Advertisement

The stability of fish communities in shallow lakes undergoing restoration: expectations and experiences from the Norfolk Broads (U.K.)

  • M. R. Perrow
  • A. J. D. Jowitt
  • S. A. C. Leigh
  • A. M. Hindes
  • J. D. Rhodes
Chapter
  • 350 Downloads
Part of the Developments in Hydrobiology book series (DIHY, volume 143)

Abstract

Community analysis from a range of Norfolk Broads (a series of shallow lakes in Eastern England) reinforces the general perception that species such as roach (Rutilus rutilus) and bream (Abramis brama) dominate in turbid, nutrient-enriched lakes, whereas species such as perch (Perca fluviatilis)), tench (Tinca tinca) and pike (Esox lucius) dominate when submerged macrophytes are abundant. The presence of the latter leads to high piscivore: planktivore ratios. Amongst non-piscivorous species, the relative competitive ability of the different species in the presence of macrophytes is thought to be instrumental in causing these shifts. The fish communities in a number of case-studies undergoing restoration conform to expectations with rapid shifts in community structure once submerged macrophytes become established. There is little evidence that piscivory by pike, the dominant piscivore in the lakes, is important in causing species shifts in the presence of vegetation or in determining overall fish abundance or biomass. Most importantly, even a high biomass contribution of piscivores (to 90%) seems unable to buffer the recruitment of undesirable zooplanktivorous fish should macrophytes fail. Pike thus appear to contribute little to the overall stability of the macrophyte-dominated state. This may be linked, in part, to population regulation by cannibalism and the potential for adults of many cyprinid species to grow beyond predation, thus always providing a source of recruits. The manifestation of high numbers of zooplanktivores is, in turn, a function of high nutrient levels. Reduction of nutrient concentrations to a level at which piscivory may exert an effect amongst a suite of other mechanisms, all contributing to stability, thus remains a central theme of lake restoration.

Key words

community structure macrophyte Esox lucius piscivorous fish zooplanktivorous fish 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barko, J. W. & W. F. James, 1998. Effects of submerged aquatic macrophytes on nutrient dynamics, sedimentation, and resuspension. In E. Jeppesen, Ma. SOndergaard, Mo. Sgndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer Verlag, Ecological Studies Series, New York: 197–214.Google Scholar
  2. Barthelmes, D., 1983. Effects of eutrophication and fisheries management on fish faunas of cyprinid lakes. Roczniki Nauk Rolniczych 100: 30–43.Google Scholar
  3. Bean, C. W. & I. J. Winfield, 1995. Habitat use and activity patterns of roach (Rutilus rutilus (L.), rudd (Scardinius erythrophthalmus (L.), perch (Perca fluviatilis L.) and pike (Esox lucius L.) in the laboratory: the role of predation threat and structural complexity. Ecol. Freshwat. Fish 4: 37–46.Google Scholar
  4. Begon, M., J. L. Harper & C. R. Townsend, 1997. Ecology - Individuals, populations and communities, 3rd edn. Blackwell Scientific Publications, Oxford: 1056 pp.Google Scholar
  5. Benndorf, J., 1990. Conditions for effective biomanipulation; conclusions derived from whole-lake experiments in Europe. Hydro-biologia 200 201: 187–203.CrossRefGoogle Scholar
  6. Berg, S., E. Jeppesen & M. S6ndergaard, 1997. Pike (Esox lucius L.) stocking as a biomanipulation tool. 1. Effects on the fish population in Lake Lyng (Denmark). Hydrobiologia 342 343: 311–318.CrossRefGoogle Scholar
  7. Beyerle, G. B. & J. E. Williams, 1968. Some observations of food selectivity by northern pike in aquaria. Trans. am. Fish. Soc. 97: 28–31.Google Scholar
  8. Biró, P., 1977. The effects of exploitation, introductions and eutrophication on percids in Lake Balaton. J. Fish Res. Bd Can. 34: 1678–1683.Google Scholar
  9. Broads Authority, 1997. Broads Plan 1997 – The Strategy and Management Plan for the Norfolk and Suffolk Broads. Broads Authority, Norwich, U.K. ISBN 0–948119–30–6.Google Scholar
  10. Brönmark, C. & S. E. B. Weisner, 1992. Indirect effects of fish community structure on submerged vegetation in shallow, eutrophic lakes: an alternative mechanism. Hydrobiologia 243 244: 293–301.CrossRefGoogle Scholar
  11. Brönmark, C., C. A. Paszkowski, W. M. Tonn & A. Hargeby, 1995. Predation as a determinant of size structure in populations of crucian carp (Carassius carassius) and tench (Tinca tinca). Ecol. Freshwat. Fish 4: 85–92.Google Scholar
  12. Bry, C., 1996. Role of vegetation in the life-cycle of pike. In J. F. Craig (ed.), Pike-Biology and Exploitation. Chapman & Hall, Fish and Fisheries Series 19, London, U.K: 45–67.Google Scholar
  13. Carpenter, S. R. & J. F. Kitchell, 1993. Trophic Cascade in Lakes. Cambridge Studies in Ecology, Cambridge University Press: 385 pp.CrossRefGoogle Scholar
  14. Copp, G. H. & M. Pefiaz, 1988. Ecology of fish spawning and nursery zones in the flood plain, using a new sampling approach. Hydrobiologia 169: 209–224.CrossRefGoogle Scholar
  15. Craig, J. F., 1996. Population dynamics, predation and role in the community. In J. F. Craig (ed.), Pike-Biology and exploitation. Chapman & Hall, Fish and Fisheries Series 19, London, U.K: 201–217.Google Scholar
  16. De Nie, H. W., 1987. The decrease in aquatic vegetation in Europe and its consequences for fish populations. EIFAC CECPI Occasional paper No. 19: 52 pp.Google Scholar
  17. Diehl, S., 1988. Foraging efficiency of three freshwater fishes. Oikos 53: 207–214.CrossRefGoogle Scholar
  18. Eklöv, R. & S. F. Hamrin, 1989. Predator efficiency and prey selection: interactions between pike, Esox lucius, perch, Perca fluviatilis, and rudd, Scardinius erythrophthalmus. Oikos 56: 149–156.Google Scholar
  19. Grimm, M. P., 1983. Regulation of biomasses of small (000241 cm) Northern pike (Esox lucius L.), with special reference to the contribution of individuals stocked as fingerlings. Fish. Mgmt 14: 115–134.Google Scholar
  20. Grimm, M. R. & J. J. G. M. Backx, 1990. The restoration of shallow eutrophic lakes, and the role of northern pike, aquatic vegetation and nutrient concentration. Hydrobiologia 200 201: 557–566.CrossRefGoogle Scholar
  21. Grimm, M. P. & M. Klinge, 1996. Pike and some aspects of its dependence on vegetation. In J. F. Craig (ed.), Pike-Biology and exploitation. Chapman & Hall, Fish and Fisheries Series 19, London, U.K: 125–156.Google Scholar
  22. Holzer, T., M. R. Perrow & F. J. Madgwick, 1997. Practical aspects of Broads restoration. In F. J. Madgwick & G. L. Phillips (eds.), Restoration of the Norfolk Broads Final Report. Broads Author ity BARS 14e and Environment Agency (P-91), Norwich, U.K. ISBN 0 948119 35 7.Google Scholar
  23. Jacobsen, L. & M. R. Perrow, 1998. Predation risk from piscivorous fish influencing the diel use of macrophytes by planktivorous fish in experimental ponds. Ecol. Freshwat. Fish 7: 78–86.Google Scholar
  24. Jeppesen, E., J. R. Jensen, R. Kristensen, M. Söndergaard, E. Mortensen, O. Sortkj er & K. Olrik, 1990. Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate lakes 2: threshold levels, long-term stability and conclusions. Hydrobiologia 200 201: 219–227.CrossRefGoogle Scholar
  25. Jeppesen, E., M. S4ndergaard, E. Kanstrup, B. Petersen, R. B. Eriksen, M. Hammershoj, E. Mortensen, J. R. Jensen & A. Have, 1994. Does the impact of nutrients on the biological structure and function of brackish and freshwater lakes differ? Hydrobiologia 275 276: 15–30.CrossRefGoogle Scholar
  26. Jeppesen, E., T. L. Lauridsen, T. Kairesalo & M. R. Perrow. 1998. Impact of submerged macrophytes on fish-zooplankton interactions in lakes. In E. Jeppesen, Ma. Sondergaard, Mo. Söndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer Verlag, Ecological Studies Series, New York: 91–114.Google Scholar
  27. Jordan, D. R. & J. S. Wortley, 1985. Sampling strategy related to fish distribution, with particular reference to the Norfolk Broads. J. Fish Biol. 27 ( Suppl. A): 163–173.Google Scholar
  28. Kennison, G. C. B., D. S. Dunsford & J. Schutten, 1998. Stable or changing lakes? A classification of aquatic macrophyte assemblages from a eutrophic shallow lake system in the United Kingdom. Aquat. Cons. Mar. & Freshwat. Ecos.Google Scholar
  29. Meijer, M-L., E. Jeppesen, E. van Donk, B. Moss, M. Scheffer, E. H. R. R. Lammens, E. van Nes, J. A. van Berkum, G. J. de Jong, B. A. Faafeng & J. P. Jensen, 1994. Long-term responses to fish-stock reduction in small shallow lakes: interpretation of five-year results of four biomanipulation cases in The Netherlands and Denmark. Hydrobiologia 275 276: 457–466.CrossRefGoogle Scholar
  30. Meijer, M-L., E. H. R. R. Lammens, A. J. R. Raat, J. G. P. Klein Breteler & M. P. Grimm, 1995. Development of fish communities in lakes after biomanipulation. Neth. J. Aquat. Ecol. 29: 91–101.Google Scholar
  31. Moss, B., 1983. The Norfolk Broadland: Experiments in the restoration of a complex wetland. Biol. Rev. 58: 521–561.Google Scholar
  32. Moss, B., 1994. Brackish and freshwater shallow lakes-different systems or variations on the same theme? Hydrobiologia 275 276: 1–14.Google Scholar
  33. Moss, B., R. T. Leah & B. Clough, 1979. Problems of the Norfolk Broads and their impact on freshwater fish communities. Proceedings of the First British Freshwater Fisheries Conference. University of Liverpool: 67–85.Google Scholar
  34. Moss, B., J. H. Stansfield, K. Irvine, M. R. Perrow & G. L. Phillips, 1996. Progressive restoration of a shallow lake-a 12 year experiment in isolation, sediment removal and biomanipulation. J. appl. Ecol. 33: 71–86.Google Scholar
  35. Perrow, M. R., B. Moss & J. Stansfield, 1994. Trophic interactions in a shallow lake following a reduction in nutrient loading: a long-term study. Hydrobiologia 275 276: 43–52.CrossRefGoogle Scholar
  36. Perrow, M. R., A. J. D. Jowitt & L. Zambrano Gonzalez, 1996. Sampling fish communities in shallow lowland lakes: point-sample electric fishing versus electric fishing within stop-nets. Fish. Mgmt. & Ecol. 3: 303–313.CrossRefGoogle Scholar
  37. Perrow, M. R., J. Schutten, J. R. Howes, T. Holzer, F. J. Madgwick & A. J. D. Jowitt, 1997. Interactions between coot (Fulica atra) and submerged macrophytes: the role of birds in the restoration process. Hydrobiologia 342 343: 241–255.CrossRefGoogle Scholar
  38. Persson, L., 1983. Food consumption and competition between age classes in a perch Perca fluviatilis population in a shallow lake. Oikos 40: 197–207.CrossRefGoogle Scholar
  39. Persson, L., 1994. Natural shifts in the structure of fish communities: mechanisms and constraints on perturbation sustenance. In I. G. Cowx (ed.), Rehabilitation of Freshwater Fisheries, Fishing News Books. Blackwell Scientific Publications Ltd, Oxford, U.K: 421–434.Google Scholar
  40. Persson, L. & L. Greenberg, 1990. Juvenile competitive bottlenecks: The perch (Perca fluviatilis)-roach ( Rutilus rutilus) interaction. Ecology 71: 44–56.Google Scholar
  41. Persson, L., S. Diehl, L. Johansson, G. Andersson & S. F. Hamrin, 1991. Shifts in fish communities along the productivity gradient of temperate lakes-patterns and the importance of size-structured populations. J. Fish Biol. 38: 281–293.CrossRefGoogle Scholar
  42. Phillips, G. L., M. R. Perrow & J. H. Stansfield, 1996. Manipulating the fish-zooplankton interaction in shallow lakes-a tool for restoration. In S. P. R. Greenstreet & M. L. Tasker (eds), Aquatic Predators and Their Prey. Blackwell Scientific Publications Ltd., Oxford, England: 174–183.Google Scholar
  43. Prejs, A., A. Martyniak, S. Boron, R. Hliwa & R. Koperski, 1994. Food web manipulation in a small, eutrophic Lake Wirbel, Poland: effect of stocking with juvenile pike on planktivorous fish. Hydrobiologia 275 276: 65–70.CrossRefGoogle Scholar
  44. Scheffer, M., 1998. Ecology of shallow lakes. Chapman & Hall, Population and Community Biology Series 22, London: 357 pp.Google Scholar
  45. Siegel, S. & N. J. Castellon, Jr. 1988. Nonparametric statistics for the behavioural sciences. McGraw-Hill Book Company, New York, U.S.A: 399 pp.Google Scholar
  46. Stansfield, J. H., M. R. Perrow, L. D. Tench, A. J. D. Jowitt & A. A. L. Taylor, 1997. Submerged macrophytes as refuges for grazing Cladocera against fish predation: observations on seasonal changes in relation to macrophyte cover and predation pressure. Hydrobiologia 342 343: 229–240.CrossRefGoogle Scholar
  47. Tonn, W. M., J. J. Magnuson, M. Rask & J. Toivonen, 1991. Intercontinental comparison of small-lake fish assemblages: the balance between local and regional processes. Am. Nat. 136: 345–375.Google Scholar
  48. Turner, A. M. & G. G. Mittelbach, 1990. Predator avoidance and community structure: interactions between piscivores, planktivores and plankton. Ecology 71: 2241–2254.CrossRefGoogle Scholar
  49. Van Donk, E. & R. D. Gulati, 1995. Transition of a lake to turbid state six years after biomanipulation: mechanisms and pathways. Wat. Sci. Technol. 32: 197–206.Google Scholar
  50. Van Donk, E., R. D. Gulati, A. Iedema & J. T. Meulemans, 1993. Macrophyte-related shifts in the nitrogen and phosphorus contents of the different trophic levels in a biomanipulated shallow lake. Hydrobiologia 251: 19–26.CrossRefGoogle Scholar
  51. Walker, P. A., 1994. Development of pike and perch populations after biomanipulation of fish stocks. In I. G. Cowx (ed.), Rehabilitation of Freshwater Fisheries, Fishing News Books. Blackwell Scientific Publications Ltd, Oxford, U.K: 376–389.Google Scholar
  52. Willemsen, J., 1980. Fisheries aspects of eutrophication. Hydrobiol. Bull. 14: 1710–1719.Google Scholar
  53. Winfield, I. J., 1986. The influence of simulated aquatic macrophytes on the zooplankton consumption rate of juvenile roach, Rutilus rutilus, rudd, Scardinius erythrophthalmus, and perch, Perca fiuviatilis. J. Fish Biol. 29 (Supp1.A): 37–48.CrossRefGoogle Scholar
  54. Wium-Anderson, S., U. Anthoni, C. Christophersen & G. Houen, 1982. Allelopathic effects on phytoplankton by substances isolated from aquatic macrophytes ( Charales ). Oikos 39: 187–190.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • M. R. Perrow
    • 1
  • A. J. D. Jowitt
    • 1
  • S. A. C. Leigh
    • 1
  • A. M. Hindes
    • 1
  • J. D. Rhodes
    • 1
  1. 1.ECON Ecological Consultancy, Biological SciencesUniversity of East AngliaNorwichUK

Personalised recommendations