Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 361))

Abstract

Macroscopic properties of a dilute gas or gas mixture that govern the process of relaxation to equilibrium from a state perturbed by application of temperature, pressure, velocity or composition gradients have been studied for 120 years. The present paper reviews the current status of our abilities to measure, calculate and interpret these traditional properties and considers what the next steps in the development of the field might be. It is argued that if such transport properties are to form an important element in the elucidation of intermolecular forces for polyatomic systems, as they did for monatomic systems, then there is a need for further measurements of familiar properties and for the development of techniques of measuring less familiar, but no less traditional, properties. In addition, it remains necessary to reduce further the computational time required for the evaluation of the properties from assumed intermolecular potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. De Groot, S. R. and Mazur, P. (1962) Non-equilibrium Thermodynamics, North-Holland, Amsterdam.

    Google Scholar 

  2. Maitland, G. C., Rigby, M., Smith, E. B. and Wakeham, W. A. (1981) Intermolecular forces: their origin and determination, Clarendon Press, Oxford.

    Google Scholar 

  3. Vogel, E., Bastubbe, E. and Rhode, S. (1984) Wiss. Z., W-Pieck. Univ. Rostock 33, N8 34.

    Google Scholar 

  4. Clarke A. G. and Smith, E. B. (1968) Low temperature viscosities of Ar, Kr, Xe, J. Chem. Phys. 48, 3988–3991.

    Article  ADS  Google Scholar 

  5. Hunter, I. Matthews, G. P. and Smith, E. B. (1989) Viscosities of gaseous Ar-H2 mixtures, Mol. Phys. 66 887–895.

    Article  ADS  Google Scholar 

  6. Kestin, J. and Leidenfrost, W. (1959), The effect of pressure on the viscosity of five gases in Y. S. Touloukian (ed.), `Thermodynamics and Transport Properties of Gases, Liquids and Solids’, ASME/McGraw Hill, New York, p. 321.

    Google Scholar 

  7. Vesovic, V., Wakeham, W. A., Olchowy, G. A. Sengers, J. V., Watson, J. T. R. and Millat, J. (1990) The transport properties of carbon dioxide, J. Phys. Chem. Ref. Data 19, 763–808.

    Google Scholar 

  8. Kestin, J., Ro, S. T. and Wakeham, W. A. (1972) Viscosity of the binary gaseous mixtures He-Ne and He-N2 in the temperature range 25–7000C, J. Chem. Phys. 56, 5837–5842.

    Google Scholar 

  9. Kestin, J. and Wakeham, W. A. (1988) Transport properties of fluids: thermal conductivity, viscosity and diffusion coefficients, Vol. 1, CINDAS `Data Series on Materials Properties’, ed. C. Y. Ho, Hemisphere Publishing, New York.

    Google Scholar 

  10. Transport phenomena–1973’, Am. Inst. Phys. Conf. Proc. 11, 193–198.

    Google Scholar 

  11. Wakeham, W. A., Nagashima, A. and Sengers, J. V. (eds.) (1991) Experimental thermodynamics, Vol. III, Measurement of transport properties, Blackwell Scientific Publications, Oxford.

    Google Scholar 

  12. Haran, E. N., Maitland, G. C., Mustafa, M. and Wakeham, W. A. (1983) The Thermal conductivity of Ar, N2, CO in the temperature range 300–430 K at pressures up to 10 MPa, Ber. Bunsenges. Phys. Chem. 87, 657–663.

    Google Scholar 

  13. Mardolcar, U. V., Fareleira, J. M. N. A., de Castro, C. A. N. and Wakeham, W. A. (1985) The measurement of the thermal conductivity of argon, High Temp. High Press. 17, 463–476.

    Google Scholar 

  14. Kestin, J., Paul, R., Clifford, A. A. and Wakeham, W. A. (1980) Absolute determination of the thermal conductivity of the noble gases at room temperature up to 35 MPa, Physica 100A, 349–369.

    Google Scholar 

  15. Ross, M., Trusler, J. P. M., Wakeham, W. A. and Zalaf, M. (1990) Thermal conductivity of R134a over the temperature range 240 to 373 K, in `Thermophysical Properties of Pure Substances and Mixtures for Refrigeration’, Intl. Inst. Refrig., Paris, 89–94.

    Google Scholar 

  16. Fleeter, R., Kestin, J., Paul, R. and Wakeham, W. A. (1981) The thermal conductivity of mixtures of nitrogen with four noble gases at room temperature, Physica 108A, 371–401.

    Google Scholar 

  17. Dunlop, P. J., Robjohns, H. L. and Bignell, C. M. (1987) Diffusion and thermal diffusion in binary mixtures of hydrogen with noble gases, J. Chem. Phys. 86, 2923–2936.

    Google Scholar 

  18. Taylor, W. A. (1988) Two-bulb thermal separation factors of helium isotopes as a test of recent interatomic potentials, J. Chem. Phys. 88, 7097–7103.

    Google Scholar 

  19. Lambert, J. D. (1977) Vibrational and rotational relaxation in gases, Clarendon Press, Oxford.

    Google Scholar 

  20. Prangsma, G. J., Borsboom, L. J. M., Knaap, H. F. P., Van den Meijdenberg, C. J. N. and Beenakker, J. J. M. (1972) Rotational relaxation in ortho-hydrogen between 170 and 300 K, Physica 61, 527–538.

    Google Scholar 

  21. Millat, J. Plantikow, A., Mathes, D. and Nimz, H. (1988) Effective collision cross-sections for polyatomic gases from transport properties and thermomolecular pressure differences,Z. Phys. Chemie Leipzig, 269 865–878.

    Google Scholar 

  22. McCourt, F. R. W., Beenakker, J. J. M., Köhler, W. E. and Kuser, I. (1990) Non-equilibrium phenomena in polyatomic gases, Oxford University Press, Oxford.

    Google Scholar 

  23. Viehland, L. A., Mason, E. A. and Sandler, S. I. (1978) Effect of spin polarization on the thermal conductivity of polyatomic gases, J. Chem. Phys. 68, 5277–5282; Coope, J. A. R. and Snider, R. F. (1979) On the contribution of angular momentum polarization to gas phase thermal conductivity, J. Chem. Phys. 70, 1075–1077.

    Google Scholar 

  24. Monchick, L. and Mason, E. A. (1961) The transport properties of polar gases, J. Chem. Phys. 35, 1676–1697.

    Google Scholar 

  25. Mason, E. A. and Monchick, L. (1962) Heat conductivity of polyatomic and polar gases, J. Chem. Phys. 36, 1622–1639.

    Google Scholar 

  26. Moraal, H. and Snider, R. F. (1971) Kinetic theory collision integrals for diatomic molecules, Chem. Phys. Lett. 9, 401–405.

    Google Scholar 

  27. Millat, J. Vesovic, V. and Wakeham, W. A. (1989) Theoretically based data assessment for the correlation of the thermal conductivity of dilute gases,Int. J. Thermophys. 10 805–818.

    Google Scholar 

  28. Millat, J., Mustafa, M., Ross, M., Wakeham, W. A. and Zalaf, M. (1987) The thermal conductivity of Ar, CO2 and NO, Physica 145A, 461–497.

    Google Scholar 

  29. Millat, J. Ross, M., Wakeham, W. A. and Zalaf, M. (1988) The thermal conductivity of Ne, CH4 and CF4, Physica 148A 124–152.

    Google Scholar 

  30. Thijsse, B. J., ‘t Hooft, G. W., Coombe, D. A., Knaap, H. F. P. and Beenakker, J. J. M. (1979) Some simplified expressions for the thermal conductivity in an external field, Physica 98A, 307–312.

    Google Scholar 

  31. Millat, J., Vesovic, V. and Wakeham, W. A. (1988) On the validity of the simplified expression for the thermal conductivity of Thijsse et al.,Physica 148A 153–164.

    Google Scholar 

  32. Bernstein, R. B. (ed.) Atom-molecule collision theory: a guide for the experimentalist,Plenum Press, New York.

    Google Scholar 

  33. Assael, M. J., Millat, J., Vesovic, V. and Wakeham, W. A. (1990) The thermal conductivity of methane and tetrafluoromethane in the limit of zero density, J. Phys. Chem. Ref. Data 19, 1137–1147.

    Google Scholar 

  34. Ross, M., Vesovic, V. and Wakeham, W. A. (1991) Alternative expressions for the thermal conductivity of the dilute gas mixtures,Physica (in preparation).

    Google Scholar 

  35. Heck, E. L. and Dickinson, A. S. (1990) Transport and relaxation cross-sections for He—N2 mixtures, Mol. Phys. 70, 239–252.

    Google Scholar 

  36. Gianturco, F. A., Venanzi, M. and Dickinson, A. S. (1990) Classical trajectory calculations of transport and relaxation properties for Ar—N2 mixtures, J. Chem. Phys. 93, 5552–5562.

    Google Scholar 

  37. Wong, C. C. K., McCourt, F. R. W. and Casavecchia, P. (1990) Classical trajectory calculations of transport and relaxation properties for N2—Ne mixtures, J. Chem. Phys. 93, 4699–4712.

    Google Scholar 

  38. McCourt, F. R. W., Vesovic, V., Wakeham, W. A., Dickinson, A. S. and Mustafa M. (1991) Quantum mechanical calculations of effective collision cross sections for the He—N2 interaction, Mol. Phys. 72, 1347–1364.

    Google Scholar 

  39. Maitland, G. C., Mustafa, M., Wakeham, W. A. and McCourt, F. R. W. (1987) An essentially exact evaluation of transport cross sections for a model of He—N2 interaction, Mol. Phys. 61, 359–387.

    Google Scholar 

  40. Maitland, G. C., Mustafa, M. and Wakeham, W. A. (1987) Close-coupled calculations of transport cross-sections for a highly quantal system, Mol. Phys. 62, 397–409.

    Google Scholar 

  41. Dickinson, A. and Lee, M. S. (1986) Classical trajectory calculations for anisotropy dependent cross-sections for He—N2 mixtures,J. Phys. B 19 3091–3107.

    Google Scholar 

  42. McCourt, F. R., Fuchs, R. R. and Thakkar, A. J. (1984) A comparison of the predictions of various model He—N2 potential surfaces with experiment, J. Chem. Phys. 80, 5561–5567.

    Article  ADS  Google Scholar 

  43. Gianturco, F. A., Venanzi, M. and Dickinson, A. S. (1988) Computed transport coeffficients from Van der Waals systems via realistic interactions, Mol. Phys. 65, 563–584, 585–598.

    Google Scholar 

  44. Kestin, J., Ro, S. T. and Wakeham, W. A. (1972) Viscosity of the binary gaseous mixturesHe—Ne and He-N2 in the temperature range 25–700° C, J. Chem. Phy. 56 5837–5842.

    Google Scholar 

  45. Maitland, G. C. and Wakeham, W. A. (1978) Direct determination of intermolecular potentials for gaseous transport coefficients alone, Mol. Phys. 35, 1429–1442.

    Google Scholar 

  46. Maitland, G. C., Vesovic, V. and Wakeham, W. A. (1985) The inversion of thermophysical properties: non-spherical systems explored, Mol. Phys. 54, 301309.

    Google Scholar 

  47. Maitland, G. C., Mustafa, M., Vesovic, V. and Wakeham, W. A. (1986) The inversion of thermophysical properties: highly anisotropic interactions, Mol. Phys. 57, 1015–1033;

    Google Scholar 

  48. Parker, G. A., Snow, R. L. and Pack, R. T (1976) Intermolecular potential surface from electron gas method. I. Angle and distance dependence of He-CO2 and ArCO2 interactions, J. Chem. Phys. 64, 1668–1678.

    Google Scholar 

  49. Vesovic, V. and Wakeham, W. A. (1987) An interpretation of intermolecular pair potentials obtained by inversion for non-spherical systems, Mol. Phys. 62, 1239–1246.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wakeham, W.A., Vesovic, V. (1992). Traditional Transport Properties. In: Wakeham, W.A., Dickinson, A.S., McCourt, F.R.W., Vesovic, V. (eds) Status and Future Developments in the Study of Transport Properties. NATO ASI Series, vol 361. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3076-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3076-1_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4125-8

  • Online ISBN: 978-94-017-3076-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics