strullu, D. G.,1994. Dual axenic culture of sheared root inocula of vesicular-arbuscular mycorrhizal fungi associated with tomato roots. Mycorrhiza, 5: 17–22.

    Google Scholar 

  25. Douds, D. D. 1997. A procedure for the establishment of Glomus mosseae in dual culture with Ri T-DNA transformed carrot roots. Mycorrhiza, 7: 57–61.

    Article  CAS  Google Scholar 

  26. Douds, D. D., Jr. Schenck, N. C. 1990. Increased sporulation in vesicular arbuscular mycorrhizal fungi by manipulation of nutrient regimes. Applied Envornmental Micobiology 56: 413–418.

    CAS  Google Scholar 

  27. Elmes, RP. and Mosse, B. 1984. Vesicular-arbuscular endomycorrhizal inoculum Production. H. Experiments with maize (Zea mays) and other hosts in nutrient flow culture, Candian Journal of Botany 62: 1531–1536.

    Article  CAS  Google Scholar 

  28. Fortin, J. A., St. Arnaud, M, Hamel, C. Chavarie, C., Jolicoeur, M., 1996. Aseptic in vitro endomycorrhizal spore mass production. US Patent Number 5, 554, 530.

    Google Scholar 

  29. Gaur, A. and Adholeya, A. 2000. Effect of the particle size of soil less substrates upon AM fungus incolum production. Mycorrhiza, 10: 43–48.

    Article  Google Scholar 

  30. Gazey, C., Abbott, L. K. and Robson, A. D. 1993. VA mycorrhizal spores from three species ofAcaulospora: germination, longevity and hyphal growth. Mycological Research, 97: 785–790.

    Article  Google Scholar 

  31. Gianinazzi-Pearson, V, Branzanti, B. and Gianinazzi, S. 1989. In vitro enhancement of spore germination and early hyphal growth of a vesicular arbuscular mycorrhizal fungus by host root exudates and plant flavonoids. Symbiosis, 7: 243–255.

    CAS  Google Scholar 

  32. Gianinazzi-Pearson, V and Gianinazzi, 5. 1983. The physiology ofvesiculararbuscular mycorrhizal roots. Plant and Soil 71: 197–209.

    Article  CAS  Google Scholar 

  33. Heinzemann, J. and Weritz, J. 1990. Rockwool: a new carrier for mass multiplication of vesicular-arbuscular mycorrhizal fungi, Angewandte Botanic 64: 271–274.

    Google Scholar 

  34. Hepper, C. M. 1984, Isolation and culture of VA mycorrhizal (VAM) fungi in VA mycorrhiza, (eds. Powell, C. L. and Bagyaraj, D. J.) CRC Press, Boca Raton, pp. 95–112.

    Google Scholar 

  35. Hung, L. L., O’Keefe, D. M. and Sylvia, D. M. 1991. Use of a hydrogel as a sticking agent and carrier of vesicular-arbuscular mycorrhizal fungi. Mycological Research 95: 427–429.

    Article  Google Scholar 

  36. Hung, L. L. and Sylvia, D. M. 1988. Production of vesicular-arbuscular mycorrhizal fungus inoculum in aeroponic culture. Applied Environmental Microbiology 54: 353–357.

    CAS  Google Scholar 

  37. Jackson, N. E., Franklin, RE. andRH. Miller, 1972. Effect ofvesicular-arbuscular mycorrhizae on growth and phosphorus content of three agronomic crops, Soil Science Society of America 36: 64–67.

    Article  Google Scholar 

  38. Jarstfer, A. G.; Sylvia, D. M. 1992. Inoculum production and inoculation strategies for vesicular-arbuscular mycorrhizal fungi, In, “Soil microbial ecology; applications in agriculture and environmental management”. (ed. Metting, B.), Marcel Dekker, New York, pp. 349–377.

    Google Scholar 

  39. Jarstfer, A. G. and Sylvia, D. M. 1995, Aeroponic cultures of VAM fungi. In “Mycorrhiza” (eds. Vanna, A. and Hock, B.) Springer-Verlag Berlin. pp. 428–441.

    Google Scholar 

  40. Karandashov, V., Kuzovkina, I., Hawkins, H., and Eckhard, G. 2000. Growth and Sporulation of the arbuscular mycorrhizal fungus Glomus caledonium in dual culture with transformed carrot roots. Mycorrhiza, 10: 23–28.

    Article  CAS  Google Scholar 

  41. Lovato, P. E., Schuepp, I-L, Trouvelot, A. and Gianinazzi, S. 1995. Application of arbuscular mycorrhizal fungi (AMF) in orchard and ornamental plants. In “Mycorrhiza”. (eds.: Vanna, A., and Hock, B.) Springer, Berlin Heidelberg NewYork, pp. 443–467.

    Google Scholar 

  42. Mallesha, B. C., Bagyaraj, D. J. and Pai, G. 1992. Perlite-soilrite as carrier for mycorrhiza and rhizobia to inoculate Lueceana leucocephala. Leucaena Research Report 13: 32–33.

    Google Scholar 

  43. Mohammad, A., Khan A. G. and Kuek, C. 2000. Improved aeroponic culture of inocula of arbuscular mycorrhizal fungi. Mycorrhiza, 9: 337–339.

    Article  Google Scholar 

  44. Mosse, B. 1962. The establishment of vesicular-arbuscular mycorrhiza under aseptic conditions. Journal of General. Microbiology. 27: 509–520.

    Article  PubMed  CAS  Google Scholar 

  45. Mosse, B. 1972. Growth of Endogone mycorrhiza in agar medium. Rothamsted Experimental Station Report for 1971, p. 93.

    Google Scholar 

  46. Mosse, B. 1988. Some studies relating to “independent” growth of vesiculararbuscular endophytes. Canadian Journal of Botany, 66: 2533–2540.

    Article  Google Scholar 

  47. Mosse, B. and Hepper, C. 1975. Vesicular-arbuscular mycorrhizal infections in root organ cultures. Physiological Plant Pathology, 5: 215–223.

    Article  Google Scholar 

  48. Mosse, B. and Phillips, J. M. 1971. The influence of phosphate and other nutrients on the development of vesicular-arbuscular mycorrhiza in culture. Journal of General Microbiology, 59: 157–166.

    Article  Google Scholar 

  49. Mosse, B. and Thompson, J. P. 1984. Vesicular-arbuscular endomycorrhizal inoculum production. I. Exploratory experiments with beans (Phaseolus vulgaris) in nutrient flow culture. Candian Journal of Botany, 62: 1523–1530.

    Article  CAS  Google Scholar 

  50. Mugnier, J. and Mosse, B. 1987. Vesicular-arbuscular infections in transformed Ri-T-DNA root grown axenically. Phytopathology, 77: 1045–1050.

    Article  Google Scholar 

  51. Nair, M., Safir, G. and Siqueira, J. 1991. Isolation and identification ofvesiculararbuscular mycorrhiza stimulatory compounds from clover roots. Applied Environmental Microbiology, 57: 434–439.

    CAS  Google Scholar 

  52. Nantais, L. M. 1997. Optimization of arbuscular mycorrhizal inoculum through selection and increased production of Glomus intraradices propagules. M. Sc. Thesis, University of Montreal, Canada.

    Google Scholar 

  53. Nemec, S. 1983. Inoculation of citrus in the field with vesicular arbuscular mycorrhizal fungi in Florida. Tropical Agriculture (Tri), 60: 97–101.

    Google Scholar 

  54. Nuutila, A. M., Vestberg, M. and Kauppinen, V. 1995. Infection of hairy roots of strawberry (Fragaria, Ananassa Duch.) with arbuscular mycorrhizal fungus. Plant Cell Reports, 14: 505–509.

    Article  CAS  Google Scholar 

  55. Phillips, J. M., 1971. The establishment of mycorrhizal infection under aseptic conditions. Rothamsted Experimental Station Report for 1970, p. 88

    Google Scholar 

  56. Plenchette, C., Declerck, S., Diop, T. A. and Strullu, D. G. 1996. Infectivity of monoaxenic subcultures of the arbuscular mycorrhizal fungus Glomus versiforme associated with Ri-T-DNA transformed carrot roots, Appled Microbiology Biotechnology, 46: 545–548.

    Article  CAS  Google Scholar 

  57. Pons, F. Gianinazzi-Pearson, V, Gianinazzi, S. and Navatel, J. C. 1983. Studies of VA mycorrhizae in vitro: mycorrhizal synthesis of axenically propagated wild cherry (Prunus avium L.) plants. Plant and Soil, 71: 217–221.

    Google Scholar 

  58. Redecker, D., Thierfelder, H. and Werner, D. 1995. A new cultivation system for arbuscular-mycorrhizal fungi on glass beads. Angewandte Botanic, 69: 189–191.

    Google Scholar 

  59. Remy, W, Taylor, T. N. Hass, H. and Kerp, H. 1994. Four hundred million year old vesicular arbuscular mycorrhizae. Proceedings of the National Academy of Sciences, U. S. A., 91: 11841–11843.

    Article  CAS  Google Scholar 

  60. Simon, L., Bousquet, J., Levesque, R. C. and Lalonde, M. 1993. Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature, 363: 67–69.

    Article  Google Scholar 

  61. Siqueira, J. O., Safir, G. R and Nair, M. G. 1991. Stimulation ofvesicular arbuscular inycorrhiza formation and growth of white clover by flavonoid compunds. New Phytologist, 118: 87–93.

    Article  CAS  Google Scholar 

  62. Sreenivasa, M. N. and Bagyaraj, D. J. 1988. Selection of a suitable substrate for mass multiplication of Glomusfasciculatum. Plant and Soil, 109: 125–127.

    Article  Google Scholar 

  63. Strullu, D. G. and Plenchette, C. 1990. Encapsulation de la forme intraracinaire de Glomus dans l’alginate et utilisation des capsules comme incolum, Comptes Rendus de I’Academie des Sciences, Serie III: Sciences de la Vie, 310: 447–452.

    Google Scholar 

  64. Strullu, D. G. and Plenchette, C. 1991. The entrapment of Glomus sp. in alginate beads and their use as root inoculum. Mycological Research, 95: 1194–1196.

    Article  Google Scholar 

  65. Strullu, D. G. and Romand, C. 1986. Methode d’obtention d’endomycorhizes a veiscules et arbuscules en conditions axeniques. Compte Rendus de L’Academy of Sciences, Paris, 303: 245–250.

    Google Scholar 

  66. Strullu, D. G. and Romand C. 1987. Culture axenique de vesicules isolate a partir d’endomycorrhizes et re-association in vitro a des sicines de tomate. Compte Rendus de L’Academy of Sciences, Paris, 305: 15–19.

    Google Scholar 

  67. St unu, D. G. Romand, C. Callas, P. Teoule, E. and Demarly, Y. 1989. Mycorrhizal synthesis in vitro between Glomus spp. and artificial seeds of alfalfa. New Phytologist 113: 545–548.

    Article  Google Scholar 

  68. Strutlu, D. G. Romand, C. and Plenchette, C. 1991. Axenic culture and encapsulation of the intraradical forms of Glomus sp. World Journal of Microbiology and Biotechnology, 7: 292–297.

    Article  Google Scholar 

  69. St-Arnaud, M. Hamel, C. Vimard, B. Caron, M. and Fortin, J. A. 1995. Altered growth of Fusairum oxysporum f. sp. chrysanthemi in an in vitro dual culture system with the vesicular-arbuscular mycorrhizal fungus Glomus intraradices growing on Daucus cartoa tranformed roots. Mycorrhiza, 5: 431–438.

    Google Scholar 

  70. St-Arnaud, M., Hamel, C., Vimard, B., Caron, M., Fortin, J. A. 1996. Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in the absence of host roots. Mycological Research, 100: 328–3 32.

    Article  Google Scholar 

  71. Sylvia, D. M. 1990. Inoculation of native woody plants with vesicular-arbuscular mycorrhizal fungi for phosphatemine land reclamation, Agricultural Ecosystem and Environment, 31: 253–261.

    Article  Google Scholar 

  72. Sylvia, D. M. and Hubbell, D. H. 1986. Growth and sporulation of vesiculararbuscular mycorrhizal fungi in aeroponic and membrane systems. Symbiosis, 1: 259–267.

    Google Scholar 

  73. Sylvia, D. M. and Jarstfer, A. G. 1992. Sheared-root inocula of vesicularatbuscular mycorrhizal fungi. Applied Environmental Microbiology, 58: 229–232.

    CAS  Google Scholar 

  74. Sylvia, D. M. and Jarstfer, A. G. 1994. Production of inoculum and inoculation with arbuscular mycorrhizal fungi, in: “Management of mycorrhizas in agriculture, horticulture and forestry”. (eds. Robson, A. D., Abbott, L. K., Malajczak, N.) Kluwer, Dordrecht, pp. 231–238.

    Google Scholar 

  75. Thompson, J. P. 1986. Soilless cultures of vesicular-arbuscular mycorrhizae of cereals: effects of nutrient concentration and nitrogen source. Candian Journal of Botany, 64: 2282–2294.

    Article  Google Scholar 

  76. Thompson, J. P. 1987. Decline of vesicular arbuscular mycorrhizae in long fallow disorder of field crops and its expression in phosphorus deficiency of sunflower. Australian Journal of Research, 38: 847–867.

    Article  CAS  Google Scholar 

  77. Thompson, J. P., Jeuzk, N., Grove, T. S., Hardy CEST 1997. Improving the colonization capacity and effectiveness of ectomycorrhizal fungal cultures by association with a host plant through revitalization. Forest Science, 7: 83 9–844.

    Google Scholar 

  78. Tommerup, I. C. and Abbott, L. K. 1981. Long term survival and renewed growth of a VA mycorrhizal hyphae after root death. Soil Biology Biochemistry, 13: 431–433.

    Article  Google Scholar 

  79. Tsai, S. and Phillips, D. 1991. Flavonoids released naturally from roots promote development of symbiotic Glomus spores in vitro. Applied and Environmental Microbiology, 57: 1485–1488.

    PubMed  CAS  Google Scholar 

  80. Van Nuffelen, M. and Schenck, N. C. 1983. Spore germination, penetration, root colonization of six species of vesicular-arbuscular mycorrhizal fungi on soybean. Canadian Journal of Botany, 62: 624–628.

    Article  Google Scholar 

  81. Villegas, J., Williams, RD., Nantais, L. Archambault, J. and Fortin, J. A. 1996. Effects of N source on pH and nutrient exchange of extramatrical mycelium in a mycorrhizal Ri T-DNA-transformed root system. Mycorrhiza, 6: 247–251.

    CAS  Google Scholar 

  82. Vimard, B., St-Arnaud, M., Furlan, V. and Fortin, J. A. 1999. Colonization potential of in vitro produced arbuscular mycorrhizal fungus spores compared with a root segment inoculum from open not culture. Mycorrhiza, 8: 335–338.

    Article  Google Scholar 

  83. Williams, P. G. 1990. Disinfecting vesicular-arbuscular mycorrhizas. Mycologoical Research, 94: 995–997.

    Article  Google Scholar 

  84. Wood, T. 1985. Commerical pot culture inoculum production, quality control and other headaches. In: Proceedings of the 6th North American Conference on Mycorhizae (ed. Molina, R ). Bend, Oregon, Forest Research Laboratory, U. S. A. p. 84.

    Google Scholar 

  85. Wood, T. 1991. VA mycorrhizal fungi: challenges for commercialization. Handbook of Applied Mycology Fungal Biotecnology. (eds. Arora, D. K., Elander, R. P. and Mukerji, K. G.) Marcel Dekker, New York 4: 823–847.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Singh, G., Tilak, K.V.B.R. (2002). Techniques of AM Fungus Inoculum Production. In: Mukerji, K.G., Manoharachary, C., Chamola, B.P. (eds) Techniques in Mycorrhizal Studies. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3209-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3209-3_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5985-7

  • Online ISBN: 978-94-017-3209-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics