Skip to main content

Hydromorphic soils, hydrology and water quality: spatial distribution and functional modelling at different scales

  • Chapter

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 80))

Abstract

The hydrology and water quality in landscapes with hydromorphic soils depends on the space and time extension of wetland areas and on water pathways within the landscape at different scales. To study the control of nitrate fluxes by these areas, investigations were carried out on a detailed study site — the Coët Dan catchment (1200 ha) in Brittany, France — involving various disciplines: pedology, soil physics, hydrology, geochemistry and agronomy.

An attempt of functional modelling at different hierarchical levels from the horizon level (i – 1) to the region level (i + 3) of soil distribution, extension of saturated areas, horizons physical characteristics, water transfer in a multilayer soil profile and nitrate fluxes was carried out. The soil system, which can be described as a spatial arrangement of a limited number of horizon types with genetic relationships, is tightly controlled by topography. Predictive models of hydromorphic soil distribution using different topographic indexes and DEM were established. Regarding to their hydrodynamic properties, horizons of the soil system have been classified into “building blocks”, which allows to define physically based parameters for a two-dimensional multilayer water transfer model. A four compartment model of flood genesis based on chemical data obtained from different parts of the catena and from the river was coherent with the multilayer hydrodynamic model. The mean nitrate concentrations in several subcatchments were negatively correlated with the percentage of hydromorphic soils. These studies reveal that the hydromorphic zones had an effect on the nitrogen transfer in the catchment, but this effect is limited by the importance of water pathways by-passing the buffer zones. The conclusions of this programme have direct outcomes for designing new landscape management options.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antoni V (1995) Organisation spatiale des sols hydromorphes de fonds de vallée et modélisation prédictive de leur distribution. DEA Géosciences, filière Pédologie, Univ. Nancy I, 77 p.

    Google Scholar 

  2. Aurousseau P, Curmi P, Bouille S and Charpentier S (1983) Les vermiculites hydroxy-alumineuses du Massif Armoricain (France). Approches minéralogique, microanalytique et thermodynamique. Geoderma, 31, 17–40.

    Google Scholar 

  3. Aurousseau P, Curai P and Bresson LM (1985) Microscopy of the cambic horizon. In: L.A. Douglas & M.L.Thompson (Eds), Soil Micromorphology and Soil Classification. Etats Unis. SSSA Spec. Pub. n° 15, 49–61.

    Google Scholar 

  4. Baize D and Girard MC (1995) Référentiel Pédologique 1995, Institut National de la Recherche Agronomique, Paris, France.

    Google Scholar 

  5. Beven KJ (1986) Hillslope runoff processes and flood frequency characteristics. In: Hillslope processes, Abrahams (Ed), Allen and Unwin, Boston, 187–202.

    Google Scholar 

  6. Beven JK and Kirkby MJ (1979) A physically based, variable contributing area model of catchment hydrology. Hydrol. Sci., 24, 43–69.

    Article  Google Scholar 

  7. Bouma J (1989) Using soil survey data for quantitative land evaluation. Advances in Soil Science, Vol. 9, 177–213.

    Article  Google Scholar 

  8. Bouma J and Dekker LW (1981) A method for measuring the vertical and horizontal Ksat of clay soils with macropores. Soil Sci. Soc. Am. J. 45: 662–663.

    Article  Google Scholar 

  9. Bruand A (1990) Improved prediction of water-retention properties of clayey soils by pedological stratification. J. of Soil Science, 41, 491–497.

    Article  Google Scholar 

  10. Brun C, Bernard D, Vidal-Madjar D, Gascuel-Odoux C, Mérot P, Duchesne J and Nicolas H (1990) Mapping saturated areas with an helicopter borne C band scatterometer. Water Resour. Res., 26, 945–955.

    Google Scholar 

  11. Bruneau P, Gascuel-odoux C, Robin P, Mérot P and Beven KJ (1995) Sensitivity analysis to time and space resolution on an hydrological modelling based on Digital Elevation Model. Hydrol. processes, 69–81.

    Google Scholar 

  12. Cann C (1990) Transfer of nutrients in a region of intensive fanning. in Hydrological Research Basins and the Environment, Proceedings and Information/TNO committee on Hydrological Research No 44, The Hague, NL: 311–318.

    Google Scholar 

  13. Cros-Cayot S (1996) Distribution spatiales des transferts de surface à 1 échelle du versant. Contexte armoricain. Thèse ENSA-INRA Rennes. 223 p.

    Google Scholar 

  14. Clothier BE, Kirkham MB and McClean JE (1992) In situ measurements of the effective transport volume for solute moving through soil. Soil Sci. Soc. Am. J., 56, 733–736.

    Google Scholar 

  15. Crave A and Gascuel-Odoux C (1996) The influence of topography on space and time distribution of soil water content. Hydrol. processes, 11, 203–210.

    Article  Google Scholar 

  16. Curai P (1993) Analyse structurale et dynamique actuelle des systèmes pédologiques. Mém. Habilitation à Diriger des Recherches, Univ. Rennes I, 83 p. + annexes.

    Google Scholar 

  17. Curmi P, Widiatmaka, Pellerin J and Ruellan A (1994) Saprolite influence on formation of well-drained and hydromorphic horizons in an acid soil system as determined by structural analysis. In: A.J. Ringrose-Voase and G.S. Humphreys (Editors), Soil Micromorphology: Studies in Management and Genesis, Developments in Soil Science 22, Elsevier, Amsterdam, 133140.

    Google Scholar 

  18. Curmi P, Durand P, Gascuel-Odoux C, Hallaire V, Mérot P, Robin P, Trolard F, Walter C and Bourne’ G (1995) Le programme CORMORAN-INRA: de l’importance du milieu physique dans la régulation biogéochimique de la teneur en nitrate des eaux superficielles. Journal Européen d’Hydrologie, 26, 37–56.

    Article  Google Scholar 

  19. Diab M, Mérot P, and Curmi P (1988) Water Movement in a Glossaqualf as Measured by two Tracers. Geoderma, 43, 143–161.

    Article  Google Scholar 

  20. Durand P and Juan Torres JL (1996) Solute transfer in agricultural catchments: the interest and limits of mixing models. J. Hydrol, 181, 1–22.

    Article  Google Scholar 

  21. Gresillon JM (1994) Contribution à l’étude de la formation des écoulements de crue sur les petits bassins versants. Approches numériques et expérimentales à différentes échelles. Diplome d’habilitation à Diriger des Recherches.

    Google Scholar 

  22. Haycock NE, Pinay G and Walker C (1993) Nitrogen retention in river corridors: a european perpspective. Ambio, XXII (6), 340–346

    Google Scholar 

  23. Hoosbeek MR and Bryant R (1992) Towards the quantitative modelling of pedogenesis–A review. Geoderma, 55: 183–210.

    Article  Google Scholar 

  24. Mérot P (1988) Les zones de sources surface variable et la question de leur localisation. Hydrol. continent., 3, 105–115

    Google Scholar 

  25. Mérot P, Crave A, Gascuel-Odoux C and Louhala S (1994) Effect of saturated areas on backscaterring coefficient of the ERSI SAR: first results. Water Res. Res., 30,2, 175–179.

    Google Scholar 

  26. Mérot P and Durand P (1995) Assessing the representativity of catchments according to their size from hydrochemical observations. IAHS Publication, 226, 105–112.

    Google Scholar 

  27. Mérot P, Durand P and Morisson C (1995) Four-component hydrograph separation using isotopic and chemical determinations in an agricultural catchment in Western France. Phys. Chem. Earth, vol. 20, n 3–4: 415–425.

    Article  Google Scholar 

  28. Nash JE and Sutcliffe JV (1979) River flow forcasting through conceptual models, 1. A discussion of principles. J. Hydrol, 10, 282–290.

    Article  Google Scholar 

  29. Richards LA (1931) Capillary conduction of liquids through porous mediums. Physics 1, 318–333.

    Article  Google Scholar 

  30. Roussel F (1982) Horizons and microscopic organisations characteristic of degraded soils on cambrian schists in central Brittany. In: Soil micromorphology, Volume 2: Soil Genesis P. Bullock & C.P. Murphy (Editors), AB Academic Publishers, 559–565.

    Google Scholar 

  31. Soil Survey Staff (1975) Soil Taxonomy: a Basic System of Soil Classification for Making and Interpreting Soil Survey. U.S. Dept. Agric. Handbook 436, 754 p.

    Google Scholar 

  32. Stackman WP, Valk GA and Van der Harst CG (1969) Apparature for determination of pF-curves (range pF0–2.7) Wageningen, Doc. interne, 19 p.

    Google Scholar 

  33. Taha A and Gresillon JM (1994) Modeling the link between hillslope water movement and river flow: application to a small Mediterranean catchment. In: Oceans, Atmosphere, Hydrosphere & Non-Linear Geophysics (Proc. XIX EGS General Assembly, Annales Geophysicae, Grenoble), part II, suppl. II to vol. 12.

    Google Scholar 

  34. Thiersault N and Rodriguez Lado L (1994) Un modèle de prédiction de la distribution spatiale des sols hydromorphes à partir des critères topographiques. Mémoire DAA Génie de l’Environnement, Option Sol et Aménagement. ENSA-INRA Rennes & Facultade de Bioloxia, Univ. Santiago de Compostela, 64 p.

    Google Scholar 

  35. Walter C, Gourru M and Nicolas JM (1993) Carte des sols du bassin versant de Naizin à l’échelle du 1/10000. Document ENSA-INRA.

    Google Scholar 

  36. Walter C, Curai P and Gascuel-Odoux C (1996) Pertinence du découpage pédologique pour l’estimation spatiale des propriétés physiques du sol. Validation à l’échelle d’un bassin versant. In: C. Christophe, S. Lardon & P. Monestiez (Editcurs) Etudes des Phénomènes Spatiaux en Agriculture, La Rochelle, 6–8 Déc. 1995, Les Colloques, n 78, Inra, Paris, 97–110.

    Google Scholar 

  37. Widiatmaka (1994) Analyse structurale et fonctionnement hydrique d’un système pédologique limoneux acide sur granite et sur schiste du Massif Armoricain, France. Thèse ENSA, Rennes, Sciences de l’Environnement, 260 p. + Annexes

    Google Scholar 

  38. Widiatmaka and Curmi P (1994) Soil horizons hydrodynamic characteristics of an acid soil system. Interest of their grouping according to functional properties for spatial transposition. 15th World Congress of Soil Science, Acapulco, Mexico, July 10–16, 1994. Transactions, vol 2b, 151–152.

    Google Scholar 

  39. Zida M, Curmi P, Hallaire V and Grimaldi M (1996) Fonctionnement d’un système pédologique armoricain (bassin versant du Coét Dan): Il Variations saisonnières et au cours des averses de 1 état hydrique du sol. In: C Walter & Cheverry C (Eds), 5ièmes Journées Nationales de l’Etude des Sols, Sols et transferts des polluants dans les paysages. AFES, ENSA-INRA Rennes, 22–25 Avril 1996, 263–264

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Peter A. Finke Johan Bouma Marcel R. Hoosbeek

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Curmi, P., Durand, P., Gascuel-Odoux, C., Mérot, P., Walter, C., Taha, A. (1998). Hydromorphic soils, hydrology and water quality: spatial distribution and functional modelling at different scales. In: Finke, P.A., Bouma, J., Hoosbeek, M.R. (eds) Soil and Water Quality at Different Scales. Developments in Plant and Soil Sciences, vol 80. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3021-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3021-1_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5012-0

  • Online ISBN: 978-94-017-3021-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics