Skip to main content

Modelling Excesses over High Thresholds, with an Application

  • Chapter
Book cover Statistical Extremes and Applications

Part of the book series: NATO ASI Series ((ASIC,volume 131))

Abstract

In many areas of application the extremes of some process may be modelled by considering only its exceedances of a high threshold level. The natural parametric family for such excesses for continuous parent random variables, the generalized Pareto distribution, is closely related to the classical extreme-value distributions. Here its basic properties are discussed, with some ideas for graphical exploration of data. Maximum likelihood estimation of parameters in the presence of covariates is considered, and techniques for checking fit based on residuals and a score test developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ApSimon, H.M., Davison, A.C. and Goddard, A.J.H. 1982. The probability distribution of individual exposure due to hypothetical accidental releases of various radionuclides to the atmosphere. Proc. 3rd Int. Symp. Soc. Rad. Protect., Inverness., Vol 2, 731–737.

    Google Scholar 

  2. ApSimon, H.M., Goddard, A.J.H. and Wrigley, J. 1983a. Lagrangian atmospheric dispersion of radioisotopes, part I: the MESOS model. Accepted for Atmospheric Environment.

    Google Scholar 

  3. ApSimon, H.M., Goddard, A.J.H., Wrigley, J. and Crompton, S. 1983b. Lagrangian atmospheric dispersion of radioisotopes, part II: applications of the MESOS model. Accepted for Atmospheric Environment.

    Google Scholar 

  4. Atkinson, A.C. 1973. Testing transformations to normality. J.R. Statist, Soc., B, 35, 473–79.

    Google Scholar 

  5. Atkinson, A.C. 1982. Regression diagnostics, transformations and constructed variables (with discussion). J.R. Statist. Soc., B, 44, pp. 1–36.

    MATH  Google Scholar 

  6. Barndorff-Nielsen, O. 1983. On a formula for the distribution of the maximum likelihood estimator. Biometrika, 70, pp. 343–365.

    Article  MathSciNet  MATH  Google Scholar 

  7. Box, G.E.P. and Cox, D.R. 1964. An analysis of transformations (with discussion). J.R. Statist. Soc., B, 26, pp. 211–246.

    MathSciNet  MATH  Google Scholar 

  8. Cook, R.D. and Weisburg, S. 1983. Diagnostics for heteroscedasticity in regression. Biometrika, 70, pp. 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  9. Cox, D.R. 1961. Tests of separate families of hypotheses. Proc. 4th Berkeley Symp., 1, pp. 105–123.

    Google Scholar 

  10. Cox, D.R. 1962. Further results on tests of separate families of hypotheses. J.R. Statist. Soc., B, 24, pp. 406–424.

    MATH  Google Scholar 

  11. Cox, D.R. and Hinkley, D.V. 1974. Theoretical Statistics. Chapman and Hall, London.

    MATH  Google Scholar 

  12. Cox, D.R. and Isham, V. 1980. Point Processes. Chapman and Hall, London.

    MATH  Google Scholar 

  13. Cox, D.R. and Snell, E.J. 1968. A general definition of residuals (with discussion). J.R. Statist. Soc., B, 30, 248–275.

    Google Scholar 

  14. Cox, D.R. and Snell, E.J. 1971. On test statistics calculated from residuals. Biometrika, 58, pp. 589–594.

    Article  MathSciNet  MATH  Google Scholar 

  15. Davis, H.T. and Feldstein, M.L. 1979. The generalized Pareto law as a model for progressively censored survival data. Biometrika, 66, pp. 299–306.

    Article  MathSciNet  MATH  Google Scholar 

  16. Gumbel, E.J. 1958. Statistics of Extremes. Columbia Univ. Press, New York.

    Google Scholar 

  17. Hall, P. 1982. On estimating the endpoint of a distribution. Ann. Statist. 10, pp. 556–568.

    Article  MathSciNet  MATH  Google Scholar 

  18. Hill, B.M. 1975. A simple general approach to inference about the tail of a distribution. Ann. Statist. 3, pp. 11631174.

    Google Scholar 

  19. Jenkinson, A.F. 1969. Statistics of Extremes. In: World Met. Office Technical Note 98, Chapter 5, pp. 183–227.

    Google Scholar 

  20. Leadbetter, M.R., Lindgren, G., and Rootzén, H. 1983. Extremes and Related Properties of Random Sequences and Processes. Springer-Verlag, New York.

    Book  MATH  Google Scholar 

  21. Maguire, B.A., Pearson, E.S. and Wynn, A.H.A. 1952. The time intervals between industrial accidents. Biometrika, 39, 168–180.

    MATH  Google Scholar 

  22. Mosteller, F. and Tukey, J.W. 1977. Data Analysis and Linear Regression. Addison-Wesley, Reading, Massachusetts.

    Google Scholar 

  23. NERC 1975. Flood Studies Report, Vol 1. National Enviromental Research Council, London.

    Google Scholar 

  24. Pareto, V. 1897. Cours d’Economie Politique. Rouge et Cie, Lausanne and Paris.

    Google Scholar 

  25. Pickands, J. 1975. Statistical inference using extreme order statistics. Ann. Statist. 3, pp. 119–131.

    Article  MathSciNet  MATH  Google Scholar 

  26. Prescott, P. and Walden, A.T. 1980. Maximum likelihood estimation of the parameters of the generalized extreme-value distribution. Biometrika, 67, pp. 723–724.

    Article  MathSciNet  Google Scholar 

  27. Prescott, P. and Walden, A.T. 1983. Maximum likelihood estimation of the parameters of the three-parameter generalized extreme-value distribution from censored samples. J. Statist. Comput. Simul., 16, pp. 241–250.

    Article  MATH  Google Scholar 

  28. Smith, R.L. 1984. Threshold methods for sample extremes. NATO-ASI, Statistical extremes and applications, Vimeiro, Portugal, August, 1983, this volume.

    Google Scholar 

  29. Stephens, M.A. 1977. Goodness of fit for the extreme value distribution. Biometrika, 64, pp. 583–588.

    Article  MathSciNet  MATH  Google Scholar 

  30. Weiss, L. 1971. Asymptotic inference about a density function at the end of its range. Nay. Res. Log. Quart. 18, pp. 111–114.

    Article  MATH  Google Scholar 

  31. Weissman, I. 197$. Estimation of parameters and large quantiles, based on the k largest observations. J. Amer. Statist. Assoc. 73, pp. 812–815.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Davison, A.C. (1984). Modelling Excesses over High Thresholds, with an Application. In: de Oliveira, J.T. (eds) Statistical Extremes and Applications. NATO ASI Series, vol 131. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3069-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3069-3_34

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-8401-9

  • Online ISBN: 978-94-017-3069-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics