Advertisement

Dimictic versus polymictic masurian lakes: similarities and differences in chlorophyll-nutrients—SD relationships

  • Lech Kufel
Chapter
  • 351 Downloads
Part of the Developments in Hydrobiology book series (DIHY, volume 143)

Abstract

Data for comparison are from 17 dimictic and four polymictic lakes interconnected to form a system of the Great Masurian Lakes. Both summer epilimnetic total phosphorus and chlorophyll were higher in dimictic than in polymictic lakes. Chlorophyll was probably not limited either by phosphorus or by nitrogen in shallow lakes. Utilization of phosphorus in terms of chlorophyll:particulate phosphorus and chlorophyll:particulate nitrogen ratios was similar in the two groups of lakes. Significant differences were found, however, in the chlorophyll:seston ratio, higher in dimictic lakes. These observations together suggest that seston in shallow lakes contains a significant, though unpredictable contribution of detritus/mineral particles much poorer in phosphorus than those in dimictic lakes. Secchi disc depth was better explained in shallow lakes by seston variability than by chlorophyll. Thus, algal production in shallow masurian lakes seems to be limited by light conditions resulting from resuspension of non-living particles while the production in deep lakes is nutrient (both nitrogen and phosphorus) limited.

Key words

mictic type water transparency nitrogen phosphorus chlorophyll:nutrient ratio chlorophyll:seston ratio 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carlson, R. E., 1977. A trophic state index for lakes. Limnol. Oceanogr. 22: 361–369.CrossRefGoogle Scholar
  2. Dokulil, M. T. & J. Padisak, 1994. Long-term compositional response of phytoplankton in a shallow, turbid environment, Neusiedlersee (Austria/Hungary). Hydrobiologia 275/276: 125137.Google Scholar
  3. Edmondson, W. T., 1991. The uses of ecology: Lake Washington and beyond. Univ. Washington Press: 329 pp.Google Scholar
  4. Golterman, H. L., 1969. Methods for chemical analysis of fresh waters. Blackwell Scientific Publications, Oxford and Edinburgh: 172 pp.Google Scholar
  5. Hillbricht-Ilkowska, A., I. Kostrzewska-Szlakowska & R. J. Wisniewski, 1996. Zróínicowanie troficzne jezior rzeki Krytuni (Pojezierze Mazurskie) — stan obecny, zmiennose wieloletnia, zaleznosci troficzne. (Trophic differentiation of lakes along River Krutynia (Masurian Lakeland) — present situation, long-term variability and trophic relationships). In: Hillbricht-Ilkowska, A. & R. J. Wisniewski (eds), The Functioning of River-Lake System in a Lakeland Landscape: River Krutynia ( Masurian Lakeland, Poland). Zesz. Nauk. Komitetu `Czlowiek i Srodowisko’ PAN, 13: 125 – 153.Google Scholar
  6. Jensen, H. S. & F. 0. Andersen, 1992. Importance of temperature, nitrate and pH for phosphate release from aerobic sediments of four shallow, eutrophic lakes. Limnol. Oceanogr. 37: 577 – 589.Google Scholar
  7. Kleeberg, A. & H.-P. Kozerski, 1997. Phosphorus release in Lake Grosser Mueggelsee and its implications for lake restoration. Hydrobiologia 342/343: 9 – 26.Google Scholar
  8. Knuuttila, S., 0.-P. Pietiläinen & L. Kauppi, 1994. Nutrient balances and phytoplankton dynamics in two agriculturally loaded shallow lakes. Hydrobiologia 275/276: 359–369.CrossRefGoogle Scholar
  9. Królikowska, J., 1997. Eutrophication processes in a shallow, macrophyte dominated lake-species differentiation, biomass and the distribution of submerged macrophytes in Lake Luknajno (Poland). Hydrobiologia 342/343: 411 – 416.CrossRefGoogle Scholar
  10. Kufel, I. & L. Kufel, 1997. Eutrophication processes in a shallow macrophyte-dominated lake:nutrient loading to and flow through Lake Luknajno (Poland). Hydrobiologia 342/343: 387–394.CrossRefGoogle Scholar
  11. Kufel, L. & T. Ozimek, 1994. Can Chara control phosphorus cycling in Lake Luknajno (Poland)? Hydrobiologia 275/276: 277–283.CrossRefGoogle Scholar
  12. Kufel L., J. Królikowska & I. Kufel, 1996. Structure of submerged littoral vegetation in relation to pelagic trophic state indices. Ekol. pol. 44: 293 –310.Google Scholar
  13. Kufel, L., 1998. Chlorophyll-nutrients-Secchi disc relationships in the Great Mazurian Lakes (north-eastern Poland). Pol. J. Ecol. 46: 327 – 337.Google Scholar
  14. Lijklema, L., 1994. Nutrient dynamics in shallow lakes:effects of changes in loading and role of sediment-water interactions. Hydrobiologia 275/276: 335 – 348.Google Scholar
  15. Nixdorf, B. & R. Daneke, 1997. Why ‘very shallow’ lakes are more successful opposing reduced nutrient loads. Hydrobiologia 342/343: 269 – 284.CrossRefGoogle Scholar
  16. Pridmore, R. D., J. E. Hewitt & A. B. Cooper, 1989. Does the chlorophyll a content of phytoplankton vary with trophic status in lakes on the New Zealand central volcanic plateau ? J. Plankton Res. 11: 583 – 593.CrossRefGoogle Scholar
  17. Scheffer, M., 1998. Ecology of shallow lakes. Chapman & Hall, London, Weinheim, New York: 357 pp.Google Scholar
  18. Scheffer, M., S. H. Hosper, M.-L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends Ecol. Evol. 8: 275 – 279.Google Scholar
  19. Solórzano, L., 1969. Determination of ammonia in natural waters by the phenylhypochlorite method. Limnol. Oceanogr. 14: 799 – 800.CrossRefGoogle Scholar
  20. Standard methods for the examination of water and waste water. 1960. Am. Publ. Health Assoc. Inc., New York: 626 pp.Google Scholar
  21. White, E., G. Payne & S. Pickmere, 1988. A limitation to the usefulness of chlorophyll as a biomass indicator in eutrophication studies. Verh. int. Ver. Limnol. 23: 598 – 601.Google Scholar
  22. Zdanowski, B., 1982. Variability of nitrogen and phosphorus contents and lake eutrophication. Pol. Arch. Hydrobiol. 29: 541–597.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Lech Kufel
    • 1
  1. 1.Hydrobiological StationInstitute of Ecology PASMikołajkiPoland

Personalised recommendations