Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 361))

  • 96 Accesses

Abstract

A classical path method for calculating lineshape cross sections is tested by comparison with quantal calculations for HC1 in Ar, using an accurate anisotropic potential energy surface obtained from high-resolution spectra of Van der Waals complexes. The classical path method employed is an M-conserving approximation, using exponential perturbation theory. It is found that the classical path method seriously underestimates contributions from rainbow-like trajectories dominated by the attractive well of the potential. The errors are largest for the lowest rotational line, at collision energies comparable to or a little larger than the well depth. Possible ways of improving the classical path calculation are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Le Roy, R. J. and Van Kranendonk, J. (1974) Anisotropic intermolecular potentials from an analysis of spectra of H2- and D2 -inert gas complexes, J. Chem. Phys. 61, 4750–4769.

    Article  ADS  Google Scholar 

  2. Le Roy, R. J. and Carley, J. S. (1980) Spectroscopy and potential energy surfaces of Van der Waals molecules, J. Chem. Phys. 42, 353–420.

    Google Scholar 

  3. Le Roy, R. J. and Hutson, J. M. (1987) Improved potential energy surfaces for the interaction of H2 with Ar, Kr, and Xe, J. Chem. Phys. 86, 837–854.

    Article  ADS  Google Scholar 

  4. Hutson, J. M. (1989) The intermolecular potential of Ar-HC1: determination from high-resolution spectroscopy, J. Chem. Phys. 89, 4550–4557.

    Article  ADS  Google Scholar 

  5. Hutson, J. M. (1989) The intermolecular potential of Ne-HC1: determination from high-resolution spectroscopy, J. Chem. Phys. 91, 4448–4454.

    Article  ADS  Google Scholar 

  6. Hutson, J. M. (1991) Vibrational dependence of the anisotropic intermolecular potental of Ar-HF, to be published.

    Google Scholar 

  7. Nesbitt, D. J., Child, M. S. and Clary, D. C. (1989) Rydberg-Klein-Rees inversion of high resolution Van der Waals infrared spectra: an intermolecular potential energy surface for Ar+HF(v = 1), J. Chem. Phys. 90, 4855–4864.

    Article  ADS  Google Scholar 

  8. Hutson, J. M. (1991) Vibratioonal dependence of the anisotropic intermolecular potential of Ar—HF, J. Chem. Phys., submitted for publication.

    Google Scholar 

  9. Green, S. (1990) Theoretical line shapes for rotational spectra of HC1 in Ar, J. Chem. Phys. 92, 4679–4685.

    Article  ADS  Google Scholar 

  10. Gebbie, H. A. and Stone, N. W. B. (1963) Measurement of widths and shifts of pure rotation lines of hydrogen chloride perturbed by rare gases, Proc. Phys. Soc. ( London ) 82, 309–314.

    Article  ADS  Google Scholar 

  11. Scott, H. E. and Sanderson, R. B. (unpublished): results quoted in Ref. 37.

    Google Scholar 

  12. Van Aalst, R. M., Schuurman, J. A. and Van der Elsken, J. (1975) Temperature dependence of the pressure induced width and shift of the rotational lines of HC1, Chem. Phys. Lett. 35, 558–562.

    Article  ADS  Google Scholar 

  13. Frenkel, D., Gravesteyn, D. J. and Van der Elsken, J. (1976) Non-linear density dependence of rotational line-broadening of HC1 in dense argon, Chem. Phys. Lett. 40, 9–13.

    Article  ADS  Google Scholar 

  14. Novick, S. E., Davies, P., Harris, S. J. and Klemperer, W. (1973) Determination of the structure of ArHC1, J. Chem. Phys. 59, 2273–2279.

    Article  ADS  Google Scholar 

  15. Novick, S. E., Janda, K. C., Holmgren, S. L., Waldman, M. and Klemperer, W. (1976) Centrifugal distortion of ArHC1, J. Chem. Phys. 65, 1114–1116.

    Article  ADS  Google Scholar 

  16. Hutson, J. M. and Howard, B. J. (1981) High resolution radiofrequency spectroscopy of Ar...HCl, J. Chem. Phys. 74, 6520–6521.

    Article  ADS  Google Scholar 

  17. Marshall, M. D., Charo, A., Leung, H. O. and Klemperer, W. (1985) Characterization of the lowest-lying II bending state of Ar-HC1 by far infrared laser-Stark spectroscopy and molecular beam electric resonance, J. Chem. Phys. 83, 4924–4933.

    Article  ADS  Google Scholar 

  18. Ray, D., Robinson, R. L., Gwo, D.-H. and Saykally, R. J. (1986) Vibrational spectroscopy of Van der Waals bonds: measurement of the perpendicular bend of ArHC1 by intracavity far infrared laser spectroscopy of a supersonic jet, J. Chem. Phys. 84, 1171–1180.

    Article  ADS  Google Scholar 

  19. Robinson, R. L., Gwo, D.-H., Ray, D. and Saykally, R. J. (1987) Evidence for a secondary minimum in the ArHC1 potential surface from far infrared laser spectroscopy of the lowest Σ bending vibration, J. Chem. Phys. 86, 5211–5212.

    Article  ADS  Google Scholar 

  20. Robinson, R. L., Gwo, D.-H. and Saykally, R. J. (1987) An extended study of the lowest П bending vibration-rotation spectrum of Ar-HC1 by intracavity far infrared laser/microwave double resonance spectroscopy, J. Chem. Phys. 87, 5149–5155.

    Article  ADS  Google Scholar 

  21. Robinson, R. L., Gwo, D.-H. and Saykally, R. J. (1987) The high-resolution far infrared spectrum of a Van der Waals stretching vibration: the v 3 band of Ar-HCl, J. Chem. Phys. 87, 5156–5160.

    Article  ADS  Google Scholar 

  22. Busarow, K. L., Blake, G. A., Laughlin, K. B., Cohen, R. C., Lee, Y. T. and Saykally, R. J. (1988) Tunable far infrared laser spectroscopy of Van der Waals bonds: extended measurements on the lowest Σ bend of ArHC1, J. Chem. Phys. 89, 1268–1276.

    Article  ADS  Google Scholar 

  23. Holmgren, S. L., Waldman, M. and Klemperer, W. (1978) Internal dynamics of Van der Waals complexes. H. Determination of a potential energy surface for ArHC1, J. Chem. Phys. 69, 1661–1669.

    Article  ADS  Google Scholar 

  24. Hutson, J. M. and Howard, B. J. (1981) The intermolecular potential energy surface of Ar-HC1, Mol. Phys. 43, 493–516.

    Article  ADS  Google Scholar 

  25. Hutson, J. M. and Howard, B. J. (1982) Anisotropic intermolecular forces I. Rare gas-hydrogen chloride systems, Mol. Phys. 45, 769–790.

    Article  ADS  Google Scholar 

  26. Lovejoy, C. M. and Nesbit, D. J. (1988) The near-infrared spectrum of NeHC1, Chem. Phys. Lett. 147, 490–496.

    Article  ADS  Google Scholar 

  27. Schuder, M. D., Nelson, D. D. and Nesbitt, D. J. (1991) Investigation of internal rotor dynamics of NeDC1 and ArDCl via infrared absorption spectroscopy, J. Chem. Phys. 94, 5796–5811.

    Article  ADS  Google Scholar 

  28. Howard, B. J. and Pine, A. S. (1985) Rotational predissociation and libration in the infrared spectrum of Ar-HC1, Chem. Phys. Lett. 122, 1–8.

    Article  Google Scholar 

  29. Lovejoy, C. M. and Nesbitt, D. J. (1988) Infrared-active combination bands ArHC1, Chem. Phys. Lett. 146, 582–588.

    Article  Google Scholar 

  30. Lovejoy, C. M. and Nesbitt, D. J. (1988) Sub-Doppler infrared spectroscopy in slit supersonic jets, Faraday Discuss. Chem. Soc. 86, 13–20.

    Article  Google Scholar 

  31. Hutson, J. M. (1991) An introduction to the dynamics of Van der Waals molecules, Advances in Molecular Vibrations and Collision Dynamics 1, 1–44.

    ADS  Google Scholar 

  32. Hutson, J. M., BOUND computer code, distributed via Collaborative Computational Project No. 6 of the UK Science and Engineering Research Council, on Heavy Particle Dynamics.

    Google Scholar 

  33. Buckingham, A. D. (1967) Permanent and induced molecular moments and long-range intermolecular forces, Adv. Chem. Phys. 12, 107–142.

    Article  Google Scholar 

  34. Tang, K. T. and Toennies, J. P. (1984) An improved simple model for the Van der Waals potential based on universal damping functions for the dispersion coefficients, J. Chem. Phys. 80, 3726–3741.

    Article  ADS  Google Scholar 

  35. Knowles, P. J. and Meath, W. (1987) A separable method for the calculation of dispersion and induction energy damping functions with applications to dimers arising from He, Ne and HF, Mol. Phys. 60, 1143–1158.

    Article  ADS  Google Scholar 

  36. Abramowitz, M. and Stegun, I. A. (1965) Handbook of Mathematical Functions,National Bureau of Standards.

    Google Scholar 

  37. Neilsen, W. B. and Gordon, R. G. (1973) On a semiclassical study of molecular collisions. I. General method, J. Chem. Phys. 58, 4131–4148

    Article  ADS  Google Scholar 

  38. Neilsen, W. B. and Gordon, R. G. (1973) On a semiclassical study of molecular collisions. II. Application to HC1-argon, J. Chem. Phys. 58, 4149–4170.

    Article  ADS  Google Scholar 

  39. Dickinson, A. S. (1981) Differential cross sections in curved-trajectory impact parameter methods, J. Phys. B 14, 3685–3691.

    Article  ADS  Google Scholar 

  40. Brink, D. M. and Satchler, G. R. (1968) Angular Momentum, 2nd edition, Clarendon Press, Oxford.

    Google Scholar 

  41. Smith, E. W., Giraud, M. and Cooper, J. (1976) A semiclassical theory for spectral line broadening in molecules, J. Chem. Phys. 65, 1256–1267.

    Article  ADS  Google Scholar 

  42. Dickinson, A. S. and Richards, D. (1977) A semiclassical study of the body-fixed approximation for rotational excitation in atom-molecule collisions, J. Phys. B 10, 323–343

    Article  ADS  Google Scholar 

  43. Dickinson, A. S. and Richards, D. (1978) On an M-conserving approximation in time-dependent theories of rotational excitation in atom-molecule collisions, J. Phys. B 11, 3513–3528.

    Article  ADS  Google Scholar 

  44. Levine, R. D. and Balint-Kurti, G. G. (1970) Opacity analysis of inelastic molecular collisions. Exponential approximataions, Chem. Phys. Lett. 6, 101–105

    Article  ADS  Google Scholar 

  45. Balint-Kurti, G. G. and Levine, R. D. (1970) Opacity analysis of inelastic molecular collisions. Computational studies of the exponential Born approximation for rotational excitation, Chem. Phys. Lett. 7, 107–111.

    Article  ADS  Google Scholar 

  46. Cross, R. J. (1968) Semiclassical theory of inelastic scattering: an infinite-order distorted-wave approximation, J. Chem. Phys. 48, 4838–4842.

    Article  MathSciNet  ADS  Google Scholar 

  47. Magnus, W. (1954) On the exponential solution of differential equations for a linear operator, Commun. Pure Appl. Math. 7, 649–673.

    Article  MathSciNet  MATH  Google Scholar 

  48. Goldflam, R. and Kouri, D. J. (1977) On accurate quantum mechanical approximations for molecular relaxation phenomena. Averaged j z -conserving coupled states approximation, J. Chem. Phys. 66, 542–547.

    Article  ADS  Google Scholar 

  49. Hutson, J. M. and Green, S. (1986) MOLSCAT computer code, version 9, distributed by Collaborative Computational Project No. 6 of the UK Science and Engineering Research Council, on Heavy Particle Dynamics. Further information can be otbained from the author.

    Google Scholar 

  50. Manolopoulos, D. E. (1986) An improved log derivative method for inelastic scattering, J. Chem. Phys. 85, 6425–6429.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hutson, J.M. (1992). Classical Path Methods for Lineshape Cross Sections. In: Wakeham, W.A., Dickinson, A.S., McCourt, F.R.W., Vesovic, V. (eds) Status and Future Developments in the Study of Transport Properties. NATO ASI Series, vol 361. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3076-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3076-1_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4125-8

  • Online ISBN: 978-94-017-3076-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics