Skip to main content

Water Relation Parameters in Conifer Embryos: Methods and Results

  • Chapter
Somatic Embryogenesis in Woody Plants

Part of the book series: Forestry Sciences ((FOSC,volume 55))

  • 228 Accesses

Abstract

Water plays a crucial role in processes such as fertilization, cell metabolism, and the development and growth of organisms. Maturation and germination of seeds are no exception. As predicted by Walbot (1978, see Bradford (1994) for a complete review), water governs and controls embryo development and, as pointed out by Adams and Rinne (1980), the absence of water serves as a switch for the embryo to go from a maturation programme to a germination one. This is true for both angiosperm (Johnson et al., 1997) and conifer seeds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, C.A. & Rinne, R.W., 1980. Moisture content as a controlling factor in seed development and germination. Inter. Rev. Cyt. 68: 1–8.

    Article  Google Scholar 

  • Allen, G.S. & Owens, J.N., 1972. The life history of Douglas fir. Canadian Forest Service, Environment Canada, Ottawa, Ont.

    Google Scholar 

  • Attree, S.M., Moore, D., Sawhney, V.K. & Fowke, L.C., 1991. Enhanced maturation and desiccation tolerance of white spruce (Picea glauca (Moench) Voss) somatic embryos: effects of a non-plasmolysing water stress and abscisic acid. Ann. Bot. 68: 519–525.

    Google Scholar 

  • Attree, S.M., Pomeroy, M.K. & Fowke, L.C., 1992. Manipulation of conditions for the culture of somatic embryos of white spruce for improved triacylglycerol biosynthesis and desiccation tolerance. Planta 187: 395–404.

    Article  CAS  Google Scholar 

  • Attree, S.M, Pomeroy, M.K. & Fowke, L.C., 1995. Development of white spruce (Picea glauca (Moench.) Voss) somatic embryos during culture with abscisic acid and osmoticum, and their tolerance to drying and frozen storage. J. Exp. Bot. 46: 433–439.

    Article  CAS  Google Scholar 

  • Bennett, J.M., Cortes, P.M. & Lorens, G.F., 1986. Comparison of water potential components measured with a thermocouple psychrometer and a pressure chamber and the effects of starch hydrolysis. Agron. J. 78: 239–244.

    Article  Google Scholar 

  • Blake, T.J., Bevilacqua, E. & Zwiazek, J.J., 1991. Effects of repeated stress on turgor pressure and cell elasticity changes in black spruce seedlings. Can. J. For. Res. 21: 1329–1333.

    Google Scholar 

  • Bradford. K.J., 1994. Water stress and the water relations of seed development: a critical review. Crop Sci. 34: 1–11.

    Article  Google Scholar 

  • Campbell, G.S., Papendick, R.I.. Rabie, E. & Shayo-Ngowi, A.J., 1979. A comparison of osmotic potential, elastic modulus and apoplastic water in leaves of dryland winter wheat. Agron. J. 71: 31–36.

    Article  Google Scholar 

  • Dumont-BĂ©Boux, N.. Mazari, A., Livingston, N.J., von Aderkas, P., Becwar, M.R., Percy, R.E. & Pond, S.E., 1996. Water relations parameters and tissue development in somatic and zygotic embryos of three pinaceous conifers. Amer. J. Bot. 83: 992–996.

    Article  Google Scholar 

  • Falk, S., Hertz, C.H. & Virgin, H.I., 1958. On the relation between turgor pressure and tissue rigidity. I. Experiments on resonance frequency and tissue rigidity. Physiol. Plant. 11: 802–817.

    Article  Google Scholar 

  • Gates, J. C. & Greenwood, M. S., 1991. The physical and chemical environment of the developing embryo of Pine’s resinosa. Amer. J. Bot. 78: 1002–1009.

    Article  Google Scholar 

  • Grange, R.I. & Finch-Savage, W.E., 1992. Embryo water status and development of the recalcitrant species Quercus robur L.: determination of water relation parameters by pressure-volume analysis. J. Exp. Bot. 43: 657–662.

    Article  Google Scholar 

  • Haigh. A.M. & Barlow. E.W.R., 1987. Water relations of tomato seed germination. Aust. J. Plant Physiol. 14: 485–492.

    Article  Google Scholar 

  • Johnson, R.W., Asokanthan, P.S. & Griffith, M., 1997. Water and sucrose regulate canula embryo development. Physiol. Plant. 101: 361–366.

    Article  CAS  Google Scholar 

  • Jones, H.G., 1992. Plants and microclimate: a quantitative approach to environmental plant physiology. Cambridge University Press.

    Google Scholar 

  • Livingston, N.J. & de Jong, E., 1988. Use of unsaturated salt solutions to generate leaf tissue water-release curves. Agron. J. 80: 815–818.

    Article  Google Scholar 

  • Livingston. N.J. & de Jong, E., 1991. The use of unsaturated salt solutions to generate conifer needle water-release curves. Can. J. For. Res. 21: 53–57.

    Article  Google Scholar 

  • Livingston, N.J., von Aderkas, P., Fuchs, E.E. & Reaney, M.J.T., 1992. Water relation parameters of embryogenic cultures and seedlings of larch. Plant Physiol. 100: 1304–1309.

    Article  PubMed  CAS  Google Scholar 

  • Lösch, R., 1993. Plant water relations. Progr. Bot. 54: 102–133.

    Google Scholar 

  • Markhart, A.H.III, Sionit, N. & Siedow, J.N., 1981. Cell wall water dilution: an explanation of apparent negative turgor potentials. Can. J. Bot. 59: 1722–1725.

    Article  Google Scholar 

  • Nagmani, R., Diner, A.M., Garton, S. & Zipf, A.E., 1995. Anatomical comparison of somatic and zygotic embryogeny in conifers. In: S. Jain, P. Gupta & R. Newton (Eds.), Somatic Embryogenesis in Woody Plants, vol. 1, pp. 23–48. Kluwer Academic Publishers, The Netherlands.

    Google Scholar 

  • Newton, R.J., Puryear, J.D. & Sen, S., 1989. Water status and growth of loblolly pine (Pious taeda L.) callus. Plant Cell, Tiss. Org. Cult. 16: 3–13.

    Article  Google Scholar 

  • Nobel. P.S., 1969. The Boyle-van’t Hoff relation. J. Theor. Biol. 23: 375–379.

    Article  PubMed  CAS  Google Scholar 

  • Nobel, P.S. 1991. Physicochemical and Environmental Plant Physiology. Academic Press, Inc., London.

    Google Scholar 

  • Owens, J.N., Morris, S.J. & Misra, S., 1993. The ultrastructural, histochemical, and biochemical development of the post-fertilization megagametophyte and the zygotic embryo of Pseudotsuga menziesii. Can. J. For. Res. 23: 816–827.

    Article  CAS  Google Scholar 

  • Pritchard, H.W., Tompsett, P.B., Manger, K. & Smidt, W.J., 1995. The effect of moisture content on the low temperature responses of Araucaria hunsteinii seed and embryos. Ann. Bot. 76: 79–88.

    Article  Google Scholar 

  • Pullman, G.S. & Webb, D.T.. 1994. An embryo staging system for comparison of zygotic and somatic embryo development. TAPPI Biological Sciences Symposium, Proceedings, pp. 31–34. TAPPI Press Technology Park, Atlanta.

    Google Scholar 

  • Pullman, G.S., 1997. Osmotic measurements of whole ovules during loblolly pine embryo development. TAPPI Biological Sciences Symposium, Proceedings pp. 4148. TAPPI Press Technology Park, Atlanta.

    Google Scholar 

  • Reaney, M.J.T., Livingston, N.J. & Gupta, L.V., 1996. The measurement of water relations of plant cell culture. I. Water release in response to centrifuge-induced water potentials. Physiol. Plant. 97: 251–258.

    Article  CAS  Google Scholar 

  • Renault. S. & Zwiazek, J.J., 1997. Cell wall composition and elasticity of dormant and growing white spruce (Picea glauca) seedlings. Physiol. Plant. 101: 323–327.

    Article  CAS  Google Scholar 

  • Ritchie, G.A. & Hinckley, T.M., 1975. The pressure chamber as an instrument for ecological research. In: A. Mac-Fadyen (Ed.), Advances in Ecological Research, pp. 165–254. Academic Press, London.

    Google Scholar 

  • Rohr, R., von Aderkas, P. & Bonga, J.M., 1989. Ultrastructural changes in haploid embryoids of Larix decidua during early embryogenesis. Amer. J. Bot. 76: 1460–1467.

    Article  Google Scholar 

  • Ryczkowski, M., 1969. Changes in osmotic value of the central vacuole and endosperm sap during the growth of the embryo and ovule. Z. Pflanzenphysiol. 61: 422–429.

    Google Scholar 

  • Saab, I.N. & Obendorf, R.L., 1989. Soybean seed water relations during in situ and in vitro growth and maturation. Plant. Physiol. 89: 610–616.

    Article  PubMed  CAS  Google Scholar 

  • Scholander, P.F., Hammel, H.T., Bradstreet, E.D. & Hemmingsen, E.A., 1965. Sap pressure in vascular plants. Science 148: 339–346.

    Article  PubMed  CAS  Google Scholar 

  • Slatyer, R.O., 1958. The measurement of diffusion pressure deficit in plants by a method of vapour equilibration. Aust. J. Biol. Sci. 11: 349–365.

    Google Scholar 

  • Tremblay, C., Cloutier, A. & Fortin, Y., 1996. Moisture content-water potential relationship of red pine sapwood above the fiber saturation point and determination of the effective pore size distribution. Wood Sci. Tech. 30: 361–371.

    Article  CAS  Google Scholar 

  • Tremblay, L. & Tremblay F.M., 1995. Maturation of black spruce somatic embryos: sucrose hydrolysis and resulting osmotic pressure of the medium. Plant Cell, Tiss. Org. Cult. 42: 39–46.

    Article  CAS  Google Scholar 

  • Tyree, M.T. & Hammel, H.T., 1972. The measurement of the turgor pressure and the water relations of plants by the pressure-bomb technique. J. Exp. Bot. 23: 267–282.

    Article  Google Scholar 

  • Tyree, M.T. & Jarvis, P.G., 1982. Water in tissues and cells. In: O.L. Lange, P.S. Nobel, C.B. Osmond & H. Ziegler (Eds.), Encyclopaedia of Plant Physiology, New series, 12B, pp. 34–77. Springer-Verlag, Berlin.

    Google Scholar 

  • Virgin, H. I., 1955. A new method for the determination of the turgor of plant tissues. Physiol. Plant. 8: 954–963.

    Article  Google Scholar 

  • von Aderkas, P. & Bonga, J.M., 1988. Formation of haploid embryoids of Larix decidua: early embryogenesis. Amer. J. Bot. 75: 619–628.

    Article  Google Scholar 

  • von Aderkas, P., Klimaszewska, K. & Bonga, J.M., 1990. Diploid and haploid embryogenesis in Larix leptolepis, L. decidua, and their reciprocal hybrids. Can. J. For. Res, 20: 9–14.

    Article  Google Scholar 

  • von Aderkas, P., Bonga, J.M. & Klimaszewska. K., 1991. Comparison of larch embryogeny in vivo and in vitro. In: M.R. Ahuja (Ed.), Woody Plant Biotechnology, pp. 139–155. Plenum Press, New York.

    Chapter  Google Scholar 

  • von Guttenberg, H., 1961. GrundzĂĽge der Histogenese höherer Pflanzen. I I. Die Gymnospermen. In: Encyclopedia of Plant Anatomy. GebrĂĽder Borntraeger, Berlin.

    Google Scholar 

  • Walbot, V., 1978. Control mechanisms for plant embryogeny. In: M.E. Clutter (Ed.), Dormancy and Developmental Arrest, pp. 113–166. Academic Press, New York.

    Google Scholar 

  • Wang, T.L., Smith, C.M., Cook, S.K., Ambrose, M.J. & Hedley, C.L., 1987. An analysis of-seed development in Pisuna sativunt. III. The relationship between the r locus, the water content, and the osmotic potential of seed tissues in vivo and in vitro. Ann. Bot. 59: 73–80.

    Google Scholar 

  • Welbaum, G.E. & Bradford, K.J., 1990. Water relations of seed development and germination in muskmelon (Cucumis melo L.). Plant Physiol. 92: 1046–1052.

    Article  PubMed  CAS  Google Scholar 

  • Yeung, E.C. & Brown, D.C.W., 1982. The osmotic environment of developing embryos of Phaseolus vulgaris. Z. Pflanzenphysiol. 106: 149–156.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dumont-BĂ©Boux, N., von Aderkas, P., Livingston, N.J., Percy, R.E. (1999). Water Relation Parameters in Conifer Embryos: Methods and Results. In: Jain, S.M., Gupta, P.K., Newton, R.J. (eds) Somatic Embryogenesis in Woody Plants. Forestry Sciences, vol 55. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3032-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3032-7_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5129-5

  • Online ISBN: 978-94-017-3032-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics