Advertisement

Internal and external nutrient cycles in stands of Phragmites australis — a model for two ecotypes

  • Indra Lippert
  • Hardy RolletschekEmail author
  • Harald Kühl
  • Johannes-Günter Kohl
Chapter
Part of the Developments in Hydrobiology book series (DIHY, volume 143)

Abstract

Two genetically different stands of Phragmites australis differing in their trophic status were investigated regarding seasonal changes in shoot morphology, stand structure, standing crop and N-, P-content in the above-ground and below-ground biomass. A model was developed describing internal and external nutrient cycles of two distinct ecotypes — translocation type and assimilation type. In adaptation to high nutrient availability in littoral sediments, the assimilation type is characterized by a higher productivity and standing stock (N, P), lower fertility, lower translocation rates (N, P), and higher N-, P-contents in the remaining standing dead culms, which leads to a more pronounced external nutrient cycle as compared to the translocation type situated at nutrient poor sites. Furthermore, the duration of heterotrophic and autotrophic growth phase, translocation and dormancy of buds differs between the both types.

Key words

Phragmites australis nutrient cycle assimilation type translocation type wetlands 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Björk, S., 1967. Ecologic investigation of Phragmites australis. Studies in theoretic and applied limnology. Folia limnol. scand. 14: 1 248.Google Scholar
  2. Boar, R. R., C. E. Crook & B. Moss, 1989. Regression of Phragmites australis reedswamps and recent changes of water chemistry in the Norfolk Broadland, England. Aquat. Bot. 35: 41–55.CrossRefGoogle Scholar
  3. Bornkamm, R. & F. Raghi-Atri, 1986. Über die Wirkung unterschiedlicher Gaben von Stickstoff und Phosphor auf die Entwicklung von Phragmites australis (Cay.) Trin. ex Steudel. Arch. Hydrobiol. 105: 423–441.Google Scholar
  4. Dykyjova, D. & D. Hradeckä, 1976. Production ecology of Phragmites communis. 1. Relations of two ecotypes to the microclimate and nutrient conditions of habitat. Folia geobot. phytotax. 11: 225–259.Google Scholar
  5. Ekstam, B., 1995. Regeneration traits of emergent clonal plants in aquatic habitats. Ph. D. dissertation Lund University.Google Scholar
  6. Haslam, S. M., 1971. Shoot height and density in Phragmites stands. Hydrobiologia (Bucuresti) 12: 113–119.Google Scholar
  7. Klötzli, F., 1971. Biogenous influence on aquatic macrophytes, especially Phragmites communis. Hydrobiologia (Bucuresti) 12: 107–111.Google Scholar
  8. Kohl, J.-G., P. Woitke, H. Kühl, M. Dewender & G. König, 1998. Seasonal changes in dissolved amino acids and sugars in basal culm internodes as physiological indicators of the C/N-balance of Phragmites australis at littoral sites of different trophic status. Aquat. Bot. 60: 221–240.CrossRefGoogle Scholar
  9. Koppitz, H., H. Kühl & J.-G. Kohl, 1997. Some aspects of the importance of genetic diversity of Phragmites australis (Cay.) Trin. ex Steudel for the development of reed stands. Bot. Acta 110: 217–223.Google Scholar
  10. Kühl, H. & J.-G. Kohl, 1992. Nitrogen accumulation, productivity and stability of reed stands (Phragmites australis (Cay.) Trin. ex Steudel) at different lakes and sites of the lake districts of Uckermark and Mark Brandenburg (Germany). Int. Rev. ges. Hydrobiol. 77: 85–107.CrossRefGoogle Scholar
  11. Kühl, H., P. Woitke & J.-G. Kohl, 1997. Strategies of nitrogen cycling of Phragmites australis at two sites differing in nutrient availability. Int. Rev. ges. Hydrobiol. 82: 57–66.CrossRefGoogle Scholar
  12. Kühl, H., H. Koppitz, H. Rolletschek, & J.-G. Kohl, 1999. Clone specific differences in a Phragmites australis stand I. Morphology, genetics and site descripion. Aquat. Bot. (in press).Google Scholar
  13. Marschner, H., E. A. Kirkby & I. Cakmak, 1996. Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. J. Exp. Bot. 47: 1255–1263.PubMedCrossRefGoogle Scholar
  14. Ondok, J. R, 1968. Measurement of leaf area in Phragmites communis Trin. Photosynthetica 2: 25–30.Google Scholar
  15. Pearcy, R. W., J. Ehleringer, H. A. Mooney & P. W. Rundel, 1991. Plant physiological ecology. Chapman and Hall, London: 457 pp.CrossRefGoogle Scholar
  16. Raghi-Atri, F. & R. Bornkamm, 1980. Über die Halmfestigkeit von Schilf (Phragmites australis (Cay.) Trin. ex Steudel) bei unterschiedlicher Nährstoffversorgung. Arch. Hydrobiol. 90: 90–105.Google Scholar
  17. Rodewald-Rudescu, L., 1974. Das Schilfrohr Phragmites australis. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart.Google Scholar
  18. Rolletschek, H., A. Rolletschek, H. Kühl & J.-G. Kohl, 1999. Clone specific differences in a Phragmites australis stand II. Seasonal development of morphological and physiological characteristics at the natural site and after transplantation. Aquat. Bot. (in press).Google Scholar
  19. Tobler, F., 1943. Stengelbau, Festigkeits-und Verwertungsunterschiede beim Schilfrohr (Phragmites communis Trin.). Angew. Bot. 25: 165–177.Google Scholar
  20. Van der Toorn, J., 1972. Variability of Phragmites communis in relation to the environment. Van Zee Tot Land 48: 1–122.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • Indra Lippert
    • 1
  • Hardy Rolletschek
    • 1
    Email author
  • Harald Kühl
    • 1
  • Johannes-Günter Kohl
    • 1
  1. 1.Institut für Pflanzengenetik und KulturpflanzenforschungGaterslebenGermany

Personalised recommendations