Shallow lakes in lowland river systems: Role in transport and transformations of nutrients and in biological diversity

  • Anna Hillbricht-Ilkowska
Part of the Developments in Hydrobiology book series (DIHY, volume 143)


Shallow, small-sized, macrophyte-dominated lakes are frequently inserted into the upstream, initial sections of low-grade river systems in post-glacial lowland landscapes. In terms of the River Continuum Concept they function as ‘disturbing inserts’ which are: 1. sinks for transported nitrate nitrogen by providing more sites for effective denitrification (anoxic, organic sediments, vegetation beds), 2. usually sink also for total phosphorus fluvial load except in summer periods when the net export of this nutrient takes place due to internal loading, being the source of it for downstream river section, 3. transform the coarse, low-organic fluvial suspended matter into the subtle, rich-organic suspension in which living plankton organisms are present. One can say that these lakes being a stagnant section of a system, are shortening the length of nutrient spiralling within the river ecosystem. The fluvial lakes increase the patchiness of a river system providing the sites for aquatic vegetation patches and sediment patches more stable in relation to typical river conditions; in this way, they enlarge the area of refuges in a river system. The greater the refugial area in a system the more stabilised are the predator (fish) — prey (invertebrates) relations in the river food web. The inflows (deltas) as well as outflows from the lake are important sites for the transformation of fluvial matter and nutrients, as well as for river habitat patchiness. The lakes inserted into the fluvial system thus provide the examples of the Serial Discontinuity analogical to the man-made impoundments on a large river system.

Key words

river-lake systems nutrient retention river patchiness river biodiversity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bajkiewicz-Grabowska, E., 1996. Struktura fizycznogeograficzna obszaru drenowanego przez system rzeczno-jeziorny Krutyni (Pojezierze Mazurskie) [The physicogeographical structure of the area drained by the Krutynia river-lake system, Masurian Lakeland]. Zesz.nauk. Kom.PAN ‘Czlowiek i Srodowisko’ 13: 21–34.Google Scholar
  2. Basu, K. and F. R. Pick, 1996. Factors regulating phytoplankton and zooplankton biomass in temperate rivers. Limnol. Oceanogr. 41: 1572–1577.CrossRefGoogle Scholar
  3. Cummins, K. W., C. E. Cushing and G. W. Minshall, 1995. An overview of stream ecosystems. In Cushing C. E., K. W. Cummins and G. W. Minshall (eds), Rivers and Stream Ecosystems. Ecosystems of the World, 22, Elsevier, Amsterdam: 1 – 8.Google Scholar
  4. Ejsmont-Karabin, J. and T. Weglenska, 1996. Przemiany struktury zooplanktonu w strefach przejsciowych rzeka-jezioro-rzeka — system rzeki Krutyni, Pojezierze Mazurskie [Changes in zooplankton structure in river-lake — river transitory zones, Krutynia r. system, Masurian Lakeland]. Zesz. nauk. Korn. PAN ‘Czlowiek i srodowisko’ 13: 263–289.Google Scholar
  5. Forman, R. T. T. and M. Gordon, 1986. Landscape ecology. John Wiley and Sons, N.York: 619 pp.Google Scholar
  6. Hillbricht-Ilkowska, A., 1993. The dynamics and retention of phosphorus in lentic and lotie patches of two river-lake systems. Hydrobiologia 251: 257 – 268.CrossRefGoogle Scholar
  7. Hillbricht-Ilkowska, A. and T. Weglenska, 1996. System rzecznojeziorny jako uklad platow krajobrazowych i ich stref granicznych [A river-lake system as a composition pattern of landscape patches and their transitory zones — ecotones]. Zesz. nauk. Korn. PAN ‘Czlowiek i srodowisko’ 12: 185–202.Google Scholar
  8. Hillbricht-Ilkowska, A. and I. Kostrzewska-Szlakowska, 1996. Zmiennosc stezenia wybranych zwiazkow chemicznych oraz retencja fosforu i azotu w ukladzie rzeczno-jeziornym rzeki Krutyni—Pojezierze Mazurskie [Variability of concentration of selected chemical elements and the retention of phosphorus and nitrogen in the river-lake system of the r. Krutynia, Masurian Lakeland]. Zesz. nauk. Korn. PAN ‘Czlowiek i Srodowisko’ 13: 187–210.Google Scholar
  9. Hillbricht-Ilkowska, A., I. Kostrzewska-Szlakowska and J. R. Wisniewski, 1996. Zroznicowanie troficzne jezior rzeki Krutyni, Pojezierze Mazurskie — stan obecny, zmiennosc wieloletnia, zaleznosci troficzne [Trophic differentiation of lakes along river Krutynia, Masurian Lakeland — present state, long-term variability and trophic relations]. Zesz. nauk. Korn. PAN ‘Czlowiek i Srodowisko’ 13: 125–154.Google Scholar
  10. Jansson, M., R. Andersson, M. Berggson and L. Leonardson, 1994. Wetlands and lakes as nitrogen traps. AMBIO 23: 320 – 325.Google Scholar
  11. Jeppsen, E., J. R. Jensen, M. Sondergaard, T. Lauridsen, L. J. Pedersen and L. Jensen, 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342-343: 151 – 164.CrossRefGoogle Scholar
  12. Kufel, L., 1993. Particulate phosphorus sedimentation at the river inflow to a lake. Hydrobiologia 251: 269 – 274.CrossRefGoogle Scholar
  13. Kufel, L., 1996. Procesy sedymentacji fosforu w strefie ujsciowej rzeki do jeziora [Processes of sedimentation of phosphorus in the zone of confluence of a river and a lake]. Zesz. nauk. Korn. PAN ‘Czlowiek i Srodowisko’ 13: 237–244.Google Scholar
  14. Królikowska, J., 1996. Makrofity stref przejsciowych rzeka-jezioro i jezioro-rzeka systemu rzeki Krutyni —Pojezierze Mazurskie [Macrophytes of river-lake and lake-river transitory zones of a river Krutynia system, Masurian Lakeland]. Zesz. nauk. Korn. PAN ‘Czlowiek i Srodowisko’ 13: 245–261.Google Scholar
  15. Lauridsen, T. L., L. J. Pedersen, E. Jeppesen and M. Soridergaard, 1996. The importance of macrophyte bed size for cladoceran composition and horizontal migration in a shallow lake. J. Plankton Res. 18: 2283 – 2294.CrossRefGoogle Scholar
  16. Lewandowski, K. B., 1996. Bentos rzeczno-jeziorny stref przejsciowych systemu rzeki Krutyni, Pojezierze Mazurskie [Benthos of river-lake transitional zones of the Krutynia River system, Masurian Lakeland]. Zesz. nauk. Kom. PAN ‘Czlowiek i Srodowisko’ 13: 303–312.Google Scholar
  17. Minshall, G. W., K. W. Cummins, R. Petersen, C. E. Cushing, D. A. Bruns, J. R. Sedell and R. L. Vannotte, 1985. Development in stream ecosystem theory. Can. J. Fish. aquat. Sci. 42: 1045–1052.CrossRefGoogle Scholar
  18. Palmer, R. W. and J. H. O’Keeffe, 1990. Downstream effects of small impoundment on a turbid river. Arch. Hydrobiol. 119: 457–473.Google Scholar
  19. Perrow, M. R., M.-L. Meijer, P. Dawidowicz and H. Coops, 1997. Biomanipulation in shallow lakes: state of art. Hydrobiologia 342 – 343: 355 365.Google Scholar
  20. Ramm, K. and V. Scheps, 1997. Phosphorus balance of a polytrophic shallow lake with the consideration of phosphorus release. Hydrobiologia 342–343: 43 – 53.CrossRefGoogle Scholar
  21. Richardson, J. S. and R. S. Machay, 1991. Lake outlets and the distribution of filter feeders. Oikos 62: 370 – 380.CrossRefGoogle Scholar
  22. Romo, S., E. van Donk, R. Gylstra and R. Gulati, 1996. A multivariate analysis of phytoplankton and food web change in a shallow biomanipulated lake. Freshwat. Biol. 36: 683–696.CrossRefGoogle Scholar
  23. Stansfield, J. H., M. R. Perrow, L. D. Tench, A. J. D. Jowitt and A. A. L. Taylor, 1997. Submerged macrophytes as refugies for grazing Cladocera against fish predation: observations on seasonal change in relation to macrophytes cover and predation pressure. Hydrobiologia 342/343: 229–240.Google Scholar
  24. Stephen, D., B. Moss and G. Phillips, 1997. Do rooted macrophytes increase sediment phosphorus release? Hydrobiologia 342–343: 27 – 34.CrossRefGoogle Scholar
  25. Strahler, A. N., 1957. Quantitative analysis of watershed geomorphology. Trans. am. Geophys. Union. 38: 913–920.CrossRefGoogle Scholar
  26. Ward, J. V. and J. A. Stanford, 1983. The serial discontinuity concept of lotic ecosystems. In Fontaine, T. P. III and S. M. Bartell (eds), Dynamics of Lotic Ecosystems. Ann Arbor Science, Michigan: 29 – 41.Google Scholar
  27. Weisner, S. E. B., R. G. Friksson, W. Grandi and L. Leonardson, 1994. Influence of macrophytes on nitrate removal in wetlands. AMBIO 23: 363 – 366.Google Scholar
  28. Wisniewski, J. R. and M. Rzepecki, 1996. Osady denne stref przejsciowych rzeka-jezioro i jezioro-rzeka w systemie rzecznojeziornym Krytyni, Pojezierze Mazurskie: rola w krazeniu fosforu [Bottom sediments of the river-lake and lake-river transitory zones in the Krutynia fluvio-lacustrine system, Masurian Lakeland: role in phosphorus cycling]. Zesz. nauk. Kom. PAN ‘Czlowiek i Srodowisko’ 13: 313–343.Google Scholar
  29. Wotton, R. S., 1988. Very high secondary production at a lake outlet. Freshwat. Biol. 20: 341-346.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Anna Hillbricht-Ilkowska
    • 1
  1. 1.Institute of EcologyPolish Academy of SciencesLomiankiPoland

Personalised recommendations