Skip to main content

Littoral macrofauna (secondary) responses to experimental nutrient addition to rocky shore mesocosms and a coastal lagoon

  • Chapter
Sustainable Increase of Marine Harvesting: Fundamental Mechanisms and New Concepts

Part of the book series: Developments in Hydrobiology ((DIHY,volume 167))

Abstract

Macrofauna secondary responses to controlled eutrophication within two MARICULT/MAST-III projects, EULIT and COMWEB, are compared. EULIT utilises a nutrient gradient established in eight hard bottom mesocosms, whereas the data from COMWEB originate from a whole-ecosystem study — the case of experimental nutrient addition to Hopavågen lagoon. In both systems, nutrient addition started in May 1998, after initial studies of the background macrofauna communities, thus allowing application of Before-After-Control-Impact-Pairs techniques (BACIP). The main objectives have been to investigate the macrofauna responses to eutrophication in littoral rocky shore ecosystems and to evaluate if similar responses could occur in mesocosm and ‘field’ systems, despite their inherent differences. Apart from a distinct increase in numbers of Littorina littorea L. and some indications of increased abundance of the genus Jaera, no significant changes, caused by 2.5 years of nutrient addition, could be detected in the mesocosm fauna. It is interesting, however, that these two possibly stimulated animal groups have two things in common: (1) both belong to the rather few mobile taxa, which are not flushed out of the system through the mesocosm outlets, (2) both feed on microalgae and green algae in the upper littoral zone, i.e., algal groups that have shown the clearest response to the nutrient addition. In Hopavågen, 1.5 years of nutrient addition only caused modest plant and animal responses in the rocky shore ecosystem, although there was a markedly increased settlement of Mytilus edulis L. at one lagoon site. This increase was probably due to elevated levels of digestible particles (increased phytoplankton production) caused by the nutrient addition. There were also some indications of increased production of filamentous algae at this same lagoon site. All in all, both studies demonstrate only minor responses to increased nutrient levels within the littoral community (both plants and animals). One explanation to this may be that longer time-scales are needed in order for clear-cut changes to occur. Several observations also indicate that wave exposure (significant in both systems) may largely modulate the impact of increased nutrient load on the structure of littoral communities. Another explanation is the high degree of stability among littoral macroalgae-dominated communities with internal biological regulation factors (like grazing) possibly being able to counteract effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baden, S. P., L.-O. Loo, L. Pihl and R. Rosenberg, 1990. Effects of eutrophication on benthic communities including fish: Swedish west coast. Ambio 19: 113–122.

    Google Scholar 

  • Bakke, T., 1990. Benthic mesocosms: II. Basic research in hard-bottom benthic mesocosms. In Lalli, C. M. (ed.), Enclosed Experimental Marine Ecosystems: A Review and Recommendations. Coastal and Estuarine Studies, Vol. 37, Springer, Heidelberg: 188–196.

    Google Scholar 

  • Bokn, T. L., S. N. Murray, F. E. Moy and J. B. Magnusson, 1992. Changes in fucoid distributions and abundances in the inner Oslofjord, Norway: 1974–80 versus 1988–90. Acta phytogeogr. suec. 78: 117–124.

    Google Scholar 

  • Bokn, T. L., H. Christie, C. M. Duarte, O. Geertz-Hansen, E. E. Hoell, K. Kersting, P. Kraufvelin, C. Lindblad, M. F. Pedersen, U. Sommer and F. Moy, 1998. Effects of eutrophicated seawater on rocky shore ecosystems studied in large littoral mesocosms — EULIT. In Barthel, K.-G., H. Barth, M. Bohle-Carbonell, C. Fragakis, E. Lipiatou, P. Martin, G. Oilier and M. Weydert (eds), Project Synopses from Third European Marine Science and Technology Conference. Lisbon, 23–27 May 1998, Vol. II, Strategic Marine Research: 871–876.

    Google Scholar 

  • Bokn, T. L., E. E. Hoell, K. Kersting, F. E. Moy and K. Sorensen, 2001. Methods applied in the large littoral mesocosms study of nutrient enrichment in rocky shore ecosystems — EULIT. Continental Shelf Res. 21: 1925–1936.

    Article  Google Scholar 

  • Bokn, T. L., F. E. Moy, H. Christie, S. Engelbert, R. Karez, K. Kersting, P. Kraufvelin, C. Lindblad, N. Marba, M. F. Pedersen and K. Sorensen, 2002. Are rocky shore ecosystems affected by nutrient-enriched seawater? Some preliminary results from a mesocosm experiment. Hydrobiologia 484/Dev. Hydrobiol. 167: 167–175.

    Article  Google Scholar 

  • Bokn, T. L., C. M. Duarte, M. F. Pedersen, N. Marba, F. E. Moy, C. Barron, B. Bjerkeng, J. Borum, H. Christie, S. Engelbert, F. L. Fotel, E. E. Hoell, R. Karez, K. Kersting, P. Kraufvelin, C. Lindblad, M. Olsen, K. A. Sanderud, U. Sommer and K. Sorensen, 2003. The response of experimental rocky shore communities to nutrient additions. Ecosystems (in press).

    Google Scholar 

  • Bonsdorff, E., E. M. Blomqvist, J. Mattila and A. Norkko, 1997a. Long-term changes and coastal eutrophication. Examples from the Aland islands and the Archipelago Sea, Northern Baltic Sea. Oceanol. Acta 20: 319–329.

    Google Scholar 

  • Bonsdorff, E., E. M. Blomqvist, J. Manila and A. Norkko, 19976. Coastal eutrophication: Causes consequences and perspectives in the Archipelago areas of the Northern Baltic Sea. Estuar. coast. Shelf Sci. 44: 63–72.

    Google Scholar 

  • Carpenter, S. R., 1999. Microcosm experiments have limited relevance for community and ecosystem ecology: reply. Ecology 80: 1085–1088.

    Article  Google Scholar 

  • Carr, M. R., 1996. PRIMER User Manual, Ver 4. 0, Plymouth Marine Laboratory, UK: 1–42.

    Google Scholar 

  • Christie, H. and P. Kraufvelin, 2003. Mechanisms regulating amphi-pod population density within macroalgal communities with low predator impact. Sci. Mar. (in press).

    Google Scholar 

  • Clark, J. R. and C. R. Cripe, 1993. Marine and estuarine multi-species test systems. In Calow, P. (ed.), Handbook of Ecotoxicology. Vol. I. Blackwell Scientific Publications, Oxford: 227–247.

    Google Scholar 

  • Clarke, K. R. 1993. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18: 117–143.

    Google Scholar 

  • Clarke, K. R. and R. M. Warwick, 1994. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. Plymouth Marine Laboratory, Plymouth: 1–144.

    Google Scholar 

  • Connell, J. H., 1985. Variation and persistence of rocky shore populations. In Moore, P. G. and R. Seed (eds), The Ecology of Rocky Coasts. Hodder and Stoughton Educational Press, Kent, England: 57–69.

    Google Scholar 

  • Dayton, P. K., 1971. Competition, disturbance and community organization: the provision and subsequent utilization of space in a rocky intertidal community. Ecol. Monogr. 41: 351–389.

    Google Scholar 

  • Dean, T. A., F. R. Jacobsen, K. Thies and S. L. Lagos, 1988. Differential effects of grazing by white sea urchin on recruitment of brown algae. Mar. Ecol. Prog. Ser. 48: 99–102.

    Google Scholar 

  • Dommasnes, A., 1969. On the fauna of Corralina officinalis L. In Western Norway. Sarsia 34: 117–124.

    Google Scholar 

  • Drenner, R. W. and A. Mazunder, 1999. Microcosm experiments have limited relevance for community and ecosystem ecology: comment. Ecology 80: 1081–1085.

    Google Scholar 

  • Duarte, C. M., 1995. Submerged aquatic vegetation in relation to different nutrient regimes. Ophelia 41: 87–112.

    Google Scholar 

  • Duggins, D. O. and J. E. Eckman, 1994. The role of detritus in the growth of benthic suspension feeders in an understory kelp forest. J. exp. mar. Biol. Ecol. 176: 53–68.

    Google Scholar 

  • Edgar, G. J., 1990. The influence of plant structure on the species richness, biomass and secondary production of macroalgal assemblages associated with Western Australian seagrass beds. J. exp. mar. Ecol. Biol. 137: 215–240.

    Google Scholar 

  • Gearing, J. N., 1989. The role of aquatic microcosms in ecotoxicologic research as illustrated by large marine systems. In Levin, S. A., M. A. Harwell, J. R. Kelly and K. D. Kimball (eds), Eco-toxicology: Problems and Approaches. Springer, Heidelberg: 411–470.

    Chapter  Google Scholar 

  • Hagerman, L. 1966. The macro and microfauna associated with Fucus serratus L., with some ecological remarks. Ophelia 3: 1–43.

    Article  Google Scholar 

  • Huston, H. A., 1999. Microcosm experiments have limited relevance for community and ecosystem ecology: synthesis of comments. Ecology 80: 1088–1089.

    Article  Google Scholar 

  • Kiirikki, M., 1996. Experimental evidence that Fucus vesiculosus (Phaeophyta) controls filamentous algae by means of the whiplash effect. Eur. J. Phycol. 31: 61–66.

    Google Scholar 

  • Kraufvelin, P., 1998. Model ecosystem replicability challenged by the `soft’ reality of a hard bottom mesocosm. J. exp. mar. Biol. Ecol. 222: 247–267.

    Google Scholar 

  • Kraufvelin, P., 1999. Baltic hard bottom mesocosms unplugged: Replicability, repeatability and ecological realism examined by non-parametric multivariate techniques. J. exp. mar. Biol. Ecol. 240: 229–258.

    Google Scholar 

  • Lawrence, J. M., 1975. On the relationships between marine plants and sea urchins. Oceanogr. mar. Biol. ann. Rev. 13: 213–286.

    Google Scholar 

  • Lawton, J. H., 1995. Ecological experiments with model systems. Science 269: 328–331.

    Article  PubMed  CAS  Google Scholar 

  • Legendre, P. and L. Legendre, 1998. Numerical Ecology. 2nd Engl. edn. Elsevier, Amsterdam: 1–853.

    Google Scholar 

  • Lundgren, A., 1985. Model ecosystems as a tool in freshwater and marine research. Arch. Hydrobiol. 70: 157–196.

    Google Scholar 

  • Moore, P. G. and Seed, R., 1985. The Ecology of Rocky Coasts. Hodder and Stoughton, London: 453 pp.

    Google Scholar 

  • Norkko, A. and E. Bonsdorff, 1996. Rapid zoobenthic community responses to accumulations of drifting algae. Mar. Ecol. Prog. Ser. 131: 143–157.

    Google Scholar 

  • Pedersen, M. F. and J. Borum, 1996. Nutrient control of algal growth in estuarine waters. Nutrient limitation and the importance of nitrogen requirements and nitrogen storage among phytoplankton and species of macroalgae. Mar. Ecol. Prog. Ser. 142: 261–272.

    Google Scholar 

  • Perez, K. A., 1995. Role and significance of scale to ecotoxicology. In Cairns, J. and B.R. Niederlehner (eds), Ecological Toxicity Testing–Scale, Complexity and Relevance. Lewis Publ., CRC Press, Boca Raton, FL: 49–72.

    Google Scholar 

  • Pihl, L., A. Svenson, P. O. Moksnes and H. Wennhage, 1999. Distribution of green algal mats throughout shallow soft bottoms of the Swedish Skagerrak archipelago in relation to nutrient sources and wave exposure. J. Sea Res. 41: 281–295.

    Article  Google Scholar 

  • Raffaelli, D. G., J. A. Raven and L. J. Poole, 1998. Ecological impacts of green macroalgal blooms. Oceanogr. mar. Biol. ann. Rev. 36: 97–125.

    Google Scholar 

  • Robertson, A. I. and J. S. Lucas, 1983. Food choice, feeding rates, and turnover of macrophyte biomass by a surf-zone inhabiting amphipod. J. exp. mar. Biol. Ecol. 72: 99–124.

    Google Scholar 

  • Seed, R. J. and O’Connor, R. J., 1981. Community organization in marine algal epifaunas. Ann. Rev. Ecol. Syst. 124: 49–74.

    Google Scholar 

  • Sokal, R. R. and F. J. Rohlf, 1995. Biometry. 3rd edn., W.H. Freeman, New York: 1–887.

    Google Scholar 

  • Stewart-Oaten, A., W. W. Murdoch and K. R. Parker, 1986. Environmental impact assessment: `pseudoreplication’ in time? Ecology 67: 929–940.

    Google Scholar 

  • Stewart-Oaten, A., J. R. Bence and C. W. Osenberg, 1992. Assessing effects of unreplicated perturbations: no simple solutions. Ecology 73: 1396–1404.

    Article  Google Scholar 

  • Vahteri, P., A. Mäkinen, S. Salovius and I. Vuorinen, 2000. Are drifting algal mats conquering the bottom of the Archipelago Sea, SW Finland? Ambio 29: 338–343.

    Google Scholar 

  • Valiela, I. 1995. Marine Ecological Processes. Springer, New York: 686 pp.

    Book  Google Scholar 

  • Vidal, M., C. M. Duarte and M. C. Sanches, 1999. Coastal eutrophication research in Europe: Progress and imbalances. Mar. Poll. Bull. 38: 851–854.

    Google Scholar 

  • Warwick, R. M., 1993. Environmental impact studies on marine communities: Pragmatical considerations. Aust. J. Ecol. 18: 63–80.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrik Kraufvelin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kraufvelin, P., Christie, H., Olsen, M. (2002). Littoral macrofauna (secondary) responses to experimental nutrient addition to rocky shore mesocosms and a coastal lagoon. In: Vadstein, O., Olsen, Y. (eds) Sustainable Increase of Marine Harvesting: Fundamental Mechanisms and New Concepts. Developments in Hydrobiology, vol 167. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3190-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3190-4_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6217-8

  • Online ISBN: 978-94-017-3190-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics