Skip to main content

Modelling cadmium accumulation at a regional scale in the Netherlands

  • Chapter
Soil and Water Quality at Different Scales

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 80))

Abstract

The cadmium content in soils in the rural environment in the Netherlands may increase towards an exceedance of quality standards due to atmospheric deposition and the use of fertilizers and animal manure. To evaluate this problem, a simple dynamic, process-oriented model SOACAS has been developed which is aimed at predicting the accumulation of heavy metals in the topsoil in a regional context. SOACAS describes the fate of a metal in one completely mixed soil compartment using a Freundlich isotherm and analytical equations to solve the mass balance. We tested if it was possible to reconstruct the soil’s present cadmium contents, using independent estimates of historical cadmium loads (‘hind-cast simulation’). About 2500 recent point observations of cadmium contents in rural areas were available. Before comparison, a map was created to translate the point information obtained from the field data to areal average information (resolution 500 × 500 m2), required for comparison with results of SOACAS. A regression model in combination with a locally-weighted smoother within the framework of Generalized Additive Modelling (GAM) was used for this purpose. A realistic geographical pattern could be obtained with very few a priori assumptions. Comparison of the map obtained by the GAM and the map obtained by hind-cast simulation showed that, despite the large uncertainties about historical cadmium loadings, the current cadmium contents were only slightly underestimated by SOACAS. Moreover, the geographical pattern for the observed and simulated contents compared reasonably well. On this basis of this exercise we believe that the model can be used to predict trends of future metal contents as a function of emission/immission scenario’s. Simulations showed that cadmium contents currently decrease in highly polluted areas around industrial plants in the South-Eastern part of the country, and still increase in arable land.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adriano DC (1986) Trace elements in terrestrial environment. Springer Verlag, New York, 533 pp.

    Book  Google Scholar 

  2. Alkemade JRM and Van Esbroek MLP (1994) Naar een effectenvoorspellingsmodel voor de bodemfauna: BOEF. MOVE-Bodemfauna versie 1. RIVM rapport 712901001, RIVM, Bilthoven, The Netherlands. ( In Dutch ).

    Google Scholar 

  3. Appelo CAJ and Postma D (1993) Geochemistry, groundwater and pollution. A.A. Balkema Publ., Rotterdam, The Netherlands, pp. 535.

    Google Scholar 

  4. Bergkvist B, Folkeston L and Berggren D (1989) Fluxes of Cu, Zn, Pb, Cd, Cr and Ni in temperate forest ecosystems. Water Air and Soil Pollution (47): 217–286.

    Google Scholar 

  5. Boekhold AE (1992) Field scale behaviour of cadmium in soil. Ph.D. thesis, Wageningen Agricultural University, Wageningen, The Netherlands, pp. 181.

    Google Scholar 

  6. Bollen MJS, Bekhuis FHWM, Reiling R and ScheperE (1995) Towards a spatial pattern of the vulnerability of soil and groundwater. RIVM report no. 711901012, Bilthoven, The Netherlands. ( In Dutch. )

    Google Scholar 

  7. Bouma J and Van Lanen JAJ (1987) Transfer functions and threshold values: from soil characteristics to land qualities. p. 106–110. In: K.J. Beek et al. (ed.). Quantified land evaluation. Proc. Workshop ISSS and SSSA, Washington, DC. 27 Apr.-2 May 1986. Int. Inst. Areorospace Surv. Earth Sci. Publ. no. 6. ITC Publ, Enschede, The Netherlands.

    Google Scholar 

  8. Breeuwsma A, Wösten JHM, Vleeshouwer JJ, Van Slobbe AM and Bouma J (1986) Derivation of land qualities to assess environmental problems from soil surveys. Soil Sci. Soc. Am. J. (50): 186–190.

    Google Scholar 

  9. CCRX (1985) Cadmium, de belasting van het Nederlandse Milieu. Ministry of Housing, Physical Planning and Environment, Leidschendam, The Netherlands. (In Dutch.)

    Google Scholar 

  10. Chambers JM and Hastie TJ (1992) Statistical models in S. Chapman and Hall, London.

    Google Scholar 

  11. Chardon WJ (1984) Mobiliteit van cadmium in de bodem. Proefschrift Landbouw Universiteit Wageningen, Wageningen, The Netherlands (In Dutch).

    Google Scholar 

  12. Del Castilho, P, Chardon WJ and Salamons W (1993) Influence of cattle-manure slurry application on the solubility of cadmium, copper, and zinc in a manured acidic, loamy-sand soil. J. Env. Qual. (22): 689–697.

    Google Scholar 

  13. De Rooy nm and Kroot MPJM (1991) CHARON. User’s manual for CHARON, JSBACH and FUN. Delft Hydraulics, Delft, The Netherlands.

    Google Scholar 

  14. De Vries F (1994) Een fysisch-chemische karakterisering van de bodemecnheden van de Bodemkaart van Nederland, schaal 1: 50 000, met onderscheid naar grondgebruik. SC-DLO rapport 286, Wageningen, The Netherlands, pp. 81. (In Dutch.)

    Google Scholar 

  15. Edelman Th. (1983) Achtergrondsgehalten van een aantal anorganische en organische stoffen in de bodem van Nederland. Reeks Bodembescherming ( 34 ), Staatsuitgeverij, Den Haag. ( In Dutch ).

    Google Scholar 

  16. Elzinga EJ, Van den Berg B Van Grinsven JJM, and Swartjes FA (1996) Freundlich Isothermen voor sorptie van Cadmium, Koper en Zink in de bodem. RIVM rapport nr. 711501001, Bilthoven, The Netherlands, pp. 99.

    Google Scholar 

  17. Garcia-Miragaya J and Page AL (1978) Sorption of trace quantities of cadmium by soils with different chemical and mineralogical composition. Water Air and Soil Pollut. (9): 289–299.

    Google Scholar 

  18. Hastie TJ and Tibshirani RJ (1990) Generalized additive models. Chapman and Hall, London.

    Google Scholar 

  19. Heuvelink GBM and Bierkens MFP Bierkens (1992) Combining soil maps with interpolations from point observations to predict quantitative soil properties. Geoderma (55): 1–15.

    Google Scholar 

  20. Hinz C and Selim HM (1994) Transport of zinc and cadmium in soils: Experimental Evidence and Modelling approaches. Soil Sci. Soc. Am. 1. (58): 1316–1327.

    Article  Google Scholar 

  21. Hoogervorst NIP (1991) Het landbouw-scenario in de Nationale Milieuverkenning 2; uitgangspunten en berekeningen. RIVM report no. 251701005, Bilthoven, The Netherlands.

    Google Scholar 

  22. Janssen RPT, Pretorius PJ, Peijnenburg WJGM and Van der Hoop MAGT Van der Hoop (1996) Determination of field-based partition coefficients for heavy metals in Dutch soils and the relationship with soil characteristics. RIVM report no. 719101023, Bilthoven, The Netherlands.

    Google Scholar 

  23. Jönnsson S, Schöpp S, Warfvinge P and Sverdrup H (1993) Modelling long term impacts for three sites in Northern Europe. Lund University, Dept. of Chemical Eng. II. Report 1: 1993.

    Google Scholar 

  24. Keizer mg and Van Riemsdijk WH (1994) ECOSAT: A computer program for the calculation of speciation and transport in soil-water systems. Dept. of Soil Science and Plant Nutrition, Wageningen Agricultural University, Wageningen, The Netherlands.

    Google Scholar 

  25. Kinniburgh DG, Jackson ML and Syers JK (1976) Adsorption of alkaline earth, transition and heavy metal cations by hydrous oxide gels of iron and aluminum. Soil Sci. Soc. Am. J. (40): 796–799.

    Google Scholar 

  26. Kitagishi K and Yamane I (1981) Heavy metal pollution in soils of Japan. Japan Scientific Societies Press, Tokyo, Japan.

    Google Scholar 

  27. Leijnse A and Hassanizadeh SM (1994) Model definition and model validation. Adv. in Water Res. ( 17 ): 197–200.

    Google Scholar 

  28. Loch G and Groot MSM (1996) Bodemkwaliteitskartering van de Nederlandse landbouwgronden. RIVM-rapport nr. 714801003, Bilthoven, The Netherlands, pp. 151. (In Dutch.)

    Google Scholar 

  29. Makaske GB, Vissenberg HA, Van Grinsven JJM, Tiktak A, and Sauter FJ (1995) SOTRAS report 4. METRAS: A one-dimensional model for assessment of leaching of trace metals in soil. Model description and results of a case study for Cd in ‘De Kempen’. RIVM report no. 715501005, Bilthoven, The Netherlands, pp. 98.

    Google Scholar 

  30. McCullagh P (1983) Quasi-likelihood functions. Ann. Statist. 11: 59–67.

    Article  Google Scholar 

  31. McCullagh P and Neider JA (1989) Generalized linear models. Chapman and Hall, London.

    Google Scholar 

  32. Pebesma EJ (1996) Mapping Groundwater Quality in the Netherlands. Netherlands Geographical Studies no. 199, KNAG, Utrecht, The Netherlands, pp. 105.

    Google Scholar 

  33. Press WH, Flannery BP, Teukolsky SA and Vetterling WT (1986) Numerical recipes. The art of scientific computing. Cambridge University Press, New York.

    Google Scholar 

  34. Ronse A, De Temmerman L, Guns m, and De Borger R (1988) Evolution of acidity, organic matter content, and CEC in uncultivated soils of North Belgium during the past 25 years. Soil Sci. (146): 453–460.

    Google Scholar 

  35. Stein A, Hoogerwerf m and Houma J (1988) Use of soil-map delineations to improve (co-)kriging of point data on moisture deficits. Geoderma (43): 163–177.

    Google Scholar 

  36. Sverdrup H, Warfvinge P, Blake L and Goulding K (1995) Modelling recent and historic soil data from the Rothamsted Experimental Station, UK using SAFE. Agriculture, Ecosystems and Environment (53): 161–177.

    Google Scholar 

  37. Thunissen HAM, Olthof R, Getz P, and Vels L (1992) Land-use database of the Netherlands derived from LANDSAT thematic mapper photographs. SC-DLO report no. 168, Winand Staring Centre, Wageningen, The Netherlands. ( In Dutch ).

    Google Scholar 

  38. Tiktak A and Bouten W (1992) Modelling soil water dynamics in a forested ecosystem. III: Model description and evaluation of discretization. Hydrol. Proc. (6): 455–465.

    Google Scholar 

  39. Tiktak A, Van der Linden AMA and Leine I (1996) Application of GIS to the Modeling of Pesticide Leaching on a Regional Scale in the Netherlands. SSSA Special Publication, In press.

    Google Scholar 

  40. Van Der Salm C, Kros J, Groenenberg JE, De Vries W and Reinds GJ (1995) Application of soil acidification models with different degrees of process descriptions (SMART, RESAM and NUCSAM) on an intensively monitored Spruce site. In: Trudgill ST (Ed.). Solute Modelling in Catchment Systems. John Wiley and Sons Ltd., Chichester, UK., pp. 327–346.

    Google Scholar 

  41. Van Drecht G, Boumans LJM, Fraters D, Reijnders HFR and Van Duijvenbooden W (1996) Landelijke beelden van de diffuse metaalbelasting van de bodem en de metaalgehalten in de bovengrond, alsmede de relatie tussen gehalten en belasting. RIVM rapport nr. 714801006, RIVM, Bilthoven, The Netherlands. ( In Dutch. )

    Google Scholar 

  42. Van Driel W and Smilde KW (1981) Heavy-metal contents of Dutch Arable Soils. Landwirtschaftliche Forschung. Sonderheft (38). Kongressband 1981, pp. 305–313.

    Google Scholar 

  43. Van Duijvenbooden W, Van Driel W and Willems WJ (Ed.) (1995) Resultaten van een onderzoek naar de mogelijke opzet van een landelijk meetnet bodemkwaliteit. CCRX rapport, 1995 ( In Dutch. )

    Google Scholar 

  44. Van Jaarsveld JA and Onderlinden D (1991) TREND: An analytic long term deposition model for multi-scale applications. RIVM report no. 228603009, RIVM, Bilthoven, The Netherlands.

    Google Scholar 

  45. Van Toor CH and Van der Vleuten CWJM (1990) Onderzoek naar de gehalten aan cadmium, koper, lood en zink in de Nederlandse landbouwgronden. Rapport Bedrijfslaboratorium voor Grond en Gewasonderzoek, maart 1990. (In Dutch.)

    Google Scholar 

  46. Vissenberg HA and Van Grinsven JJM (1995) Een eenvoudige rekenmethode your de schatting van bodemaccumulatie en maximaal toelaatbare bodembelasting van zware metalen en organische stoffen (SOACAS). RIVM-rapport nr. 715501006, Bilthoven, The Netherlands, pp. 33 (In Dutch).

    Google Scholar 

  47. Wilkens BJ (1996) Evidence for groundwater contamination by heavy metals through soil passage under acidifying conditions. Ph.D. thesis, University of Utrecht, pp. 146.

    Google Scholar 

  48. Williams CH and David DJ (1976) The accumulation in soil of cadmium residuals from phosphate fertilizers and their effect on the cadmium content of plants. Soil Sci. (121): 86–93.

    Google Scholar 

  49. Yee TW and Mitchell ND (1991) Generalized additive models in plant ecology. J. Veg. Sci. (2): 587–602.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Peter A. Finke Johan Bouma Marcel R. Hoosbeek

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tiktak, A., Alkemade, J.R.M., van Grinsven, J.J.M., Makaske, G.B. (1998). Modelling cadmium accumulation at a regional scale in the Netherlands. In: Finke, P.A., Bouma, J., Hoosbeek, M.R. (eds) Soil and Water Quality at Different Scales. Developments in Plant and Soil Sciences, vol 80. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3021-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3021-1_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5012-0

  • Online ISBN: 978-94-017-3021-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics