The role of benthivorous and planktivorous fish in a mesotrophic lake ecosystem

  • Juha Karjalainen
  • Markus Leppä
  • Minna Rahkola
  • Kimmo Tolonen
Part of the Developments in Hydrobiology book series (DIHY, volume 143)


The effectiveness of fish removal as a tool for biomanipulation and restoration was studied from 1993 to 1997 in shallow Lake Pohjalampi (North Karelia, eastern Finland). The external nutrient loading into this lake was low and nearly stable throughout the study period. During a period of 5 years, a total of > 200 kg ha−1 of fish, mainly roach and bream, were caught and thus the total fish biomass was reduced by nearly 80%. However, in 1996 a very dense year-class of perch hatched and the number of planktivorous fish increased again. These changes in the fish community resulted in a decreased fish predation on benthic invertebrates, whereas the predation of fish on zooplankton increased. The responses in the prey communities were consistent with these changes: the biomass of benthic invertebrates increased and that of zooplankton decreased. At the same time, nutrient and chlorophyll a : concentrations declined. The decreasing chlorophyll a:P ratio indicated also that the nutrient cycling in the lake was reduced and despite the increased predation on herbivorous zooplankton the lake was shifted to a more oligotrophic state.

Key words

benthic invertebrates benthivorous fish fish removal nutrient loading planktivorous fish zooplankton 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersson, G., H. Berggren, G. Cronberg & C. Gelin, 1978. Effects of planktivorous and benthivorous fish on organisms and freshwater chemistry in eutrophic lakes. Hydrobiologia 59: 9–15.CrossRefGoogle Scholar
  2. Benndorf, J., 1987. Food web manipulation without nutrient control: a useful strategy in Lake restoration? Schweiz. Z. Hydrol. 49: 237–248.Google Scholar
  3. Boers, P., L. Van Ballegooijen & J. Uunk, 1991. Changes in phosphorus cycling in a shallow lake due to food web manipulations. Freshwat. Biol. 25: 9–20.Google Scholar
  4. Brett, M. T. & C. R. Goldman, 1996. A meta-analysis of the freshwater trophic cascade. Proc. Natl. Acad. Sci. U.S.A. 93: 7723–7726.CrossRefGoogle Scholar
  5. Brooks, J. L. & S. J. Dodson, 1965. Predation body-size and composition of the plankton. Science 150: 28–35.PubMedCrossRefGoogle Scholar
  6. Byron, E. R., C. L. Folt & C. R. Goldman, 1984. Copepod and cladoceran success in an oligotrophic lake. J. Plankton Res. 6: 43–65.CrossRefGoogle Scholar
  7. Carpenter, S. R., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity. Bioscience 35: 634639.Google Scholar
  8. Carpenter, S. R., J. F. Kitchell, J. R. Hodgson, P. A. Cochran, J. J. Elser, M. M. Elser, D. M. Lodge„ D. Kretchmer, X. He & C. N. von Ende, 1987. Regulation of lake primary productivity by food web structure. Ecology 68: 1863–1876.CrossRefGoogle Scholar
  9. Cobb, S. E. & M. C. Watzin, 1998. Trophic interactions between yellow perch (Perca flavescens) and their benthic prey in a littoral zone community. Can. J. Fish. aquat. Sci. 55: 28–36.Google Scholar
  10. Gophen, M. & R. Landau, 1977. Trophic interactions between zooplankton and sardine Mirogrex terraesanctae populations in lake Kinneret, Israel. Oikos 29: 166–174.Google Scholar
  11. Gullaud, J.A., 1983, Fish Stock Assessment. A manual of Basic methods. Chichester. John Wiley & Sons.Google Scholar
  12. Hanson, M. A. & M. G. Butler, 1994. Responses of plankton, turbidity, and macrophytes to biomanipulation in a shallow prairie lake. Can. J. Fish. aquat. Sci. 51: 1180–1188.CrossRefGoogle Scholar
  13. He, X., M.D. Scheurell, P.A. Soranno & R.A. Wright, 1994. Recurrent response patterns of a zooplankton community to whole-lake fish manipulation. Freshwat. Biol. 32: 61–72.CrossRefGoogle Scholar
  14. Helminen, H. & J. Sarvala, 1997. Responses of Lake Pyhäjärvi (SW Finland) to variable recruitment of the major planktivorous fish, vendace (Coregonus albula). Can. J. Fish. aquat. Sci. 54: 32–40.Google Scholar
  15. Henrikson, L., H. G. Nyman, H. G. Oscarson & J. Stenson, 1980. Trophic changes in the external nutrient loading. Hydrobiologia 68: 257–263.CrossRefGoogle Scholar
  16. Hewett, S.W. & B.L. Johnson, 1992. A generalized bioenergetics model of fish growth for microcomputers. University of Wisconsin Sea Grant Technical Reports, No. WIS-SG-91–250, 2nd edition.Google Scholar
  17. Holm-Hansen, D. & B. Riemann, 1978. Chlorophyll a determination: improvements in methods. Oikos 30: 438–447.Google Scholar
  18. Horppila, J., 1998. Effects of mass removal and variable recruitment on nutrient excretion by a planktivorous roach stock. J. Fish Biol. 52: 951–961.CrossRefGoogle Scholar
  19. Horppila, J. & T. Kairesalo, 1990. A fading recovery: the role of roach (Rutilus rutilus L.) in maintaining high phytoplankton productivity and biomass in Lake Vesijärvi, southern Finland. Hydrobiologia 200 /201: 153–165.CrossRefGoogle Scholar
  20. Horppila, J. & H. Peltonen, 1997. A bioenergetic approach on food consumption of roach (Rutilus rutilus (L.)) in a eutrophic lake. Arch. Hydrobiol. 139: 207–222.Google Scholar
  21. Horppila, J., H. Peltonen, T. Malinen, E. Luokkanen & T. Kairesalo, 1998. Top-down or bottom-up effects by fish: issues of concern in biomanipulation of lakes. Restoration Ecol. 6: 20–28.CrossRefGoogle Scholar
  22. Karjalainen, J., D. Miserque & H. Huuskonen, 1997. The estimation of food consumption in larval and juvenile fish: experimental evaluation of bioenergetics model. J. Fish Biol. ( Suppl. A ) 51: 39–51.Google Scholar
  23. Karjalainen, J., S. 011ikainen & M. Viljanen, 1998. Precision in larval fish sampling: how many replicates are needed? Arch. Hydrobiol. Spec. Issues. Advanc. Limnol. 50: 73–80.Google Scholar
  24. Karäs, P. & G. Thoresson, 1992. An application of a bioenergetics model to Eurasian perch (Perca fíuviatilis L.). J. Fish Biol. 41: 217–230.CrossRefGoogle Scholar
  25. Kraft, C. E., 1992. Estimates of phosphorus and nitrogen cycling by fish using a bioenergetics approach. Can. J. Fish. aquat. Sci. 49: 2596–2604.Google Scholar
  26. Krebs, C.J., 1989. Ecological Methodology. Harper and Row, New York. 654 p.Google Scholar
  27. Kurkilahti, M. & M. Rask, 1996. A comparative study of usefulness and catchability of multimesh gill nets and gill net series for sampling of perch (Perca fluviatilis L.) and roach (Rutilus rutilus L.). Fish. Res. 27: 243–260.Google Scholar
  28. Langeland, A. 1982. Interactions between zooplankton and fish in a fertilized lake. Holarctic Ecol. 5: 273–310.Google Scholar
  29. Leppä, M., J. Karjalainen & M. Rahkola, 1995. Changes in fish stocks of Lake Pohjalampi. Suomen Kalastuslehti 8 /1995: 22–23 (in Finnish).Google Scholar
  30. Luecke, C., M. J. Vanni, J. J. Magnuson, J. F. Kitchell & P.T. Jacobson, 1990. Seasonal regulation of Daphnia populations by planktivorous fish: implications for the spring clear-water phase. Limnol. Oceanogr. 35: 1718–1733.CrossRefGoogle Scholar
  31. Mazumder, A., 1994. Phosphorus-chlorophyll relationships under contrasting herbivory and thermal stratification: predictions and patterns. Can. J. Fish. aquat. Sci. 51: 390–400.Google Scholar
  32. McNaught, D.C., D. Griesmer & M. Kennedy, 1980. Resource characteristics modifying selective grazing by copepods. In W.C. Kerfoot (ed.), Evolution and Ecology of Zooplankton Cornmunities. The University Press of New England, Hanover, NH: 292–298.Google Scholar
  33. McQueen, D. J., 1990. Manipulating lake community structure: where do we go from here? Freshwat. Biol. 23: 613–620.Google Scholar
  34. McQueen, D. J., J. R. Post & E. L. Mills, 1986. Trophic relationships in freshwater pelagic ecosystems. Can. J. Fish. aquat. Sci. 43: 1571–1581.CrossRefGoogle Scholar
  35. McQueen, D. J., M. R. S. Johannes, J. R. Post, T.J. Stewart & D.R.S. Lean, 1989. Bottom-up and top-down impacts on freshwater pelagic community structure. Ecol. Monogr. 59: 289–309.Google Scholar
  36. McQueen, D. J., J. R. France & C. Kraft, 1992. Confounded impacts of planktivorous fish on freshwater biomanipulations. Arch. Hydrobiol. 125: 1–24.Google Scholar
  37. Meijer, M.-L., M. W. de Haan, A. W. Breukelaar & H. Buiteveld, 1990. Is reduction of the benthivorous fish an important cause of high transparency following biomanipulation in shallow lakes? Hydrobiologia 200/201: 303–315.Google Scholar
  38. National Board of Waters and the Environment, 1981. Vesihallinnon analyysimenetelmät. Publ. Nat. Board of Waters, Finland. Report 213: 1–136 (Water quality analysis method; in Finnish).Google Scholar
  39. Persson, A. & S.F. Hamrin, 1994. Effects of cyprinids on the release of phosphorus from lake sediment. Verh. int.Ver. Limnol. 24: 2124–2127.Google Scholar
  40. Persson, L., L. Johansson, G. Andersson, S. Diehl & S. F. Hamrin, 1993. Density dependent interactions in lake ecosystems: whole lake perturbation experiments. Oikos 66: 193–208.Google Scholar
  41. Penow, M. R., M.-L. Meijer, R. Dawidowicz & H. Coops, 1997. Biomanipulation in the shallow lakes-state of the art. Hydrobiologia 342: 355–365.Google Scholar
  42. Pierce, C. L. & B. D. Hinrichs, 1997. Response of littoral invertebrates to reduction of fish density: simultaneous experiments in ponds with different fish assemblages. Freshwat. Biol. 37: 397–408.Google Scholar
  43. Rahkola, M., J. Karjalainen & V. Avinsky, 1998. Individual weight estimates of zooplankton based on length-weight regressions in Lake Ladoga and Saimaa lake system. Nordic J. Freshw. Res. 74: 100–111.Google Scholar
  44. Ramcharan, C. W., R. L. France & D. J. McQueen, 1996. Multiple effects of planktivorous fish on algae through a pelagic trophic cascade. Can. J. Fish. aquat. Sci. 53: 2819–2828.Google Scholar
  45. Reynolds, C. S., 1994. The ecological basis for the successful biomanipulation of aquatic communities. Arch. Hydrobiol. 130: 1–33.Google Scholar
  46. Ricker, W.E., 1975. Computation and interpretation of biological statsitics of fish populations. Bull. Fish. Res. Bd Can. 191: 1382.Google Scholar
  47. Santer, B., 1994. Influences of food type and concentration on the development of Eudiaptomus gracilis and implications for interactions between calonoid and cyclopoid copepods. Arch. Hydrobiol. 131: 141–159.Google Scholar
  48. Sarvala, J., H. Helminen, V. Saarikari, S. Salonen & K. Vuorio, 1998. Relations between planktivorous fish abundance, zooplankton and phytoplankton in three lakes of differing productivity. Hydrobiologia (in press).Google Scholar
  49. Schaus, M. H., M. J. Vanni, T. E. Wissing, M. T. Bremigan, J. E. Garvey & R. A. Stein, 1997. Nitrogen and phosphorus excretion by detritivorous gizzard shad in a reservoir ecosystem. Limnol. Oceanogr. 42: 1386–1397.Google Scholar
  50. Shapiro, J. & R. E. Carlson, 1982. Comment on the role of fishes in the regulation of phosphorus availability in lakes. Can. J. Fish. aquat. Sci. 39: 364.Google Scholar
  51. Svensson, J. M. & L. Leonardson, 1996. Effects of bioturbation by tube-dwelling chironomid larvae on oxygen uptake and de-nitrification in eutrophic lake sediments. Freshwat. Biol. 35: 289–300.Google Scholar
  52. Wong, A. H., D. D. Williams, D. J. McQueen, E. Demers & C. W. Ramcharan, 1998. Macroinvertebrate abundance in two lakes with contrasting fish communities. Arch. Hydrobiol. 141: 283–302.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Juha Karjalainen
    • 1
  • Markus Leppä
    • 1
  • Minna Rahkola
    • 1
  • Kimmo Tolonen
    • 1
  1. 1.Karelian Institute, Department of EcologyUniversity of JoensuuJoensuuFinland

Personalised recommendations